फेज-चेंज मेमोरी

From Vigyanwiki

फेज़-चेंज मेमोरी (जिसे पीसीएम, पीसीएमई, प्रैम, पीसीआरएएम, ओयूएम (ओवोनिक यूनिफाइड मेमोरी) और सी-रैम या सीआरएएम (चाल्कोजेनाइड रैम) के रूप में भी जाना जाता है) है। यह इस प्रकार की गैर-वाष्पशील रैंडम-एक्सेस मेमोरी है। जो की पीआरएएमएस चाकोजेनाइड ग्लास के अद्वितीय व्यवहार का लाभ उठाते हैं। पीसीएम में, सामान्यतः टाइटेनियम नाइट्राइड से बने ताप तत्व के माध्यम से विद्युत प्रवाह के पारित होने से उत्पन्न गर्मी का उपयोग या तो जल्दी से गर्म करने और कांच को बुझाने के लिए किया जाता है, जिससे यह अनाकार ठोस हो जाता है, या इसे कुछ समय के लिए अपने क्रिस्टल करण तापमान सीमा में रखने के लिए उपयोग किया जाता है। जिससे यह क्रिस्टलीय अवस्था में बदल जाता है।[1] पीसीएम में कई अलग-अलग मध्यस्थ स्तरों को प्राप्त करने की क्षमता भी है, जिससे एक ही सेल में कई अंश खने की क्षमता होती है,[2] किन्तु इस तरह से प्रोग्रामिंग सेल में कठिनाइयों ने इन क्षमताओं को समान क्षमता वाली अन्य विधियों (सबसे विशेष रूप से फ्लैश मेमोरी) में प्रयुक्त करने से रोक दिया है।

पीसीएम पर आधुनिक शोध मिश्रित सफलता के साथ चरण-परिवर्तन सामग्री Ge2Sb2Te5 (जीएसटी) के लिए व्यवहार्य सामग्री विकल्प विस्तार के प्रयास की दिशा में निर्देशित किया गया है। अन्य शोधों ने जर्मेनियम टेल्यूरियम- सुरमा के विकास पर ध्यान केंद्रित किया है लेज़र पल्स के साथ जर्मेनियम परमाणुओं के समन्वय स्थिति को बदलकर गैर-थर्मल चरण संक्रमण को प्राप्त करने के लिए GeTe–Sb2Te3 सुपर लेटेक्स इस नई इंटरफेशियल फेज-चेंज मेमोरी (आईपीसीएम) को कई सफलताएं मिली हैं और यह अभी भी काफी सक्रिय अनुसंधान का स्थल बना हुआ है।[3]

लियोन चुआ ने तर्क दिया है कि पीसीएम सहित सभी दो-टर्मिनल गैर-वाष्पशील मेमोरीहै। गैर-वाष्पशील-मेमोरी उपकरणों को यादगार माना जाना चाहिए।[4] और एचपी लैब्स के आर स्टेनली विलियम्स ने भी तर्क दिया है कि पीसीएम को मेमिस्टर माना जाना चाहिए।[5] चूंकि, इस शब्दावली को चुनौती दी गई है, और किसी भी भौतिक रूप से प्राप्य उपकरण के लिए यादगार सिद्धांत की संभावित प्रयोज्यता प्रश्न के लिए खुली है।[6][7]

पृष्ठभूमि

1960 के दशक में, ऊर्जा रूपांतरण उपकरण के स्टैनफोर्ड आर. ओवशिन्स्की ने सबसे पहले है। संभावित मेमोरी विधि के रूप में चाकोजेनाइड ग्लास के गुणों की खोज की। 1969 में, चार्ल्स सी ने आयोवा स्टेट यूनिवर्सिटी में है। शोध प्रबंध प्रकाशित किया जिसमें डायोड सरणी के साथ चाकोजेनाइड फिल्म को एकीकृत करके चरण-परिवर्तन-मेमोरी उपकरण की व्यवहार्यता का वर्णन और प्रदर्शन दोनों किया गया था।[8][9] 1970 में सिनेमैटोग्राफिक अध्ययन ने स्थापित किया कि चाकोजेनाइड ग्लास में चरण-परिवर्तन-मेमोरी तंत्र में विद्युत क्षेत्र या विद्युत-क्षेत्र-प्रेरित क्रिस्टल विकास सम्मिलित है।[10][11] इलेक्ट्रॉनिक्स (पत्रिका) के सितंबर 1970 के अंक में, इंटेल के सह-संस्थापक गॉर्डन मूर ने प्रौद्योगिकी पर एक लेख प्रकाशित किया था।[12] चूंकि, सामग्री की गुणवत्ता और विद्युत की खपत के मुद्दों ने प्रौद्योगिकी के व्यावसायीकरण को रोक दिया गया था। वर्तमान में, रुचि और अनुसंधान फिर से प्रारंभ हो गए हैं क्योंकि फ्लैश मेमोरी और गतिशील रैंडम-एक्सेस मेमोरी मेमोरी प्रौद्योगिकियों को स्केलिंग कठिनाइयों का सामना करना पड़ता है क्योंकि चिप लिथोग्राफी संकुचन है।[13]

चाकोजेनाइड ग्लास के क्रिस्टलीय और अनाकार ठोस अवस्थाओं में गेमिंग रूप से भिन्न प्रतिरोधकता मान होते हैं। अनाकार, उच्च प्रतिरोध अवस्था है। बाइनरी अंक प्रणाली 0 का प्रतिनिधित्व करती है, जबकि क्रिस्टलीय, कम प्रतिरोध अवस्था मे 1 का प्रतिनिधित्व करती है। चाकोजेनाइड वह सामग्री है जिसका उपयोग पुनः लिखने योग्य ऑप्टिकल डिस्क (जैसे सीडी-आरडब्ल्यू और डीवीडी-आरडब्ल्यू) में किया जाता है। उन उदाहरणों में, सामग्री के ऑप्टिकल गुणों को इसकी विद्युत प्रतिरोधकता के अतिरिक्त हेरफेर किया जाता है, क्योंकि चाकोजेनाइड का अपवर्तक सूचकांक भी सामग्री की स्थिति के साथ परिवर्तित किया जाता है।

चूंकि उपभोक्ता इलेक्ट्रॉनिक उपकरणों के लिए पीआरएएम अभी तक व्यावसायीकरण चरण तक नहीं पहुंचे है, लगभग सभी प्रोटोटाइप उपकरण जर्मेनियम (जीई), एंटीमनी (एसबी) और टेल्यूरियम (टीई) के है। चाकोजेनाइड मिश्र धातु का उपयोग करते हैं जिसे जीईएसबीटीई (जीएसटी) कहा जाता है। स्तुईचिओमेटरी, या जीई:एसबी:टीई तत्व अनुपात, जीएसटी में 2:2:5 है। जब जीएसटी को उच्च तापमान (600 °C से अधिक) तक गर्म किया जाता है, तो इसकी चाकोजेनाइड क्रिस्टलीयता खो जाती है। यह एक बार ठंडा होने पर, इस आकार कांच जैसी अवस्था में जम जाता है [14] और इसका विद्युत प्रतिरोध अधिक हो जाता है। चॉकोजेनाइड को उसके क्रिस्टलीकरण से ऊपर के तापमान पर गर्म करते हैं| किन्तु गलनांक से नीचे, यह बहुत कम प्रतिरोध के साथ है। जिस कारण यह क्रिस्टलीय अवस्था में परिवर्ती हो जाताहै। इस चरण के संक्रमण को पूरा करने मे लगा समय तापमान पर निर्भर करता है। जिससे चाकोजेनाइड के ठंडे हिस्से को क्रिस्टलीकृत होने में अधिक समय लगता है, और ज़्यादा गरम हिस्से को पिघलाया जा सकता है। 100 नैनोसेकंड के क्रम में है। क्रिस्टलीकरण समय मापदंड एनएस सामान्यतः उपयोग किया जाता है।[15] यह आधुनिक डीआर एएम जैसे पारंपरिक वाष्पशील मेमोरी उपकरणों से अधिक लंबा है, जिसमें दो नैनोसेकंड के क्रम पर स्विचिंग का समय होता है। चूंकि, जनवरी 2006 सैमसंग इलेक्ट्रॉनिक्स पेटेंट आवेदन इंगित करता है कि पीआरएएम पांच नैनोसेकंड जितनी तेजी से स्विचिंग समय प्राप्त कर सकता है।

इंटेल और एसटी माइक्रोइलेक्ट्रॉनिक द्वारा अग्रणी 2008 की अग्रिम ने भौतिक स्थिति को अधिक सावधानी से नियंत्रित करने की अनुमति दी, जिससे इसे चार अलग-अलग स्तरों में से है। में परिवर्तित किया जा सके: पिछले अनाकार या क्रिस्टलीय स्तर, दो नए आंशिक रूप से क्रिस्टलीय स्तरों के साथ इन स्तरों में से प्रत्येक में अलग-अलग विद्युत गुण होते हैं जिन्हें पढ़ने के समय मापा जा सकता है, जिससे एकल सेल को दो बिट्स का प्रतिनिधित्व करने की अनुमति मिलतीहै।[16]


एल्युमिनियम/एंटीमनी

जर्मेनियम, एंटीमनी और टेल्यूरियम पर आधारित फेज-चेंज मेमोरी उपकरण निर्माण संबंधी चुनौतियां प्रस्तुत करते हैं, क्योंकि काल्कोजन के साथ सामग्री की नक़्क़ाशी और पॉलिशिंग सामग्री की संरचना को परिवर्तित कर सकती है। एल्युमिनियम और सुरमा पर आधारित सामग्री जीईएसबीटीई की तुलना में अधिक ऊष्मीय रूप से स्थिरहै। Al50Sb50 तीन अलग-अलग प्रतिरोध स्तर हैं, जो दो सेल में डेटा के तीन बिट्स को दो के विपरीत स्टोर करने की क्षमता प्रदान करते हैं (सेल की जोड़ी के लिए नौ स्तर संभव हैं, उन स्तरों में से आठ का उपयोग करने से log2 8 = 3 बिट्स का उत्पादन होता है)।[17][18]

दो पीआरएएममेमोरी सेल का क्रॉस-सेक्शन। है।कोशिका कम प्रतिरोध क्रिस्टलीय अवस्था में है, दूसरी उच्च प्रतिरोध अनाकार अवस्था में है।

पीआरएएमबनाम फ्लैश

पीआरएएमका स्विचिंग टाइम और अंतर्निहित मापनीयता[19] इसे फ्लैश मेमोरी से अधिक आकर्षक बनाएं। पीआरएएमकी तापमान संवेदनशीलता संभवतः इसकी सबसे उल्लेखनीय कमी है, जिसमें प्रौद्योगिकी को सम्मिलित करने वाले निर्माताओं की उत्पादन प्रक्रिया में बदलाव की आवश्यकता हो सकती है।

यह फ्लैश मेमोरी है।एमओएसएफईटी के गेट के अन्दर जमा चार्ज (इलेक्ट्रॉन) द्वारा काम करती है। गेट का निर्माण एक विशेष स्टैक के साथ किया गया है जिसे ट्रैप चार्ज के लिए डिज़ाइन किया गया है (या तो फ्लोटिंग गेट पर या चार्ज ट्रैप फ्लैश | इंसुलेटर ट्रैप में)। गेट के अन्दर आवेश की उपस्थिति ट्रांजिस्टर की सीमा वोल्टेज को बदल देती है उच्च या निम्न, सेल की बिट स्थिति में 1 से 0 या 0 से 1 में परिवर्तन के अनुरूप है। बिट की स्थिति को बदलने के लिए संचित चार्ज को हटाने की आवश्यकता होती है, जो फ्लोटिंग गेट से इलेक्ट्रॉनों को खीचने के लिए अपेक्षाकृत बड़े वोल्टेज की मांग करता है। वोल्टेज का यह विस्फोट एक चार्ज पंप द्वारा प्रदान किया जाता है, जिससे विद्युत बनने में कुछ समय लगता है। सामान्य फ़्लैश उपकरणों के लिए सामान्य लेखन समय लगभग 100 माइक्रोसेकंड (डेटा के ब्लॉक के लिए), लगभग 10,000 गुना विशिष्ट 10 नैनोसेकंड है। उदाहरण के लिए (एक बाइट के लिए) स्टेटिक रैंडम-एक्सेस मेमोरी के लिए एनएस रीड टाइम था।

पीआरएएम उन अनुप्रयोगों में बहुत अधिक प्रदर्शन की प्रस्तुतिकरण कर सकता है जहां जल्दी से लिखना महत्वपूर्ण है, दोनों क्योंकि मेमोरी तत्व को अधिक तेज़ी से स्विच किया जा सकता है, और इसलिए भी कि एकल बिट्स को 1 या 0 में बदला जा सकता है बिना पहले सेल के पूरे ब्लॉक को मिटाने की आवश्यकता है। पीआरएएम का उच्च प्रदर्शन, पारंपरिक हार्ड डिस्क ड्राइव की तुलना में हजारों गुना तेज, इसे गैर-वाष्पशील मेमोरी भूमिकाओं में विशेष रूप से रोचक बनाता है जो वर्तमान में मेमोरी एक्सेस टाइमिंग द्वारा प्रदर्शन-सीमित हैं।

इसके अतिरिक्त, फ्लैश के साथ, सेल में वोल्टेज के प्रत्येक फटने से गिरावट आती है। जैसे-जैसे सेल का आकार घटता है, प्रोग्रामिंग से होने वाली क्षति बदतर होती जाती है क्योंकि उपकरण को प्रोग्राम करने के लिए आवश्यक वोल्टेज लिथोग्राफी के साथ स्केल नहीं करता है। अधिकांश फ्लैश उपकरणों के लिए मूल्यांकन किया जाता है, वर्तमान में, प्रति सेक्टर केवल 5,000 लिखता है, और कई फ्लैश नियंत्रक कई भौतिक क्षेत्रों में लिखने को फैलाने के लिए पहनने के स्तर को करते हैं।

पीआरएएम उपकरण फ्लैश की तुलना में अलग-अलग कारणों से उपयोग के साथ घटते हैं, किन्तु धीरे-धीरे कम हो जाते हैं। पीआरएएम उपकरण लगभग 100 मिलियन राइट साइकल सहन कर सकता है।[20] प्रोग्रामिंग, धातु (और अन्य सामग्री) प्रवास के समय जीईएसबीटीई थर्मल विस्तार के कारण गिरावट, और अन्य तंत्र अभी भी अज्ञात जैसे तंत्र द्वारा पीआरएएम जीवनकाल सीमित है।

फ्लैश भागों को मुद्रित परिपथ बोर्ड पर मिलाप करने से पहले प्रोग्राम किया जा सकता है, या यहां तक ​​कि प्री-प्रोग्राम्ड खरीदा जा सकता है। चूंकि,पीआरएएम की सामग्री उपकरण को बोर्ड में सोल्डर करने के लिए आवश्यक उच्च तापमान के कारण खो जाती है ( इलेक्ट्रॉनिक उपकरणों में है।लेप लगाकर टाँका लगाना या वेव सोल्डरिंग देखें)। सीसा रहित विनिर्माण के लिए उच्च सोल्डरिंग तापमान की आवश्यकता होती है। पीआरएएम भागों का उपयोग करने वाले निर्माता को पीआरएएमको सिस्टम में सोल्डर किए जाने के बाद प्रोग्राम करने के लिए है।तंत्र प्रदान करना चाहिए।

समय के साथ फ्लैश मेमोरी लीक चार्ज (इलेक्ट्रॉन) में उपयोग किए जाने वाले विशेष द्वार कुरीति और डेटा की हानि का कारण बनते हैं। पीआरएएम में मेमोरी तत्व की विद्युत प्रतिरोधकता और चालकता अधिक स्थिर होती है; 85 °C के सामान्य कार्य तापमान पर, यह 300 वर्षों तक डेटा बनाए रखने का अनुमान है।[21]

गेट पर संग्रहीत चार्ज की मात्रा को ध्यान से संशोधित करके, फ्लैश उपकरण प्रत्येक भौतिक सेल में एकाधिक (सामान्यतः दो) बिट्स स्टोर कर सकते हैं। वास्तव में, यह निवेश को कम करते हुए घनत्व (कंप्यूटर संचयन) को दोगुना कर देता है। पीआरएएम उपकरण मूल रूप से प्रत्येक सेल में केवल एक बिट स्टोर करते थे, किन्तु इंटेल की वर्तमान प्रगति ने इस समस्या को दूर कर दिया है।

चूंकि फ्लैश उपकरण सूचनाओं को संग्रहीत करने के लिए इलेक्ट्रॉनों को फंसाते हैं, वे विकिरण से डेटा व्यर्थ के लिए अतिसंवेदनशील होते हैं, जिससे वे कई अंतरिक्ष और सैन्य अनुप्रयोगों के लिए अनुपयुक्त हो जाते हैं। पीआरएएम विकिरण के प्रति उच्च प्रतिरोध प्रदर्शित करता है।

पीआरएएम सेल चयनकर्ता विभिन्न उपकरणों का उपयोग कर सकते हैं: डायोड, बाइपोलर जंक्शन ट्रांजिस्टर और एमओएसएफईटीएस। किसी दिए गए सेल आकार के लिए डायोड या बीजेटी का उपयोग विद्युत प्रवाह की सबसे बड़ी मात्रा प्रदान करता है। चूंकि, डायोड का उपयोग करने की चिंता प्रवासी धाराओं से निकटतम सेल के साथ-साथ उच्च वोल्टेज की आवश्यकता के कारण उत्पन्न होती है, जिसके परिणामस्वरूप उच्च विद्युत की खपत होती है। चालकोजेनाइड प्रतिरोध आवश्यक रूप से डायोड की तुलना में बड़ा होता है, जिसका अर्थ है कि डायोड से पर्याप्त पी-एन जंक्शन या फॉरवर्ड बायस करंट की गारंटी के लिए ऑपरेटिंग वोल्टेज को है।व्यापक मार्जिन से 1 V से अधिक होना चाहिए। डायोड-चयनित सरणी का उपयोग करने का संभवतः सबसे गंभीर परिणाम, विशेष रूप से बड़े सरणियों के लिए, अचयनित बिट लाइनों से कुल पी-एन जंक्शन या विपरीत बायस लीकेज करंट है। ट्रांजिस्टर-चयनित सरणियों में, केवल चयनित बिट लाइनें विपरीत बायस लीकेज करंट का योगदान करती हैं। लीकेज करंट में अंतर परिमाण के कई क्रम हैं। 40 एनएम से नीचे स्केलिंग के साथ है।और चिंता असतत डोपेंट का प्रभाव है क्योंकि पी-एन जंक्शन | पी-एन जंक्शन की चौड़ाई कम हो जाती है। पतली-फिल्म ट्रांजिस्टर-आधारित चयनकर्ता का उपयोग करते हुए उच्च घनत्व की अनुमति देते हैं मेमोरी परतों को क्षैतिज या लंबवत रूप से ढेर करके <4 F2 सेल क्षेत्रका उपयोग करते है यदि चयनकर्ता के लिए चालू/बंद अनुपात पर्याप्त नहीं है, तो अधिकांशतः अलगाव क्षमताएं ट्रांजिस्टर के उपयोग से कम होती हैं, जो इस वास्तुकला में बहुत बड़ी सरणियों को संचालित करने की क्षमता को सीमित करती हैं। चाकोजेनाइड-आधारित थ्रेशोल्ड स्विच को उच्च घनत्व वाले पीसीएम सरणियों के लिए है।व्यवहार्य चयनकर्ता के रूप में प्रदर्शित किया गया है [22]

2000 और बाद में

अगस्त 2004 में, नैनोचिप ने माइक्रोइलेक्ट्रॉनिक सिस्टम (माइक्रो-इलेक्ट्रिक-मैकेनिकल-सिस्टम्स) जांच संचयन उपकरणों में उपयोग के लिए पीआरएएम विधि को लाइसेंस दिया जाता है । ये उपकरण ठोस स्तर ड्राइव नहीं हैं। इसके अतिरिक्त, चाकोजेनाइड में लिपटे है।बहुत छोटे प्लैटर को हजारों या लाखों विद्युत जांचों के नीचे खींचा जाता है जो चाकोजेनाइड को पढ़ और लिख सकते हैं। हेवलेट पैकर्ड की माइक्रो-मूवर विधि प्लैटर को 3 नैनोमीटर एनएम तो 1 टेराबिट से अधिक का घनत्व टीबीआई टी(125 गीगाबाइट जीबी) प्रति वर्ग इंच संभव होगा यदि विधि को सिद्ध किया जा सकता है। मूल विचार ऑन-चिप आवश्यक तारों की मात्रा को कम करना है; प्रत्येक सेल को वायरिंग करने के अतिरिक्त, सेल को एक साथ रखा जाता है और तारों की तरह कार्य करते हुए एमईएमएस जांच के माध्यम से वर्तमान प्रवाह द्वारा पढ़ा जाता है। यह दृष्टिकोण आईबीएम की आईबीएम मिलीपेड विधि से अधिक समानता रखता है।

SAMSUNG 46.7 एनएम सेल

सितंबर 2006 में, सैमसंग ने प्रोटोटाइप 512 मेगाबिट की घोषणा की एमबी (64 मेगाबाइट एमबी) उपकरण डायोड स्विच का उपयोग कर रहा है।[23] घोषणा कुछ आश्चर्यजनक थी, और यह विशेष रूप से इसकी उच्च घनत्व (कंप्यूटर संचयन) के लिए उल्लेखनीय थी। प्रोटोटाइप में केवल 46.7 एनएम का सेल आकार था, जो उस समय उपलब्ध वाणिज्यिक फ्लैश मेमोरी उपकरणों से छोटा था। चूंकि उच्च क्षमता के फ्लैश उपकरण उपलब्ध थे (64 गीगाबिट जीबी, या 8 गीगाबाइट जीबी, अभी बाजार में आ रहे थे) सामान्य रूप से फ्लैश को बदलने के लिए प्रतिस्पर्धा करने वाली अन्य विधिों ने कम घनत्व (बड़े सेल आकार) की प्रस्तुतिकरण की। उदाहरण के लिए, एकमात्र उत्पादन एमआरएएम और एफईआरएएम उपकरण केवल 4 एमबी हैं। सैमसंग के प्रोटोटाइप पीआरएएम उपकरण के उच्च घनत्व ने सुझाव दिया कि यह है।व्यवहार्य फ्लैश प्रतियोगी हो सकता है, और अन्य उपकरणों की तरह आला भूमिकाओं तक सीमित नहीं है। पीआरएएम संभावित एनओआर फ्लैश प्रतिस्थापन के रूप में विशेष रूप से आकर्षक प्रतीत होता है। जहां उपकरण क्षमताएं सामान्यतः एनएएनडी फ्लैश न ही फ्लैश उपकरण से पीछे रह जाती हैं। एनएएनडी पर अत्याधुनिक क्षमता कुछ समय पहले 512 एमबी पार कर गई थी। एनओआर फ्लैश सैमसंग के पीआरएएम प्रोटोटाइप के समान घनत्व प्रदान करता है और पहले से ही बिट एड्रेसेबिलिटी प्रदान करता है (एनएएनडी के विपरीत जहां एक समय में कई बाइट्स के उपयुक्त में मेमोरी एक्सेस की जाती है।)

इंटेल का पीआरएएमउपकरण

सैमसंग की घोषणा के बाद इंटेल और एसटीमाइक्रोइलेक्ट्रॉनिक में से एक ने अक्टूबर में 2006 इंटेल डेवलपर फोरम में अपने स्वयं के पीआरएएमउपकरणों का प्रदर्शन किया था।[24] उन्होंने 128 एमबी का भाग दिखाया है। जिसका निर्माण इटली के अग्रेट में एसटीमाइक्रोइलेक्ट्रॉनिक की अनुसंधान प्रयोगशाला में प्रारंभ हुआ है। इंटेल ने कहा कि उपकरण सख्ती से अवधारणा के प्रमाण थे।

बीएई उपकरण

यह पीआरएएमसैन्य और एयरोस्पेस उद्योगों में भी है।आशाजनक विधि है जहां विकिरण प्रभाव मानक गैर-वाष्पशील मेमोरी | गैर-वाष्पशील मेमोरी जैसे फ्लैश अव्यावहारिक का उपयोग करते हैं। पीआरएएम उपकरणों को बीएई सिस्टम्स द्वारा प्रस्तुत किया गया है, जिसे सी -आरएएम के रूप में संदर्भित किया गया है, जो उत्कृष्ट विकिरण सहिष्णुता (रेड कठिन) और अवरोधित हो जाना प्रतिरक्षा का प्रमाणित करता है। इसके अतिरिक्त, बीएई 108 के है। लेखन चक्र धीरज का प्रमाणित करता है। जो इसे अंतरिक्ष प्रणालियों में प्रोग्राम करने योग्य रीड-ओनली मेमोरी और ईईपीआरओमएस को बदलने के लिए है। उम्दिवर बनने की अनुमति दी है।

बहु-स्तरीय सेल

फरवरी 2008 में, इंटेलऔर एसटीमाइक्रोइलेक्ट्रॉनिक ने पहले बहुस्तरीय (बहु-स्तरीय सेल) पीआरएएमसरणी प्रोटोटाइप का पता किया। प्रोटोटाइप ने प्रत्येक भौतिक सेल में दो तार्किक बिट्स को संग्रहीत किया, वास्तव में 128 एमबी भौतिक सरणी में 256 एमबी मेमोरी संग्रहीत की गई थी।इसका कारण यह प्रस्तुत हुआ कि सामान्य दो अवस्थाओं के अतिरिक्त - पूरी तरह से अनाकार ठोस और पूरी तरह से क्रिस्टलीय - है।अतिरिक्त दो अलग-अलग मध्यवर्ती स्तर आंशिक क्रिस्टलीकरण की विभिन्न डिग्री का प्रतिनिधित्व करते हैं, जिससे है।ही भौतिक क्षेत्र में दो बार कई बिट्स को संग्रहीत करने की अनुमति मिलती है।[16]जून 2011 में,[25] आईबीएम ने घोषणा की कि उन्होंने उच्च प्रदर्शन और स्थिरता के साथ स्थिर, विश्वसनीय, बहु-बिट चरण-परिवर्तन मेमोरी बनाई है। एसके हाइनिक्स का बहु-स्तरीय पीआरएएमप्रौद्योगिकी के विकास के लिए आईबीएम के साथ है।संयुक्त विकास के लिए समझौता किया है। यह प्रौद्योगिकी लाइसेंस समझौता था।[26]

इंटेल की 90 एनएम उपकरण

इसके अतिरिक्त फरवरी 2008 में, इंटेलऔर एसटीमाइक्रोइलेक्ट्रॉनिक ने ग्राहकों को अपने पहले पीआरएएमउत्पाद के प्रोटोटाइप नमूने भेजे। 90 एनएम, 128 एमबी (16 एमबी) उत्पाद को एल्वरस्टोन कहा जाता था।[27]

जून 2009 में, सैमसंगऔर न्यूमोनिक्स|न्यूमोनिक्स बी.वी. ने पीआरएएमबाजार के अनुरूप हार्डवेयर उत्पादों के विकास में है।सहयोगी प्रयास की घोषणा की थी।

[28]

अप्रैल 2010 में,[29] न्यूमोनिक्स ने 128-एमबिट एनओआर-संगत फेज-चेंज मेमोरीज की ओमनीओ लाइन की घोषणा की। सैमसंग ने फॉल 2010 तक मोबाइल हैंडसेट में उपयोग के लिए है।मल्टी-चिप पैकेज (एमसीपी) में 512 एमबी फेज-चेंज रैम (पीआरएएम) के शिपमेंट की घोषणा की थी।

एसटी 28 एनएम, 16 एमबी सरणी

दिसंबर 2018 में एसटीमाइक्रोइलेक्ट्रॉनिकने इन्सुलेटर ऑटोमोटिव कंट्रोल यूनिट पर 28 एनएम पूरी तरह से समाप्त सिलिकॉन के लिए 16एमबी ईपीसीएम सरणी के लिए डिज़ाइन और प्रदर्शन डेटा प्रस्तुत किया था।[30]

इन-मेमोरी कंप्यूटिंग

वर्तमान में, इन-मेमोरी कंप्यूटिंग के लिए पीसीएम के अनुप्रयोग में महत्वपूर्ण रुचि दिखाई दी है।[31] पीसीएम की एनालॉग स्टोरेज क्षमता और किरचॉफ के परिपथ नियमों का लाभ उठाकर मेमरी एरे में मैट्रिक्स गुणन एल्गोरिथ्म|मैट्रिक्स-वेक्टर-मल्टीप्ली ऑपरेशंस जैसे कम्प्यूटेशनल कार्यों को करने के लिए आवश्यक विचार है। पीसीएम-आधारित इन-मेमोरी कंप्यूटिंग अनुप्रयोगों के लिए रोचक हो सकती है जैसे गहन शिक्षण सांख्यिकीय अनुमान जिसमें बहुत अधिक कंप्यूटिंग स्पष्ट की आवश्यकता नहीं होती है।[32] 2021 में, आईबीएम ने 14 एनएम सीएमओएस प्रौद्योगिकी नोड में एकीकृत बहु-स्तरीय पीसीएम पर आधारित एक पूर्ण-इन-मेमोरी कंप्यूटिंग कोर प्रकाशित किया था।[33]

चुनौतियां

चरण-परिवर्तन मेमोरी के लिए सबसे बड़ी चुनौती उच्च प्रोग्रामिंग वर्तमान घनत्व (>107 A/cm² की आवश्यकता रही है एम्पीयर 105...106 A/cm² की तुलना में एक विशिष्ट ट्रांजिस्टर या डायोड के लिए)। गर्म चरण-परिवर्तन क्षेत्र और आसन्न मैनिफोल्ड के बीच संपर्क है।अन्य मूलभूत चिंता है। मैनिफोल्ड उच्च तापमान पर विद्युत प्रवाह को रिसाव करना प्रारंभ कर सकता है, या चरण-परिवर्तन सामग्री से भिन्न दर पर विस्तार करने पर आसंजन हो सकता है।

चरण-परिवर्तन मेमोरी अनपेक्षित बनाम इच्छित चरण-परिवर्तन के मौलिक व्यापार के लिए अतिसंवेदनशील है। यह मुख्य रूप से इस तथ्य से उपजा है कि चरण-परिवर्तन है। इलेक्ट्रॉनिक प्रक्रिया के अतिरिक्त है। ऊष्मीय रूप से संचालित प्रक्रिया है। थर्मल स्थितियां जो तेजी से क्रिस्टलीकरण की अनुमति देती हैं, स्टैंडबाय स्थितियों के समान नहीं होनी चाहिए,उदारहण कमरे का तापमान, अन्यथा डेटा प्रतिधारण को बनाए नहीं रखा जा सकता है। क्रिस्टलीकरण के लिए उचित सक्रियण ऊर्जा के साथ सामान्य परिस्थितियों में बहुत धीमी क्रिस्टलीकरण होने पर प्रोग्रामिंग स्थितियों में तेजी से क्रिस्टलीकरण होना संभव है।

संभवतः चरण-परिवर्तन मेमोरी के लिए सबसे बड़ी चुनौती इसकी दीर्घ कालिक विद्युत प्रतिरोध और चालन और सीमा वोल्टेज बहाव है।[34] अक्रिस्टलीय ठोस अवस्था का प्रतिरोध है। शक्ति नियम के अनुसार धीरे-धीरे बढ़ता है (~t0.1). यह बहुस्तरीय संचालन की क्षमता को गंभीर रूप से सीमित करता है, क्योंकि निम्न मध्यवर्ती स्तर बाद के समय में उच्च मध्यवर्ती स्तर के साथ भ्रमित हो जाएगा और मानक दो-स्तर संचालन को भी खतरे में डाल सकता है यदि थ्रेशोल्ड वोल्टेज डिज़ाइन मान से परे बढ़ जाता है।

अप्रैल 2010 में, न्यूमोनिक्स ने अपनी ओमनीओ समानांतर रेखा जारी की और सीरियल इंटरफेस 128 एमबी नॉर फ्लैश रिप्लेसमेंट प्रैम चिप्स चूंकि जिन एनओआर फ्लैश चिप्स को बदलने का उनका उद्देश्य था, वे -40-85 °C स्तर में संचालित होते थे, पीआरएएमचिप्स 0-70 °C स्तर में संचालित होते थे, जो एनओआर फ्लैश की तुलना में है। छोटे ऑपरेटिंग विंडो का संकेत देते हैं। प्रोग्रामिंग के लिए आवश्यक उच्च धारा प्रदान करने के लिए अत्यधिक तापमान-संवेदनशील पी-एन जंक्शनों के उपयोग के कारण यह संभव है।

समयरेखा

  • जनवरी 1955: कोलोमीएट्स और गोरुनोवा ने चाकोजेनाइड ग्लास के अर्धचालक गुणों का प्रदर्शित किया था।[35][36]
  • सितंबर 1966: स्टैनफोर्ड ओशिन्स्की ने चरण-परिवर्तन प्रौद्योगिकी पर पहला पेटेंट अंकित किया था।
  • जनवरी 1969: चार्ल्स एच. सी ने आयोवा स्टेट यूनिवर्सिटी में चाकोजेनाइड फेज़-चेंज-मेमोरी उपकरण पर है।शोध प्रबंध प्रकाशित किया था।
  • जून 1969: अमेरिकी पेटेंट 3,448,302 (शेनफ़ील्ड) का लाइसेंस ओवशिन्स्की को दिया गया, जो पीआरएएम उपकरण के पहले विश्वसनीय संचालन का प्रमाणित करता है।
  • सितंबर 1970: गॉर्डन मूर ने इलेक्ट्रॉनिक्स पत्रिका में शोध प्रकाशित किया था।
  • जून 1999: पीआरएएमविधि के व्यावसायीकरण के लिए ओवोनिक्स संयुक्त उद्यम का गठन किया गया था।
  • नवंबर 1999: लॉकहीड मार्टिन अंतरिक्ष अनुप्रयोगों के लिए पीआरएएम पर ओवोनिक्सके साथ काम करता है
  • फरवरी 2000: इंटेल ने ओवोनीक्स में निवेश किया, विधि का लाइसेंस दिया था।
  • दिसंबर 2000: ST माइक्रोइलेक्ट्रॉनिक ने ओवोनिक्सकी पीआरएएमविधि का लाइसेंस दिया था।
  • मार्च 2002: मैक्रोनिक्स ने ट्रांजिस्टर-रहित पीआरएएमके लिए है।पेटेंट आवेदन अंकित किया था।
  • जुलाई 2003: सैमसंग ने पीआरएएम विधि पर काम प्रारंभ किया था।
  • 2003 से 2005 तक: तोशिबा, हिताची, मैक्रोनिक्स, रेनेसास, एल्पीडा, सोनी, मात्सुशिता, मित्सुबिशी, इन्फिनॉन और अन्य द्वारा दायर पीआरएएम- संबंधित पेटेंट आवेदन
  • अगस्त 2004: नैनोचिप ने एमईएमएस प्रोब स्टोरेज में उपयोग के लिए ओवोनीक्स से प्रैम विधि का लाइसेंस लिया था।
  • अगस्त 2004: सैमसंग ने सफल 64 एमबिट पीआरएएम ऐरे की घोषणा की थी |
  • फरवरी 2005: एल्पिडा ने ओवोनीक्स से पीआरएएमविधि का लाइसेंस लिया था।
  • सितंबर 2005: सैमसंग ने सफल 256 एमबीआईटी पीआरएएमऐरे की घोषणा की, 400 μA प्रोग्रामिंग करंट का प्रमाणित किया था।
  • अक्टूबर 2005: इंटेल ने ओवोनीक्स में निवेश बढ़ाया है।
  • दिसंबर 2005; हिटअचीऔर रेनेसा ने 100μA प्रोग्रामिंग करंट के साथ 1.5 V पीआरएएम की घोषणा की थी |
  • दिसंबर 2005: सैमसंग ने ओवोनिक्ससे पीआरएएमविधि का लाइसेंस लिया था।
  • जुलाई 2006: बीएई सिस्टम्स ने पहली व्यावसायिक पीआरएएमचिप की बिक्री प्रारंभ की थी |
  • सितंबर 2006: सैमसंग ने 512 एमबिट पीआरएएम उपकरण की घोषणा की थी |
  • अक्टूबर 2006: इंटेलऔर एसटीमाइक्रोइलेक्ट्रॉनिकने 128 एमबीआईटी पीआरएएमचिप दिखाई है।
  • दिसंबर 2006: आईबीएम रिसर्च लैब्स ने प्रोटोटाइप 3 बाय 20 नैनोमीटर का प्रदर्शन किया था।[37]
  • जनवरी 2007: क्यू आईएमओ एन बड़ा ने ओवोनीक्स से पीआरएएमविधि का लाइसेंस लिया था।
  • अप्रैल 2007: इंटेल के मुख्य प्रौद्योगिकी अधिकारी जस्टिन रैटनर कंपनी की पीआरएएम(फेज-चेंज रैम) विधि का पहला सार्वजनिक प्रदर्शन करने के लिए तैयार हैं। [38]
  • अक्टूबर 2007: हाइनिक्स ने ओवोनिक्स' विधि का लाइसेंस देकर पीआरएएमका पीछा करना प्रारंभ किया था।
  • फरवरी 2008: इंटेलऔर एसटीमाइक्रोइलेक्ट्रॉनिकने चार-स्तर एमएलसी पीआरएएमकी घोषणा की[16]और ग्राहकों को नमूने भेजना प्रारंभ करें।[27]*दिसंबर 2008: न्यूमोनिक्स ने श्रेष्ठ ग्राहकों के लिए बड़े पैमाने पर 128 एमबिट पीआरएएमउपकरण बनाने की घोषणा की थी।
  • जून 2009: सैमसंग का फेज-चेंज रैम जून से बड़े पैमाने पर उत्पादन प्रारंभ हो जाएगा |[39]
  • सितंबर 2009: सैमसंग ने 512 एमबिट पीआरएएमउपकरण का बड़े पैमाने पर उत्पादन प्रारंभ करने की घोषणा कीथी।[40]
  • अक्टूबर 2009: इंटेलऔर न्यूमोनिक्स ने घोषणा की कि उन्होंने है।डाई पर चरण-परिवर्तन मेमोरी सरणियों को ढेर करने का है।विधि खोज लिया है[41]
  • दिसंबर 2009: न्यूमोनिक्स ने 1 जीबी 45 एनएम उत्पाद की घोषणा की थी।[42]
  • अप्रैल 2010: न्यूमोनिक्स ने ओमनीओ पीआरएएमश्रेणी (पी8पीऔर पी5क्यू) जारी की, दोनों 90 एनएम मेंहै।[43]
  • अप्रैल 2010: सैमसंग ने मल्टी-चिप-पैकेज में 65 एनएम प्रोसेस के साथ 512 एमबीटी पीआरएएमजारी किया था।[44]
  • फरवरी 2011: सैमसंग ने 58एनएम 1.8V 1जीबी पीआरएएमप्रस्तुत किया था।[45]
  • फरवरी 2012: सैमसंग ने 20एनएम1.8V 8जीबी पीआरएएमप्रस्तुत किया था।[46]
  • जुलाई 2012: माइक्रोन ने मोबाइल उपकरणों के लिए फेज़-चेंज मेमोरी की उपलब्धता की घोषणा की - वॉल्यूम उत्पादन में पहला पीआरएएमसमाधान किया है।[47]
  • जनवरी 2014: माइक्रोन ने बाजार से सभी पीसीएम पुर्जों को वापस ले लिया था।[48]
  • मई 2014: आईबीएम है।नियंत्रक पर पीसीएम, पारंपरिक एनएएनडी और डीआरएएम के संयोजन को प्रदर्शित करता है।[49]
  • अगस्त 2014: वेस्टर्न डिजिटल ने 3 मिलियन I/Os और 1.5 माइक्रोसेकंड लेटेंसी के साथ प्रोटोटाइप पीसीएम स्टोरेज प्रदर्शित किया था।[50]
  • जुलाई 2015: इंटेल और माइक्रोन ने 3डी एक्सप्वाइंट मेमोरी की घोषणा की जहां फेज-चेंज अलॉय का उपयोग मेमोरी सेल के स्टोरेज हिस्से के रूप में किया जाता है।

यह भी देखें

संदर्भ

  1. Le Gallo, Manuel; Sebastian, Abu (2020-03-30). "चरण-परिवर्तन मेमोरी डिवाइस भौतिकी का अवलोकन". Journal of Physics D: Applied Physics (in English). 53 (21): 213002. Bibcode:2020JPhD...53u3002L. doi:10.1088/1361-6463/ab7794. ISSN 0022-3727. S2CID 213023359.
  2. Burr, Geoffrey W.; BrightSky, Matthew J.; Sebastian, Abu; Cheng, Huai-Yu; Wu, Jau-Yi; Kim, Sangbum; Sosa, Norma E.; Papandreou, Nikolaos; Lung, Hsiang-Lan; Pozidis, Haralampos; Eleftheriou, Evangelos (June 2016). "फेज-चेंज मेमोरी टेक्नोलॉजी में हालिया प्रगति". IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 6 (2): 146–162. Bibcode:2016IJEST...6..146B. doi:10.1109/JETCAS.2016.2547718. ISSN 2156-3357. S2CID 26729693.
  3. Simpson, R.E.; P. Fons; A. V. Kolobov; T. Fukaya; et al. (July 2011). "इंटरफेसियल फेज-चेंज मेमोरी". Nature Nanotechnology. 6 (8): 501–5. Bibcode:2011NatNa...6..501S. doi:10.1038/nnano.2011.96. PMID 21725305. S2CID 6684244.
  4. Chua, L. O. (2011), "Resistance switching memories are memristors", Applied Physics A, 102 (4): 765–783, Bibcode:2011ApPhA.102..765C, doi:10.1007/s00339-011-6264-9
  5. Mellor, Chris (10 October 2011), "HP and Hynix to produce the memristor goods by 2013", The Register, retrieved 2012-03-07
  6. Meuffels, P.; Soni, R. (2012). "Memristors की प्राप्ति में मौलिक मुद्दे और समस्याएं". arXiv:1207.7319 [cond-mat.mes-hall].
  7. Di Ventra, Massimiliano; Pershin, Yuriy V. (2013). "यादगार, memcapacitive और meminductive सिस्टम के भौतिक गुणों पर". Nanotechnology. 24 (25): 255201. arXiv:1302.7063. Bibcode:2013Nanot..24y5201D. CiteSeerX 10.1.1.745.8657. doi:10.1088/0957-4484/24/25/255201. PMID 23708238. S2CID 14892809.
  8. Sie, C.H. (1969). अनाकार As-Te-Ge फिल्म में बिस्टेबल प्रतिरोधकता का उपयोग करते हुए मेमोरी सेल. Retrospective Theses and Dissertations (PhD). Iowa State University. 3604 https://lib.dr.iastate.edu/rtd/3604.
  9. Pohm, A.; Sie, C.; Uttecht, R.; Kao, V.; Agrawal, O. (1970). "चाकोजेनाइड ग्लास बिस्टेबल प्रतिरोधकता (ओवोनिक) यादें". IEEE Transactions on Magnetics. 6 (3): 592. Bibcode:1970ITM.....6..592P. doi:10.1109/TMAG.1970.1066920.
  10. "Electric-Field Induced Filament Formation in As-Te-Ge Semiconductor" C.H. Sie, R. Uttecht, H. Stevenson, J. D. Griener and K. Raghavan , Journal of Non-Crystalline Solids, 2, 358–370,1970
  11. "चरण परिवर्तन स्मृति के तंत्र का एक सिनेमाई अध्ययन". YouTube. 2012-06-21. Archived from the original on 2021-12-21. Retrieved 2013-09-17.
  12. Moore, Gordon E.; Neale, R.G.; Nelson, D.L. (September 28, 1970). "नॉनवॉलेटाइल और रिप्रोग्रामेबल, रीड-मोस्ट मेमोरी यहाँ है" (PDF). Electronics: 56–60.
  13. "Is NAND flash memory a dying technology?". Techworld. Retrieved 2010-02-04.
  14. Caravati, Sebastiano; Bernasconi, Marco; Kühne, Thomas D.; Krack, Matthias; Parrinello, Michele (2007). "अनाकार चरण परिवर्तन सामग्री में टेट्राहेड्रल- और ऑक्टाहेड्रल जैसी साइटों का सह-अस्तित्व". Applied Physics Letters. 91 (17): 171906. arXiv:0708.1302. Bibcode:2007ApPhL..91q1906C. doi:10.1063/1.2801626. S2CID 119628572.
  15. Horii, H.; et al. (2003). "A novel cell technology using N-doped GeSbTe films for phase change RAM". 2003 Symposium on VLSI Technology. Digest of Technical Papers. pp. 177–8. doi:10.1109/VLSIT.2003.1221143. ISBN 4-89114-033-X. S2CID 40051862. 03CH37407.
  16. 16.0 16.1 16.2 Greene, Kate (4 February 2008). "एक मेमोरी ब्रेकथ्रू". Technology Review.
  17. "Will phase-change memory replace flash memory?". KurzweilAI. Retrieved 2013-09-17.
  18. Zhou, X.; Wu, L.; Song, Z.; Rao, F.; Ren, K.; Peng, C.; Song, S.; Liu, B.; Xu, L.; Feng, S. (2013). "चरण परिवर्तन स्मृति अनुप्रयोग के लिए अल-एसबी चरण परिवर्तन सामग्री की चरण संक्रमण विशेषताएं". Applied Physics Letters. 103 (7): 072114. Bibcode:2013ApPhL.103g2114Z. doi:10.1063/1.4818662.
  19. Simpson, R. E. (2010). "Toward the Ultimate Limit of Phase Change in Ge2Sb2Te5". Nano Letters. 10 (2): 414–9. Bibcode:2010NanoL..10..414S. doi:10.1021/nl902777z. PMID 20041706. S2CID 9585187.
  20. "इस साल इंटेल से सैंपल फेज चेंज मेमोरी". Archived from the original on 2007-03-23. Retrieved 2007-06-30.
  21. Pirovano, A.; Redaelli, A.; Pellizzer, F.; Ottogalli, F.; Tosi, M.; Ielmini, D.; Lacaita, A.L.; Bez, R. (2004). "चरण-परिवर्तन गैर-वाष्पशील यादों का विश्वसनीयता अध्ययन". IEEE Transactions on Device and Materials Reliability. 4 (3): 422–7. doi:10.1109/TDMR.2004.836724. S2CID 22178768.
  22. Karpov, I.V.; Kencke, D.; Kau, D.; Tang, S.; Spadini, G. (2010). "Phase Change Memory with Chalcogenide Selector (PCMS): Characteristic Behaviors, Physical Models and Key Material Properties". Symposium G – Materials and Physics for Nonvolatile Memories II. MRS Proceedings. Vol. 1250. Cambridge University Press. pp. G14-01–H07-01. doi:10.1557/PROC-1250-G14-01-H07-01.
  23. SAMSUNG Introduces the Next Generation of Nonvolatile Memory—PRAM
  24. "Intel Previews Potential Replacement for Flash".
  25. "आईबीएम फ्लैश से 100 गुना तेज 'तात्कालिक' मेमोरी विकसित करता है". engadget. 2011-06-30. Retrieved 2011-06-30.
  26. "पीसीआरएएम के लिए एसके हाइनिक्स और आईबीएम ने संयुक्त विकास पर हस्ताक्षर किए". SK hynix Newsroom (in English). Retrieved 2022-02-05.
  27. 27.0 27.1 "इंटेल, STMicroelectronics उद्योग के पहले चरण परिवर्तन मेमोरी प्रोटोटाइप वितरित करते हैं". Numonyx. 2008-02-06. Archived from the original on 2008-06-09. Retrieved 2008-08-15.
  28. रेफरी नाम = सैमसंग इलेक्ट्रॉनिक्स और न्यूमोनिक्स फेज चेंज मेमोरी पर सेना में सम्मिलित हों>"सैमसंग इलेक्ट्रॉनिक्स और न्यूमोनिक्स फेज चेंज मेमोरी पर सेना में शामिल हुए". Samsung. 2009-06-23.
  29. रेफ नाम = ईटाइम्स लेख>{{cite web|title=सैमसंग फेज-चेंज के साथ एमसीपी शिप करेगा| publisher=EE Times|date=2010-04-28|url=http://www.eetimes.com/showArticle.jhtml;jsessionid=AZ0IF3RVEBPQVQE1GHPSKHWATMY32JVN?articleID=224700051%7Caccess-date=2010-05-03}
  30. "चरण-परिवर्तन मेमोरी (पीसीएम) - प्रौद्योगिकी, लाभ और अनुप्रयोग - एसटीएमइक्रोइलेक्ट्रॉनिक्स". www.st.com (in English). Retrieved 2022-07-08.
  31. Burr, Geoffrey W.; Shelby, Robert M.; Sidler, Severin; di Nolfo, Carmelo; Jang, Junwoo; Boybat, Irem; Shenoy, Rohit S.; Narayanan, Pritish; Virwani, Kumar; Giacometti, Emanuele U.; Kurdi, Bulent N. (November 2015). "Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element". IEEE Transactions on Electron Devices. 62 (11): 3498–3507. Bibcode:2015ITED...62.3498B. doi:10.1109/TED.2015.2439635. ISSN 0018-9383. S2CID 5243635.
  32. Sebastian, Abu; Le Gallo, Manuel; Khaddam-Aljameh, Riduan; Eleftheriou, Evangelos (July 2020). "मेमोरी डिवाइस और इन-मेमोरी कंप्यूटिंग के लिए अनुप्रयोग". Nature Nanotechnology (in English). 15 (7): 529–544. Bibcode:2020NatNa..15..529S. doi:10.1038/s41565-020-0655-z. ISSN 1748-3395. PMID 32231270. S2CID 214704544.
  33. Khaddam-Aljameh, Riduan; Stanisavljevic, Milos; Mas, Jordi Fornt; Karunaratne, Geethan; Brändli, Matthias; Liu, Feng; Singh, Abhairaj; Müller, Silvia M.; Egger, Urs; Petropoulos, Anastasios; Antonakopoulos, Theodore (2022). "HERMES-Core–A 1.59-TOPS/mm² PCM on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs". IEEE Journal of Solid-State Circuits. 57 (4): 1027–1038. Bibcode:2022IJSSC..57.1027K. doi:10.1109/JSSC.2022.3140414. ISSN 1558-173X. S2CID 246417395.
  34. Karpov, I.V.; Mitra, M.; Kau, D.; Spadini, G.; Kryukov, Y.A.; Karpov, V.G. (2007). "चाकोजेनाइड फेज चेंज मेमोरी में पैरामीटर्स का फंडामेंटल ड्रिफ्ट". J. Appl. Phys. 102 (12): 124503–124503–6. Bibcode:2007JAP...102l4503K. doi:10.1063/1.2825650.
  35. Kolomiets, B. T. (1964). "काचाभ अर्धचालक (I)". Physica Status Solidi B. 7 (2): 359–372. Bibcode:1964PSSBR...7..359K. doi:10.1002/pssb.19640070202. S2CID 222432031.
  36. Kolomiets, B. T. (1964). "कांच का अर्धचालक (द्वितीय)". Physica Status Solidi B. 7 (3): 713–731. Bibcode:1964PSSBR...7..713K. doi:10.1002/pssb.19640070302.
  37. "Phase Change to Replace Flash?". Archived from the original on September 27, 2007.
  38. "आईटी समाचार, करियर, व्यापार प्रौद्योगिकी, समीक्षाएं". Computerworld.
  39. Engadget Samsung PRAM chips go into mass production
  40. "Samsung moves phase-change memory to production".
  41. "स्टैक्ड, क्रॉस प्वाइंट फेज चेंज मेमोरी टेक्नोलॉजी के साथ इंटेल और न्यूमोनिक्स ने रिसर्च माइलस्टोन हासिल किया". www.intel.com.
  42. Numonyx to Present Phase-Change Memory Research Results at Leading Technology Industry Conference
  43. "न्यूमोनिक्स मेमोरी सॉल्यूशंस - न्यूमोनिक्स ने नए फेज चेंज मेमोरी डिवाइस पेश किए". April 25, 2010. Archived from the original on 25 April 2010.
  44. "पृष्ठ नहीं मिला - सैमसंग". Samsung Electronics America. Archived from the original on August 21, 2010.
  45. Chung, H.; et al. (2011). "A 58nm 1.8V 1Gb PRAM with 6.4MB/s program BW". 2011 IEEE International Solid-State Circuits Conference. pp. 500–2. doi:10.1109/ISSCC.2011.5746415. ISBN 978-1-61284-303-2. S2CID 206996875.
  46. A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth Archived 2012-01-31 at the Wayback Machine
  47. Micron Announces Availability of Phase Change Memory for Mobile Devices
  48. Mellor, Chris (14 January 2014). "Micron: Hot DRAM. We don't need no steenkin' PCM". www.theregister.co.uk. The Register. Retrieved 14 January 2014.
  49. Hruska, Joel (8 May 2014). "IBM demonstrates next-gen phase-change memory that's up to 275 times faster than your SSD". ExtremeTech.
  50. Hruska, Joel (6 August 2014). "वेस्टर्न डिजिटल का एचजीएसटी डिवीजन नए फेज-चेंज एसएसडी बनाता है जो बाजार में किसी भी एनएएनडी फ्लैश ड्राइव की तुलना में बहुत तेज है।". ExtremeTech.


बाहरी संबंध