प्रेरित प्रतिनिधित्व

From Vigyanwiki

समूह सिद्धांत में, प्रेरित प्रतिनिधित्व एक समूह प्रतिनिधित्व है, G, जो एक उपसमूह H के ज्ञात प्रतिनिधित्व का उपयोग करके बनाया गया है। H के प्रतिनिधित्व को देखते हुए, प्रेरित प्रतिनिधित्व एक अर्थ में, G का "सबसे सामान्य" प्रतिनिधित्व है जो दिए गए को बढ़ाता है। चूंकि प्रायः छोटे समूह H की तुलना में G के प्रतिनिधित्वों को खोजना आसान होता है, नए अभ्यावेदन के निर्माण के लिए प्रेरित अभ्यावेदन बनाने का संचालन एक महत्वपूर्ण उपकरण है।

परिमित समूहों के रैखिक निरूपण के लिए प्रेरित अभ्यावेदन को प्रारम्भ में फर्डिनेंड जॉर्ज फ्रोबेनियस द्वारा परिभाषित किया गया था। विचार परिमित समूहों की स्तिथि तक ही सीमित नहीं है, लेकिन उस स्तिथि में सिद्धांत विशेष रूप से अच्छी तरह से व्यवहार किया जाता है

निर्माण

बीजीय

मान लीजिए कि G एक परिमित समूह है और H, G का कोई उपसमूह है। इसके अतिरिक्त मान लीजिये (π, V) H का प्रतिनिधित्व है। मान लीजिए कि n = [G : H], G में H का सूचकांक है और g1, ..., gn को G/H में बाएँ सहसमुच्चयों के G में प्रतिनिधियों का एक पूरा सम्मुच्चय होने दें। प्रेरित प्रतिनिधित्व IndG
H
π
को निम्नलिखित स्थान पर कार्य करने के बारे में सोचा जा सकता है:

GHG

यहाँ प्रत्येक gi V सदिश समष्टि V की एक तुल्याकार प्रति है जिसके अवयवों को इस प्रकार लिखा गया है। G में प्रत्येक g के लिए और प्रत्येक gi में H में एक hi और {1, ..., n} में j(i) होता है जैसे कि g gi = gj(i) hi। (यह कहने का एक और तरीका है कि g1, ..., gn प्रतिनिधियों का एक पूरा सम्मुच्चय है।) प्रेरित प्रतिनिधित्व के माध्यम से G W पर कार्य करता है:

जहाँ प्रत्येक i के लिए है।

वैकल्पिक रूप से, कोई वलय के परिवर्तन द्वारा प्रेरित प्रतिनिधित्व का निर्माण कर सकता है: कोई भी k-रैखिक प्रतिनिधित्व समूह H को समूह वलय K[H] के ऊपर एक मापदंड (गणित) V के रूप में देखा जा सकता है। हम तब निम्न परिभाषित कर सकते हैं

इस बाद वाले सूत्र का उपयोग किसी भी समूह G और उपसमूह H के लिए IndG
H
π
को परिभाषित करने के लिए बिना किसी परिमितता की आवश्यकता के भी किया जा सकता है। [1]


उदाहरण

किसी भी समूह के लिए, तुच्छ उपसमूह के तुच्छ प्रतिनिधित्व का प्रेरित प्रतिनिधित्व सही नियमित प्रतिनिधित्व है। सामान्यतः किसी भी उपसमूह के तुच्छ प्रतिनिधित्व का प्रेरित प्रतिनिधित्व उस उपसमूह के सहसमुच्चय पर क्रमचय प्रतिनिधित्व होता है।

एक आयामी प्रतिनिधित्व के प्रेरित प्रतिनिधित्व को एकपद प्रतिनिधित्व कहा जाता है, क्योंकि इसे एकपद आव्यूह के रूप में दर्शाया जा सकता है। कुछ समूहों के पास यह गुण होता है कि उनके सभी अलघुकरणीय निरूपण एकपदी होते हैं, तथाकथित एकपदी समूह होते हैं।

गुण

यदि H समूह G का एक उपसमूह है, तो G के प्रत्येक K-रैखिक प्रतिनिधित्व ρ को H के K-रैखिक प्रतिनिधित्व के रूप में देखा जा सकता है; इसे ρ से H के प्रतिबंध के रूप में जाना जाता है और Res (ρ) द्वारा निरूपित किया जाता है। परिमित समूहों और परिमित-आयामी अभ्यावेदन की स्तिथि में, फ्रोबेनियस पारस्परिक प्रमेय में कहा गया है कि, G के h और p के σ दिया गया है। जैसा कि Ind(σ) से ρ तक G-समतुल्य रैखिक मानचित्रों का है। [2]

प्रेरित प्रतिनिधित्व की सार्वभौमिक संपत्ति, जो अनंत समूहों के लिए भी मान्य है, पारस्परिकता प्रमेय में दिए गए संयोजन के बराबर है। अगर H और का प्रतिनिधित्व है, द्वारा प्रेरित G का प्रतिनिधित्व है, तो एक H-समतुल्य रैखिक मानचित्र उपस्थित है निम्नलिखित संपत्ति के साथ: G और H-एक्विवारीअन्ट रैखिक मानचित्र का कोई भी प्रतिनिधित्व (ρ,W) दिया गया है, एक अद्वितीय G-एक्विवारीअन्ट रैखिक मानचित्र है के साथ है: [3]

Universal property of the induced representation 2.svgफ्रोबेनियस सूत्र कहता है कि यदि χ प्रतिनिधित्व का चरित्र सिद्धांत σ है, χ(h) = Tr σ(h) निम्न द्वारा दिए गए, फिर चरित्र ψ प्रेरित प्रतिनिधित्व का द्वारा दिया गया है

जहां G और में H के बाएं सह समुच्चय के प्रतिनिधियों की एक प्रणाली पर योग लिया जाता है


विश्लेषणात्मक

यदि G स्थानीय रूप से सघन सांस्थितिक समूह (संभवतः अनंत) है और H एक बंद सम्मुच्चय उपसमूह है तो प्रेरित प्रतिनिधित्व का एक सामान्य विश्लेषणात्मक निर्माण होता है। मान लीजिये (π, V) का एक सतत कार्य एकात्मक प्रतिनिधित्व H हो । हम तब दे सकते हैं:

यहाँ φ∈L2(G/H) का अर्थ है: अंतरिक्ष G/H में एक उपयुक्त अपरिवर्तनीय माप होता है, और इसके मानदंड के बाद से φ(g) H के प्रत्येक बाएं सहसमुच्चय पर स्थिर है, हम इन मानदंडों के वर्ग को G/H पर एकीकृत कर सकते हैं और एक परिमित परिणाम प्राप्त कर सकते हैं। समूह G अनुवाद द्वारा प्रेरित प्रतिनिधित्व स्थान पर कार्य करता है, अर्थात (g.φ)(x)=φ(g−1x) के लिए g,x∈G और φ∈IndG
H
π

आवश्यक अनुप्रयोगों को उचित करने के लिए इस निर्माण को प्रायः विभिन्न तरीकों से संशोधित किया जाता है। एक सामान्य संस्करण को सामान्यीकृत प्रेरण कहा जाता है और सामान्यतः उसी अंकन का उपयोग करता है। प्रतिनिधित्व स्थान की परिभाषा इस प्रकार है:

यहाँ ΔG, ΔH क्रमशः G और H के प्रमापीय कार्य हैं।। सामान्यीकृत कारकों के अतिरिक्त यह प्रेरण संचालक एकात्मक प्रतिनिधित्वों के लिए एकात्मक प्रतिनिधित्व लेता है।

प्रवर्तन पर एक अन्य भिन्नता को 'सघन प्रवर्तन' कहा जाता है। यह सघन समर्थन वाले कार्यों के लिए प्रतिबंधित मानक प्रेरण है। औपचारिक रूप से इसे इंड द्वारा निरूपित किया जाता है और इसे इस प्रकार परिभाषित किया जाता है:

ध्यान दें कि यदि G/H सघन है तो Ind और ind एक ही प्रकार्यक हैं।

ज्यामितीय

मान लीजिये G एक सामयिक समूह है और H का एक बंद सम्मुच्चय उपसमूह G है। साथ ही, मान लीजिए π सदिश समष्टि V पर H का निरूपण है। तब G, गुणनफल G × V पर निम्नानुसार कार्य करता है::

जहाँ g और g के तत्व हैं G और x का एक तत्व V है।

G × V पर तुल्यता संबंध परिभाषित करें

द्वारा के तुल्यता वर्ग को निरूपित करें। ध्यान दें कि यह तुल्यता संबंध की कार्रवाई के अंतर्गत अपरिवर्तनीय G है; फलस्वरूप, G (G × V)/~ कार्य करता है। उत्तरार्द्ध संरचना समूह के रूप में H के साथ और फाइबर के रूप में V के साथ भागफल स्थान G / H पर एक सदिश बंडल है। मान लीजिये W अनुभागों का स्थान इस वेक्टर बंडल का हो। यह प्रेरित प्रतिनिधित्व के अंतर्गत सदिश स्थान IndG
H
π
है। समूह G एक खंड पर कार्य करता है द्वारा दिए गए निम्नलिखित नुसार:


अभेद्यता की प्रणाली

स्थानीय रूप से सघन समूहों के एकात्मक अभ्यावेदन की स्तिथि में, प्रवर्तन अभिप्राय को इंप्रिमिटिविटी की प्रणाली के संदर्भ में तैयार किया जा सकता है।

लाइ थ्योरी

लाइ थ्योरी में, एक अत्यंत महत्वपूर्ण उदाहरण परवलयिक प्रेरण है: अपने परवलयिक उपसमूहों के प्रतिनिधित्व से एक अपचायक समूह के प्रतिनिधित्व को प्रेरित करता है। यह कस्प रूपों के दर्शन के माध्यम से लैंगलैंड्स क्रमादेश की ओर जाता है।

यह भी देखें

टिप्पणियाँ

  1. Brown, Cohomology of Groups, III.5
  2. Serre, Jean-Pierre (1926–1977). परिमित समूहों का रैखिक प्रतिनिधित्व. New York: Springer-Verlag. ISBN 0387901906. OCLC 2202385.
  3. Thm. 2.1 from Miller, Alison. "Math 221 : Algebra notes Nov. 20". Archived from the original on 2018-08-01. Retrieved 2018-08-01.


संदर्भ