पृष्ठ रसायन विज्ञान

From Vigyanwiki
एक क्विनक्रिडोने अधिशोषित STM की छवि। कार्बनिक मूलभूत की स्व-संयोजित अधिआण्विक श्रृंखला ग्रेफाइट सतह पर अधिशोषित होती है।

भूतल विज्ञान भौतिकी और रसायन विज्ञान की घटनाओं का अध्ययन करता है जो ठोस-तरल अंतरपृष्‍ठ, ठोस-गैस अंतरपृष्‍ठ, ठोस-निर्वात अंतरपृष्‍ठ और तरल-गैस अंतरपृष्‍ठ सहित दो चरण (पदार्थ) के अंतरपृष्‍ठ (रसायन विज्ञान) में होता है। इसमें पृष्ठ रसायन और सतह भौतिकी के क्षेत्र सम्मिलित है।[1] कुछ संबंधित व्यावहारिक अनुप्रयोगों को सतह अभियांत्रिकी के रूप में वर्गीकृत किया गया है। विज्ञान विषम उत्प्रेरण, अर्धचालक उपकरण निर्माण, ईंधन कोशिकाओं, आत्म इकट्ठे एकस्तरी और आसंजक जैसी अवधारणाओं को सम्मिलित करता है। भूतल विज्ञान अंतरपृष्‍ठ और कोलाइड विज्ञान से निकटता से संबंधित है।[2] अंतरापृष्ठीय रसायन विज्ञान और भौतिक विज्ञान दोनों के लिए सामान्य विषय हैं। कार्यविधि अलग हैं। इसके अलावा, अंतरपृष्‍ठ और कोलाइड विज्ञान स्थूलदर्शीय प्रतिभास का अध्ययन करते है जो अंतरपृष्‍ठ की विशिष्टता के कारण विषम प्रणालियों में होता हैं।

इतिहास

पृष्ठ रसायन विज्ञान का क्षेत्र उदजनीकरण पर पॉल सबेटियर (रसायनज्ञ) और हैबर प्रक्रिया पर फ्रिट्ज हैबर द्वारा अग्रणी विषम उद्दीपन के साथ प्रारंभ हुआ।[3] इरविंग लैंगमुइर भी इस क्षेत्र के संस्थापकों में से एक थे, और सतह विज्ञान पर वैज्ञानिक पत्रिका, लैंगमुइर (पत्रिका), उनके नाम पर है। लैंगमुइर समीकरण का उपयोग एकस्तर अवशोषण के प्रतिरूप के लिए किया जाता है, जहां सभी सतह अवशोषण वाले स्थान में अवशोषण वाली प्रजातियों के लिए समान संबंध होते हैं और एक दूसरे के साथ अन्योन्यक्रिया नहीं करते हैं। 1974 में गेरहार्ड एर्टल ने पहली बार LEED नामक एक नई तकनीक का उपयोग करके एक बचाव सतह पर उदजन के अवशोषण का वर्णन किया।[4] प्लैटिनम ,[5] गिलट,[6][7] और लोहे[8] के साथ इसी तरह के अध्ययन का पालन किया गया। भूतल विज्ञान में सबसे पुनः विकास में रसायन विज्ञान विजेता गेरहार्ड एर्टल की पृष्ठ रसायन विज्ञान में विशेष रूप से 2007 का नोबेल पुरस्कार सम्मिलित है। कार्बन मोनोऑक्साइड अणुओं और प्लेटिनम सतहों के बीच परस्पर क्रिया की जांच की गई है।

रसायन विज्ञान

पृष्ठ रसायन को स्थूलतः अंतरपृष्‍ठ पर रासायनिक पदार्थ प्रतिक्रियाओं के अध्ययन के रूप में परिभाषित किया जा सकता है। यह सतह अभियांत्रिक से निकटता से संबंधित है, जिसका उद्देश्य सतह या अंतरपृष्‍ठ के गुणों में विभिन्न वांछित प्रभाव या सुधार उत्पन्न करने वाले चयनित तत्वों या कार्यात्मक समूहों को सम्मिलित करके सतह की रासायनिक संरचना को संशोधित करना है। विषम उद्दीपन, विद्युत रसायन और भू-रसायन शास्त्र के क्षेत्र में भूतल विज्ञान का विशेष महत्व है।

उद्दीपन

सतह पर गैस या तरल अणुओं के आसंजन को अधिशोषण के रूप में जाना जाता है। यह या तो रासायनिक अधिशोषण या भौतिक अधिशोषण के कारण हो सकता है, और उत्प्रेरक सतह पर आणविक अधिशोषण की सक्रियता उत्प्रेरक के प्रदर्शन के लिए गंभीर रूप से महत्वपूर्ण है (सबेटियर सिद्धांत देखें)। तथापि, इन घटनाओं का वास्तविक उत्प्रेरक कणों में अध्ययन करना मुश्किल है, जिनकी जटिल संरचनाएं हैं। इसके बदले, प्लेटिनम जैसी उत्प्रेरक रूप से सक्रिय पदार्थ की अच्छी तरह से परिभाषित एकल मणिभ सतहों को अक्सर प्रतिरूप उत्प्रेरक के रूप में उपयोग किया जाता है। उत्प्रेरक सक्रिय धातु कणों और सहायक ऑक्साइड के बीच अन्योन्यक्रिया का अध्ययन करने के लिए बहु-घटक पदार्थ प्रणालियों का उपयोग किया जाता है; ये एकल मणिभ सतह पर अति-क्षीण आवरण या कणों के बढ़ने से उत्पन्न होते हैं।[9]

इन सतहों की संरचना और रासायनिक आचरण के बीच संबंधों का अध्ययन अति उच्च निर्वात प्रविधि का उपयोग करके किया जाता है, जिसमें अणुओं का अधिशोषण और तापमान-क्रमादेशित विशोषण, क्रमवीक्षण सुरंगन सूक्ष्मदर्शिकी, कम ऊर्जा अतिसूक्ष्म परमाणु विवर्तन और ओज़े अतिसूक्ष्म परमाणु स्पेक्ट्रोस्कोपी सम्मिलित हैं। परिणामों को रासायनिक प्रतिरूप में डाला जा सकता है या नए उत्प्रेरकों के तर्कसंगत परिकलन की ओर उपयोजित किया जा सकता है। सतह विज्ञान मापन की परमाणु-पैमाने की सटीकता के कारण प्रतिक्रिया तंत्र को भी स्पष्ट किया जा सकता है।[10]

विद्युत रसायन

विद्युत रसायन एक ठोस-तरल या तरल-तरल अंतरपृष्‍ठ पर उपयोजित क्षमता के माध्यम से संचालित प्रक्रियाओं का अध्ययन है। स्पेक्ट्रोस्कोपी, क्रमवीक्षण अन्वेषी अणुवीक्षण और पृष्ठ एक्स-रे प्रकीर्णन का उपयोग करके अनुप्रयुक्त क्षमता, समय और समाधान की स्थिति के एक समारोह के रूप में अधिशोषण और विशोषण आयोजन का अध्ययन परमाणु रूप से समतल एकल मणिभ सतहों पर किया जा सकता है।[11][12] ये अध्ययन पारंपरिक विद्युत रासायनिक प्रविधि जैसे कि चक्रीय वोल्टामीटर को अंतरपृष्‍ठियल प्रक्रियाओं की प्रत्यक्ष प्रक्रिया से हैं।

भू-रसायन

लौह चक्रण और मृदा संदूषण जैसी भूवैज्ञानिक प्रतिभासिक खनिजों और उनके पर्यावरण के बीच अंतरापृष्ठों द्वारा नियंत्रित होती हैं। खनिज-समाधान अंतरपृष्‍ठ के परमाणु-पैमाने की संरचना और रासायनिक गुणों का अध्ययन सीटू सिंक्रोट्रॉन एक्स-रे प्रविधि जैसे एक्स-रे परावर्तकता, एक्स-रे स्थायी तरंग और एक्स-रे अवशोषण स्पेक्ट्रोस्कोपी के साथ-साथ क्रमवीक्षण अन्वेषी अणुवीक्षण का उपयोग करके किया जाता है। उदाहरण के लिए, खनिज सतहों पर विषाक्त भारी धातु या एक्टिनाइड अवशोषण के अध्ययन से अवशोषण के आणविक-पैमाने के विवरण का पता चलता है, जिससे यह अनुमान लगाया जा सकता है कि ये संदूषक मिट्टी के माध्यम से कैसे यात्रा करते हैं[13] या प्राकृतिक विघटन-वर्षा चक्रों को बाधित करते हैं।[14]

भौतिक विज्ञान

सतह भौतिकी को स्थूलतः परिभाषित किया जा सकता है कि अंतरपृष्‍ठ पर होने वाली भौतिक अन्योन्यक्रिया के अध्ययन के रूप में। यह पृष्ठ रसायन शास्त्र के साथ अतिव्यापन करता है। सतह भौतिकी में जांच किए गए कुछ विषयों में घर्षण, सतह की स्थिति, सतह का प्रसार, सतह का पुनर्निर्माण, सतह के फोनोन और प्लाज्मॉन, अधिरोहण,अतिसूक्ष्म, परमाणुों का उत्सर्जन सुरंगन, स्पिनट्रोनिक्स और सतहों पर नैनोसंरचनाओं का स्व-संयोजन सम्मिलित हैं। सतहों पर प्रक्रियाओं की जांच करने की प्रविधि में पृष्ठ एक्स-रे प्रकीर्णन, क्रमवीक्षण अन्वेषी अणुवीक्षण, सतह-संवर्धित रमन स्पेक्ट्रोस्कोपी और एक्स - रे फ़ोटोइलैक्ट्रॉन स्पेक्ट्रोस्कोपी (XPS) सम्मिलित हैं।

विश्लेषण तकनीक

सतहों के अध्ययन और विश्लेषण में भौतिक और रासायनिक विश्लेषण तकनीक दोनों सम्मिलित हैं।

कई आधुनिक प्रणाली निर्वात के संपर्क में आने वाले अंतरपृष्‍ठ (मामला) पदार्थ के सबसे ऊपरी 1-10 nm की जांच करती हैं। इनमें कोण-समाधान फोटो उत्सर्जन स्पेक्ट्रोस्कोपी (ARPES), एक्स-रे फोटोअतिसूक्ष्म परमाणु स्पेक्ट्रोस्कोपी (XPS), ओज़े अतिसूक्ष्म परमाणु स्पेक्ट्रोस्कोपी (AES), कम ऊर्जा अतिसूक्ष्म परमाणु विवर्तन (LEED), अतिसूक्ष्म परमाणु ऊर्जा अभाव स्पेक्ट्रोस्कोपी (EELS), ऊष्मीय अवशोषण स्पेक्ट्रोस्कोपी (TPD) सम्मिलित हैं। आयन प्रकीर्णन स्पेक्ट्रोस्कोपी (ISS), द्वितीयक आयन द्रव्यमान स्पेक्ट्रोमेट्री, दोहरे ध्रुवीकरण इंटरफेरोमेट्री और अन्य सतह विश्लेषण प्रणाली को पदार्थ विश्लेषण प्रणाली की सूची में सम्मिलित किया गया है। इनमें से कई प्रविधि में निर्वात की आवश्यकता होती है क्योंकि वे अध्ययन के तहत सतह से उत्सर्जित अतिसूक्ष्म परमाणुों या आयनों का पता लगाने पर भरोसा करते हैं। इसके अलावा, सामान्य अत्यन्त-श्रेष्ठ निर्वात में, 10−7 की सीमा में पास्कल (यूनिट) दाब या उन्नति, एक निश्चित समय अवधि में प्रतिरूप तक पहुंचने वाले अणुओं की संख्या को कम करके, अवशिष्ट गैस द्वारा सतह के संदूषण को कम करना आवश्यक है। 0.1 mPa (10−6 torr) एक संदूषक का आंशिक दाब और तापमान और दाब के लिए मानक स्थितियां, यह केवल 1 सेकंड के क्रम में एक सतह को दूषित करने वाले एक-से-एक एकस्तर के साथ सतह परमाणुओं को आवरण करने के लिए लेता है, इतना माप के लिए कम दाब की आवश्यकता होती है। यह पदार्थ के (संख्या) विशिष्ट सतह क्षेत्र और गैसों के गतिज सिद्धांत से टकराव दर सूत्र के लिए परिमाण अनुमान के क्रम से पाया जाता है।

विशुद्ध रूप से प्रकाशीय प्रविधि का उपयोग विभिन्न प्रकार की परिस्थितियों में अंतरपृष्‍ठ का अध्ययन करने के लिए किया जा सकता है। परावर्तन-अवशोषण अवरक्त, दोहरे ध्रुवीकरण इंटरफेरोमेट्री, सतह-संवर्धित रमन स्पेक्ट्रोस्कोपी और योग आवृत्ति जनन स्पेक्ट्रोस्कोपी का उपयोग ठोस-निर्वात के साथ-साथ ठोस-गैस, ठोस-तरल और तरल-गैस सतहों की जांच के लिए किया जा सकता है। बहु-प्राचलिक सतह प्लास्मोन प्रतिध्वनि ठोस-गैस, ठोस-तरल, तरल-गैस सतहों में काम करती है और उप-नैनोमीटर परतों का भी अनुसन्धान कर सकती है।[15] यह अन्योन्यक्रिया गतिविज्ञान के साथ-साथ गतिशील संरचनात्मक परिवर्तन जैसे लिपोसोम संचय की जांच करता है[16] या विभिन्न pH में परतों की सूजन की जांच करता है। द्वि-ध्रुवीकरण इंटरफेरोमेट्री का उपयोग द्विप्रतिरोधी शीर्ण झिल्ली में क्रम और व्यवधान को निर्धारित करने के लिए किया जाता है।[17] इसका उपयोग, उदाहरण के लिए, वसाभ द्विपरत के गठन और कलाभ प्रोटीन के साथ उनकी परस्परक्रिया का अध्ययन करने के लिए किया गया है।

अपव्यय अनुश्रवण के साथ क्वार्ट्ज मणिभ सूक्ष्ममापी तुला जैसी ध्वनिक प्रविधि का उपयोग ठोस-निर्वात, ठोस-गैस और ठोस-तरल अंतरपृष्‍ठ के समय-समाधान माप के लिए किया जाता है। यह विधि अणु-सतह की अन्योन्यक्रिया के साथ-साथ संरचनात्मक परिवर्तनों और एडलेयर के श्यानप्रत्यास्थता गुणों के विश्लेषण की अनुमति देती है।

एक्स-रे प्रकीर्णन और स्पेक्ट्रोस्कोपी प्रविधि का उपयोग सतहों और अंतरपृष्‍ठ को चिह्नित करने के लिए भी किया जाता है। यद्यपि प्रयोगशाला एक्स-रे स्त्रोत का उपयोग करके किए जा सकते हैं, कई को सिंक्रोट्रॉन विकिरण की उच्च तीव्रता और ऊर्जा विश्वसनीयता की आवश्यकता होती है। एक्स-रे मणिभ छोन्नकरण रॉड्स (CTR) और एक्स-रे स्थायी तरंग (XSW) माप उप-एंगस्ट्रॉम विश्लेषण के साथ सतह और अवशोषण संरचनाओं में परिवर्तन की जांच करते हैं। सतह-विस्तारित एक्स-रे अवशोषण सूक्ष्म संरचना (SEXAFS) माप समन्वय संरचना और अधिशोषित की रासायनिक स्थिति को प्रकट करते हैं। पृष्ठसर्पी-आघटन सूक्ष्म-कोण प्रकीर्णन (GISAXS) से सतहों पर नैनोकणों की लंबाई, आकार और अभिविन्यास प्राप्त होता है।[18] पृष्ठसर्पी-आघटन एक्स-रे विवर्तन (GIXD, GIXRD) का उपयोग करके शीर्ण झिल्ली की मणिभ संरचना और बनावट (मणिभीय) की जांच की जा सकती है।

एक्स-रे फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी (XPS) सतह की प्रजातियों के रासायनिक पदार्थ स्तिथि को मापने और सतह संदूषण की उपस्थिति का पता लगाने के लिए एक मानक उपकरण है। इतस्ततः 10-1000 eV की गतिज ऊर्जा वाले फोटोइलेक्ट्रॉनों का पता लगाकर सतह की संवेदनशीलता प्राप्त की जाती है, जिसमें केवल कुछ नैनोमीटर के समान अकुशल माध्य मुक्त पथ होते हैं। अधिक यथार्थवादी गैस-ठोस और तरल-ठोस अंतरपृष्‍ठ की जांच के लिए इस प्रक्रिया को निकट-परिवेश दबाव (परिवेश दाब XPS, AP-XPS) पर संचालित करने के लिए विस्तारित किया गया है।[19] सिंक्रोट्रॉन प्रकाश स्रोतों पर निष्ठुर एक्स-रे के साथ XPS का प्रदर्शन कई keV (निष्ठुर एक्स-रे फोटोइलेक्ट्रॉन परमाणु स्पेक्ट्रोस्कोपी, HAXPES) की गतिज ऊर्जा के साथ फोटोइलेक्ट्रॉन परमाणु पैदा करता है, जो दबे हुए अंतरपृष्‍ठ से रासायनिक जानकारी तक पहुंच को सक्षम करता है।[20]

आधुनिक भौतिक विश्लेषण प्रणाली में क्रमवीक्षण सुरंगन माइक्रोस्कोप (STM) और परमाणु शक्ति अणुवीक्षण (AFM) सहित प्रणाली का एक परिवार सम्मिलित है। इन सूक्ष्मदर्शी ने कई सतहों की भौतिक संरचना को मापने के लिए सतह वैज्ञानिकों की क्षमता और अभिलाषा में काफी वृद्धि की है। उदाहरण के लिए, वे वास्तविक अंतरिक्ष में ठोस-गैस अंतरपृष्‍ठ पर प्रतिक्रियाओं का पालन करना संभव बनाते हैं, यदि वे साधन द्वारा सुलभ समय के पैमाने पर आगे बढ़ते हैं।[21][22]

यह भी देखें

संदर्भ

  1. Prutton, Martin (1994). भूतल भौतिकी का परिचय. Oxford University Press. ISBN 978-0-19-853476-1.
  2. Luklema, J. (1995–2005). इंटरफेस और कोलाइड साइंस के फंडामेंटल. Vol. 1–5. Academic Press.
  3. Wennerström, Håkan; Lidin, Sven. "रसायन विज्ञान में नोबेल पुरस्कार पर वैज्ञानिक पृष्ठभूमि 2007 ठोस सतहों पर रासायनिक प्रक्रियाएं" (PDF).
  4. Conrad, H.; Ertl, G.; Latta, E.E. (February 1974). "पैलेडियम एकल क्रिस्टल सतहों पर हाइड्रोजन का सोखना". Surface Science. 41 (2): 435–446. Bibcode:1974SurSc..41..435C. doi:10.1016/0039-6028(74)90060-0.
  5. Christmann, K.; Ertl, G.; Pignet, T. (February 1976). "Pt(111) सतह पर हाइड्रोजन का सोखना". Surface Science. 54 (2): 365–392. Bibcode:1976SurSc..54..365C. doi:10.1016/0039-6028(76)90232-6.
  6. Christmann, K.; Schober, O.; Ertl, G.; Neumann, M. (June 1, 1974). "निकल एकल क्रिस्टल सतहों पर हाइड्रोजन का सोखना". The Journal of Chemical Physics. 60 (11): 4528–4540. Bibcode:1974JChPh..60.4528C. doi:10.1063/1.1680935.
  7. Christmann, K.; Behm, R. J.; Ertl, G.; Van Hove, M. A.; Weinberg, W. H. (May 1, 1979). "नी (111) पर हाइड्रोजन का रासायनिक अवशोषण ज्यामिति: क्रम और विकार". The Journal of Chemical Physics. 70 (9): 4168–4184. Bibcode:1979JChPh..70.4168C. doi:10.1063/1.438041.
  8. Imbihl, R.; Behm, R. J.; Christmann, K.; Ertl, G.; Matsushima, T. (May 2, 1982). "द्वि-आयामी रसायनयुक्त प्रणाली के चरण संक्रमण: Fe पर H (110)". Surface Science. 117 (1): 257–266. Bibcode:1982SurSc.117..257I. doi:10.1016/0039-6028(82)90506-4.
  9. Fischer-Wolfarth, Jan-Henrik; Farmer, Jason A.; Flores-Camacho, J. Manuel; Genest, Alexander; Yudanov, Ilya V.; Rösch, Notker; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim (2010). "एकल-क्रिस्टल माइक्रोकैलोरीमीटर के साथ मापा गया समर्थित पीडी नैनोकणों पर सीओ के सोखने के कण-आकार पर निर्भर ताप". Physical Review B. 81 (24): 241416. Bibcode:2010PhRvB..81x1416F. doi:10.1103/PhysRevB.81.241416. hdl:11858/00-001M-0000-0011-29F8-F.
  10. Lewandowski, M.; Groot, I.M.N.; Shaikhutdinov, S.; Freund, H.-J. (2012). "Pt(111) पर एक FeO(111) फिल्म पर कम तापमान CO ऑक्सीकरण के मार्स-वैन क्रेवेलन प्रकार तंत्र के लिए स्कैनिंग टनलिंग माइक्रोस्कोपी साक्ष्य". Catalysis Today. 181: 52–55. doi:10.1016/j.cattod.2011.08.033. hdl:11858/00-001M-0000-0010-50F9-9.
  11. Nagy, Zoltán; You, Hoydoo (2002). "इलेक्ट्रोकैमिस्ट्री समस्याओं के लिए सतह एक्स-रे स्कैटरिंग के अनुप्रयोग". Electrochimica Acta. 47 (19): 3037–3055. doi:10.1016/S0013-4686(02)00223-2.
  12. Gründer, Yvonne; Lucas, Christopher A. (2016-11-01). "एकल क्रिस्टल विद्युत उत्प्रेरकों का भूतल एक्स-रे विवर्तन अध्ययन". Nano Energy (in English). 29: 378–393. doi:10.1016/j.nanoen.2016.05.043. ISSN 2211-2855.
  13. Catalano, Jeffrey G.; Park, Changyong; Fenter, Paul; Zhang, Zhan (2008). "कोरंडम और हेमेटाइट पर एक साथ आंतरिक और बाहरी क्षेत्र आर्सेनेट सोखना". Geochimica et Cosmochimica Acta. 72 (8): 1986–2004. Bibcode:2008GeCoA..72.1986C. doi:10.1016/j.gca.2008.02.013.
  14. Xu, Man; Kovarik, Libor; Arey, Bruce W.; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien (2014). "केल्साइट सतह पर कैनेटीक्स और कैडमियम कार्बोनेट हेटेरोएपिटैक्सियल विकास के तंत्र". Geochimica et Cosmochimica Acta. 134: 221–233. doi:10.1016/j.gca.2013.11.036.
  15. Jussila, Henri; Yang, He; Granqvist, Niko; Sun, Zhipei (5 February 2016). "बड़े क्षेत्र की परमाणु-परत ग्राफीन फिल्म के लक्षण वर्णन के लिए सरफेस प्लास्मोन अनुनाद". Optica. 3 (2): 151. Bibcode:2016Optic...3..151J. doi:10.1364/OPTICA.3.000151.
  16. Granqvist, Niko; Yliperttula, Marjo; Välimäki, Salla; Pulkkinen, Petri; Tenhu, Heikki; Viitala, Tapani (18 March 2014). "सब्सट्रेट सरफेस केमिस्ट्री द्वारा लिपिड परतों की आकृति विज्ञान का नियंत्रण". Langmuir. 30 (10): 2799–2809. doi:10.1021/la4046622. PMID 24564782.
  17. Mashaghi, A; Swann, M; Popplewell, J; Textor, M; Reimhult, E (2008). "Optical Anisotropy of Supported Lipid Structures Probed by Waveguide Spectroscopy and Its Application to Study of Supported Lipid Bilayer Formation Kinetics". Analytical Chemistry. 80 (10): 3666–76. doi:10.1021/ac800027s. PMID 18422336.
  18. Renaud, Gilles; Lazzari, Rémi; Leroy, Frédéric (2009). "ग्रेज़िंग इंसीडेंस स्मॉल एंगल एक्स-रे स्कैटरिंग के साथ प्रोबिंग सतह और इंटरफ़ेस आकारिकी". Surface Science Reports. 64 (8): 255–380. Bibcode:2009SurSR..64..255R. doi:10.1016/j.surfrep.2009.07.002.
  19. Bluhm, Hendrik; Hävecker, Michael; Knop-Gericke, Axel; Kiskinova, Maya; Schlögl, Robert; Salmeron, Miquel (2007). "सीटू एक्स-रे फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी में निकट-परिवेश स्थितियों में गैस-ठोस इंटरफेस का अध्ययन". MRS Bulletin. 32 (12): 1022–1030. doi:10.1557/mrs2007.211. S2CID 55577979.
  20. Sing, M.; Berner, G.; Goß, K.; Müller, A.; Ruff, A.; Wetscherek, A.; Thiel, S.; Mannhart, J.; Pauli, S. A.; Schneider, C. W.; Willmott, P. R.; Gorgoi, M.; Schäfers, F.; Claessen, R. (2009). "हार्ड एक्स-रे फोटोइलेक्ट्रॉन स्पेक्ट्रोस्कोपी के साथ LaAlO3/SrTiO3Heterostructures के इंटरफ़ेस इलेक्ट्रॉन गैस की रूपरेखा". Physical Review Letters. 102 (17): 176805. arXiv:0809.1917. Bibcode:2009PhRvL.102q6805S. doi:10.1103/PhysRevLett.102.176805. PMID 19518810. S2CID 43739895.
  21. Wintterlin, J.; Völkening, S.; Janssens, T. V. W.; Zambelli, T.; Ertl, G. (1997). "सतह-उत्प्रेरित प्रतिक्रिया की परमाणु और स्थूल प्रतिक्रिया दर". Science. 278 (5345): 1931–4. Bibcode:1997Sci...278.1931W. doi:10.1126/science.278.5345.1931. PMID 9395392.
  22. Waldmann, T.; et al. (2012). "एक कार्बनिक एडलेयर का ऑक्सीकरण: एक विहंगम दृश्य". Journal of the American Chemical Society. 134 (21): 8817–8822. doi:10.1021/ja302593v. PMID 22571820.


अग्रिम पठन

बाहरी संबंध