पीएच सूचक

From Vigyanwiki
pH संकेतक: एक ग्राफिक दृश्य

एक pH सूचक में लवणवर्णी रासायनिक यौगिक होता है, जो विलयन में थोड़ी मात्रा में जोड़ा जाता है, जिससे विलयन के pH (अम्लता या मूलता ) को अंतर्लयन और/या उत्सर्जन गुणों में परिवर्तन द्वारा नेत्रहीन या स्पेक्ट्रोस्कोपिक रूप से निर्धारित किया जा सकता है।[1] इसलिए, आरेनिअस मॉडल में pH सूचक हाइड्रोनियम आयनों (H3O+) और हाइड्रोजन आयन (H+) के लिए एक रासायनिक संसूचक होता है। सामान्यतः, सूचक pH के आधार पर विलयन के रंग बदलने का कारण बनता है। संकेतक अन्य भौतिक गुणों में परिवर्तन भी दिखा सकते हैं; उदाहरण के लिए, घ्राण संकेतक उनकी गंध में परिवर्तन दिखाते हैं। उदासीन विलयन pH मान 25 डिग्री सेल्सियस (मानक प्रयोगशाला स्थितियों) पर 7.0 पर होता है 7.0 से नीचे pH मान वाले विलयन को अम्लीय माना जाता है और 7.0 से ऊपर pH मान वाले विलयन मूलभूत होते हैं। चूंकि अधिकांश प्राकृतिक रूप से पाए जाने वाले कार्बनिक यौगिक दुर्बल विद्युत् अपघट्य होते हैं, जैसे कि कार्बोक्सिलिक अम्ल और अमाइन, pH संकेतक जीव विज्ञान और विश्लेषणात्मक रसायन विज्ञान में कई अनुप्रयोग होते हैं, इसके अतिरिक्त, pH संकेतक रासायनिक विश्लेषण में उपयोग किए जाने वाले तीन मुख्य प्रकार के संकेतक यौगिकों में से एक हैं। धातु धनायन अनुमानों का मात्रात्मक विश्लेषण के लिए, जटिलमितीय संकेतकों का उपयोग किया जाता है,[2][3] जबकि तीसरा यौगिक वर्ग, रेडॉक्स संकेतक, रेडॉक्स अनुमापन (रासायनिक विश्लेषण के आधार के रूप में एक या एक से अधिक रेडॉक्स प्रतिक्रियाओं को सम्मलित करने वाला अनुमापन) में उपयोग किया जाता है ।

सिद्धांत

अपने आप में, pH संकेतक सामान्यतः दुर्लभ अम्ल या दुर्लभ आधार होते हैं। जलीय घोलों में अम्लीय pH संकेतकों की सामान्य प्रतिक्रिया योजना इस प्रकार तैयार की जा सकती है:

HInd(aq) + H
2
O
(l)H
3
O+
(aq) + Ind(aq)

जहाँ, "HInd" अम्लीय रूप के लिए और "Ind−" संकेतक के संयुग्म आधार के लिए है। जलीय घोल में बुनियादी pH संकेतकों के विपरीत:

IndOH(aq) + H
2
O
(l)H
2
O
(l) + Ind+(aq) + OH(aq)

जहाँ "IndOH" मूल रूप के लिए है और "Ind+" सूचक के संयुग्मी अम्ल के लिए होता है।

संयुग्म अम्ल/क्षार की सांद्रता का अम्लीय/क्षारक सूचक की सांद्रता का अनुपात विलयन का pH (या pOH) निर्धारित करता है और रंग को pH (या pOH) मान से जोड़ता है। pH संकेतकों के लिए दुर्बल वैद्युत अपघट्य होते हैं, हेंडरसन-हासेलबैच समीकरण को इस प्रकार लिखा जा सकता है:

pH = pKa + | log10  [Ind] / [HInd] 
or
pOH = pKb + लॉग10  [Ind+] / [IndOH] 

अम्लता स्थिरांक और मूलभूतता स्थिरांक से व्युत्पन्न समीकरणों में कहा गया है, कि जब pH सूचक के pKa या pKb मान के बराबर होता है, तो दोनों वर्ग, 1:1 अनुपात में सम्मलित होते हैं। यदि pH, pKa या pKb मान से ऊपर है, तो संयुग्म आधार की सांद्रता अम्ल की सांद्रता से अधिक होती है, और संयुग्म आधार से जुड़ा रंग प्रभावित करता है। यदि pH, pKa या pKb मान से कम है, तो इसका परिवर्तित (वाक्य) सत्य है।

सामान्यतः, pK रंग परिवर्तन pKa या pKb मान पर तात्कालिक नहीं होता है, किन्तु pH मान में जहां रंगों का मिश्रण सम्मलित होता है। यह pH रेंज संकेतकों के बीच भिन्नता होती है, किन्तु एक नियम के रूप में, यह यह pKa या pKb मूल्यधन या शून्य से एक कम के बीच आती है। यह मानना है कि विलयन अपने रंग को तब तक बनाए रखता है, जब तक कि अन्य वर्ग का कम से कम 10% बना रहता है। उदाहरण के लिए, यदि संयुग्म आधार की सांद्रता अम्ल की सांद्रता से 10 गुना अधिक है, तो उनका अनुपात 10: 1 है, और परिणामस्वरूप pH pKa + 1 या pKb + 1 होता है। इसके विपरीत, यदि 10 गुना अधिक है तो अम्ल आधार के संबंध में होता है, तो अनुपात 1:10 है और pH pKa -1 या pKb -1 होता है।

न्यूनतम त्रुतिहिनता के लिए, दो वर्गो के बीच रंग का अंतर जितना संभव हो उतना स्पष्ट होना चाहिए, और रंग की pH सीमा जितनी संकीर्ण होगी, उतना ही बेहतर होगा। कुछ संकेतकों में, जैसे फिनाल्फ्थैलीन, वर्गो में से एक रंगहीन है, जबकि अन्य संकेतकों में, जैसे मिथाइल लाल, दोनों संभावित रूप से रंग प्रदान करती हैं। जबकि pH संकेतक उनके निर्दिष्ट pH मान पर कुशलता से काम करते हैं, वे सामान्यतः अवांछित पक्ष प्रतिक्रियाओं के कारण pH स्केल के चरम सिरों पर नष्ट हो जाते हैं।

अनुप्रयोग

सूचक कागज के साथ pH माप

रासायनिक प्रतिक्रिया की सीमा निर्धारित करने के लिए pH संकेतक अधिकांशतः विश्लेषणात्मक रसायन विज्ञान और जीव विज्ञान में अनुमापन में नियोजित होते हैं।[1] रंग की व्यक्तिपरक पसंद (निर्धारण) के कारण, pH संकेतक गलत रीडिंग के लिए अतिसंवेदनशील होते हैं। pH के त्रुटिहीन माप की आवश्यकता वाले अनुप्रयोगों के लिए, pH मीटर का अधिकांशतः उपयोग किया जाता है। कभी-कभी, pH मानों की एक विस्तृत श्रृंखला में कई सहज रंग परिवर्तनों को प्राप्त करने के लिए विभिन्न संकेतकों के मिश्रण का उपयोग किया जाता है। इन व्यावसायिक संकेतकों (जैसे, यूनिवर्सल इंडिकेटर और हाइड्रियन पेपर) का उपयोग तब किया जाता है जब केवल pH का मोटा ज्ञान आवश्यक होता है। एक अनुमापन के लिए, सच्चे समापन बिंदु और संकेतित समापन बिंदु के बीच के अंतर को सूचक त्रुटि कहा जाता है।[1]

नीचे दी गयी सारणीबद्ध में कई सामान्य प्रयोगशाला pH संकेतक हैं। संकेतक सामान्यतः सूचीबद्ध संक्रमण सीमा के भीतर pH मान पर मध्यवर्ती रंग कों प्रदर्शित करते हैं। उदाहरण के लिए, फिनोल लाल pH 6.8 और pH 8.4 के बीच नारंगी रंग प्रदर्शित करता है। विलयन में संकेतक की एकरूपता और जिस तापमान पर इसका उपयोग किया जाता है, उसके आधार पर संक्रमण सीमा थोड़ी बदल सकती है। दाईं ओर का आंकड़ा संकेतकों को उनकी संचालन सीमा और रंग परिवर्तन के साथ दिखाता है।

सूचक कम pH रंग संक्रमण निचले स्तर की संक्रमण उच्च अंत उच्च pH रंग
जेंटियन वायलेट (मिथाइल वायलेट 10B) पीला 0.0 2.0 नीला बैंगनी
मैलाकाइट हरा (पहला संक्रमण) पीला 0.0 2.0 हरा
मैलाकाइट हरा (दूसरा संक्रमण) हरा 11.6 14.0 रंगहीन
थाइमोल नीला (पहला संक्रमण) लाल 1.2 2.8 पीला
थाइमोल नीला (दूसरा संक्रमण) पीला 8.0 9.6 नीला
मिथाइल पीला लाल 2.9 4.0 पीला
मेथिलीन ब्लू रंगहीन 5.0 9.0 गहरा नीला
ब्रोमोफेनॉल नीला पीला 3.0 4.6 नीला
कांगो लाल नीला बैंगनी 3.0 5.0 लाल
मिथाइल नारंगी लाल 3.1 4.4 पीला
स्क्रीनिंग मिथाइल ऑरेंज (पहला संक्रमण) लाल 0.0 3.2 बैंगनी- स्लेटी
स्क्रीनिंग मिथाइल ऑरेंज (दूसरा संक्रमण) बैंगनी- स्लेटी 3.2 4.2 हरा
ब्रोमोक्रेसोल हरा पीला 3.8 5.4 नीला
मिथाइल लाल लाल 4.4 6.2 पीला
मिथाइल बैंगनी बैंगनी 4.8 5.4 हरा
एजोलिटमिन (लिटमस) लाल 4.5 8.3 नीला
ब्रोमोक्रेसोल बैंगनी पीला 5.2 6.8 बैंगनी
ब्रोमोथाइमॉल नीला पीला 6.0 7.6 नीला
फिनोल लाल पीला 6.4 8.0 लाल
निष्पक्ष लाल लाल 6.8 8.0 पीला
नेफ्थोल्फथेलिन फीका लाल 7.3 8.7 हरा नीला
क्रिसोल लाल पीला 7.2 8.8 लाल बैंगनी
क्रेसोल्फथेलिन रंगहीन 8.2 9.8 बैंगनी
फेनोल्फथेलिन (पहला संक्रमण) रंगहीन 8.3 10.0 बैंगनी-गुलाबी
फेनोल्फथेलिन (दूसरा संक्रमण) बैंगनी-गुलाबी 12.0 13.0 रंगहीन
थाइमोल्फथेलिन रंगहीन 9.3 10.5 नीला
एलिज़रीन येलो आर पीला 10.2 12.0 लाल
इंडिगो कारमाइन नीला 11.4 13.0 पीला


यूनिवर्सल इंडिकेटर

pH श्रेणी विवरण रंग
1-3 तीव्र अम्ल लाल
3 – 6 दुर्लभ अम्ल पीली /नारंगी
7 निष्पक्ष हरा
8 – 11 दुर्लभ क्षार नीला
11-14 मजबूत क्षार वायलेट/इंडिगो

त्रुटिहीन pH माप

प्रोटोनेशन के विभिन्न चरणों में ब्रोमोक्रेसोल हरा का अवशोषण स्पेक्ट्रा

दो या दो से अधिक तरंग दैर्ध्य पर अवशोषण को मात्रात्मक रूप से मापकर pH के अधिक त्रुटिहीन माप प्राप्त करने के लिए एक संकेतक का उपयोग किया जा सकता है। संकेतक को एक साधारण अम्ल, HA के रूप में ले कर सिद्धांत को चित्रित किया जा सकता है, जो H में वियोजित हो जाता है.

HA ⇌ H+ + A

अम्ल पृथक्करण स्थिरांक का मान, pKa, पता होना चाहिए। दाढ़ अवशोषण, εHA और εA दो वर्गो में से HA और A की तरंग दैर्ध्य λx और λy पर भी पिछले प्रयोग द्वारा निर्धारित किया जाना चाहिए। यह मानते हुए कि बीयर के नियमो का पालन किया जाता है, मापा गया अवशोषक Ax और Ay दो तरंग दैर्ध्य पर प्रत्येक वर्ग के कारण अवशोषक का योग होता है।

ये दो सांद्रता [HA]] और [[A] में दो समीकरण होते हैं। एक बार हल हो जाने पर, pH के रूप में प्राप्त किया जाता है

ययदि माप दो से अधिक तरंग दैर्ध्य पर किए जाते हैं, तो सांद्रता [HA] और [A−] की गणना रैखिक न्यूनतम वर्गों द्वारा की जा सकती है। वास्तव में, इस उद्देश्य के लिए एक संपूर्ण स्पेक्ट्रम का उपयोग किया जा सकता है। प्रक्रिया को संकेतक ब्रोमोक्रेसोल ग्रीन के लिए चित्रित किया गया है। देखा गया स्पेक्ट्रम (हरा) HA (गोल्ड) और A(नीला) के स्पेक्ट्रा का योग है, जो दो वर्गो की सांद्रता के लिए भारित होता है।

जब एकल संकेतक का उपयोग किया जाता है, तो यह विधि pH श्रेणी pKa ± 1 में माप तक सीमित होती है, लेकिन इस सीमा को दो या अधिक संकेतकों के मिश्रण का उपयोग करके बढ़ाया जा सकता है। चूंकि संकेतकों में तीव्र अवशोषण स्पेक्ट्रा होता है, संकेतक एकाग्रता अपेक्षाकृत कम होती है, और सूचक को pH पर एक नगण्य प्रभाव माना जाता है।







तुल्यता बिंदु

अम्ल-क्षार अनुमापन में, एक अनुपयुक्त pH संकेतक वास्तविक तुल्यता बिंदु से पहले या बाद में सूचक युक्त समाधान में रंग परिवर्तन को प्रेरित कर सकता है। परिणामस्वरूप, उपयोग किए गए pH संकेतक के आधार पर विलयन के लिए विभिन्न समानता बिंदुओं का निष्कर्ष निकाला जा सकता है। इसका कारण यह है कि सूचक युक्त विलयन के रंग में मामूली परिवर्तन से पता चलता है कि तुल्यता बिंदु तक पहुंच गया है। इसलिए, सबसे उपयुक्त pH संकेतक में एक प्रभावी pH रेंज होती है, जहां रंग में परिवर्तन स्पष्ट होता है, जो विलयन के तुल्यता बिंदु के pH को समाहित करता है।[4]

स्वाभाविक रूप से होने वाले pH संकेतक

कई पौधों या पौधों के हिस्सों में यौगिकों के प्राकृतिक रूप से रंगीन एंथोसायनिन श्रेणी के रसायन होते हैं। वे अम्लीय विलयन में लाल और क्षारकीय में नीले रंग के होते हैं। एंथोसायनिन को पानी या अन्य विलायक के साथ पत्तियों (लाल गोभी) सहित कई रंगीन पौधों और पौधों के हिस्सों से निकाला जा सकता है; फूल ( पैलार्गोनियम , खसखस, या गुलाब की पंखुड़ियाँ); जामुन (ब्लूबेरी, ब्लैककरंट); और उपजी (एक प्रकार का फल )। अपरिष्कृत pH संकेतक बनाने के लिए घरेलू पौधों, विशेष रूप से लाल गोभी से एंथोसायनिन निकालना एक लोकप्रिय परिचयात्मक रसायन विज्ञान निरूपण करना होता है।

लिटमस, मध्य युग में कीमियागरों द्वारा उपयोग किया जाता है और अभी भी आसानी से उपलब्ध है, लाइकेन वर्गो के मिश्रण से बना प्राकृतिक रूप से पाया जाने वाला pH संकेतक है, विशेष रूप से रोसेला टिंकटोरिया लिटमस शब्द ओल्ड नोर्स में 'कलर्ड मॉस' से लिया गया है (लीटर देखें)। अम्ल विलयन में लाल रंग और क्षार में नीला रंग बदल जाता है। शब्द 'लिटमस टेस्ट' किसी भी परीक्षण के लिए एक व्यापक रूप से इस्तेमाल किया जाने वाला रूपक बन गया है जो विकल्पों के बीच आधिकारिक रूप से अंतर करने का दावा करता है।

हाइड्रेंजिया मैक्रोफिला फूल मिट्टी की अम्लता के आधार पर रंग बदल सकते हैं। अम्लीय मिट्टी में, मिट्टी में रासायनिक प्रतिक्रियाएं होती हैं जो इन पौधों को एल्यूमीनियम उपलब्ध कराती हैं, फूलों को नीला करना क्षारीय मिट्टी में, ये प्रतिक्रियाएँ नहीं हो सकती हैं और इसलिए पौधे द्वारा एल्यूमीनियम नहीं लिया जाता है। परिणामस्वरूप, फूल गुलाबी रहते हैं।

एक अन्य क्रियात्मक प्राकृतिक pH सूचक मसाला हल्दी होती है। यह एसिड के संपर्क में आने पर पीला हो जाता है और क्षार की उपस्थिति में लाल भूरे रंग का हो जाता है।

सूचक कम pH रंग उच्च pH रंग
हाइड्रेंजिया फूल नीला गुलाबी से बैंगनी
एंथोसायनिन लाल नीला
लिटमस लाल नीला
हल्दी पीला लालिमायुक्त भूरा

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Harris, Daniel C. (2005). रासायनिक विश्लेषण की खोज (3rd ed.). New York: W.H. Freeman. ISBN 0-7167-0571-0. OCLC 54073810.
  2. Schwarzenbach, Gerold (1957). कॉम्प्लेक्सोमेट्रिक अनुमापन. Translated by Irving, Harry (1st English ed.). London: Methuen & Co. pp. 29–46.
  3. West, T. S. (1969). EDTA और संबंधित अभिकर्मकों के साथ कॉम्प्लेक्सोमेट्री (3rd ed.). Poole, UK: BDH Chemicals Ltd. pp. 14–82.
  4. Zumdahl, Steven S. (2009). रासायनिक सिद्धांत (6th ed.). New York: Houghton Mifflin Company. pp. 319–324.


बाहरी संबंध