थियोल

From Vigyanwiki
ए के साथ थिओल   blue highlighted सल्फहाइड्रील समूह।

कार्बनिक रसायन विज्ञान में, थियोल (/ˈθɒl/;[1] from Ancient Greek θεῖον (theion) 'sulfur'[2]), या थियोल आकलन, फॉर्म का कोई भी R−SH ऑर्गोसल्फर यौगिक है, जहाँ R एल्काइल या अन्य कार्बनिक पदार्थ का प्रतिनिधित्व करता है। वह −SH कार्यात्मक समूह को या तो थिओल समूह या सल्फ़हाइड्रील समूह या सल्फ़ानील समूह के रूप में संदर्भित किया जाता है। थिओल्स अल्कोहल (रसायन विज्ञान) का सल्फर एनालॉग है (अर्थात, सल्फर हाइड्रॉकसिल में (−OH) ऑक्सीजन की जगह लेता है अल्कोहल का समूह), और यह शब्द अल्कोहल के साथ थियो का मिश्रण है।

कई थिओल्स में लहसुन या सड़े हुए अंडे जैसी तेज गंध होती है। प्राकृतिक गैस (जो शुद्ध रूप में गंधहीन होती है) का पता लगाने में मदद करने के लिए गंधक के रूप में थियोल का उपयोग किया जाता है, और प्राकृतिक गैस की गंध गंधक के रूप में उपयोग किए जाने वाले थिओल की गंध के कारण होती है। थिओल्स को कभी-कभी 'मर्कैप्टन' कहा जाता है (/mərˈkæptæn/)[3] या मर्कैप्टो यौगिक,[4][5][6] 1832 में विलियम क्रिस्टोफर ज़ीज़ द्वारा प्रस्तुत किया गया शब्द और मर्क्युरिओ कैप्टोंस लैटिन से लिया गया है ('मर्क्युरी पकड़ना')[7] क्योंकि थिओलेट समूह (RS) मर्क्युरी (तत्व) यौगिकों के साथ बहुत मजबूती से बंधता है।[8]

संरचना और संबंध

R−SH संरचना वाले थिओल्स, जिसमें अल्काइल समूह (R) सल्फहाइड्रील समूह (SH) से जुड़ा होता है, उन्हें एल्केनेथिओल्स या अल्काइल थिओल्स कहा जाता है।[9] थिओल्स और अल्कोहल की समान संयोजकता है। क्योंकि सल्फर परमाणु ऑक्सीजन परमाणुओं से बड़े होते हैं, C−S बंध की लंबाई - सामान्यतौर पर लगभग 180 पिकोमेट्रे - सामान्य C−O बंध की तुलना में लगभग 40 पिकोमीटर लंबी होती है। C−S−H कोण 90° तक पहुंचते हैं जबकि C−O−H समूह के लिए कोण अत्यधिक कुंठित होता है। ठोस और तरल पदार्थों में, भिन्न-भिन्न थियोल समूहों के बीच हाइड्रोजन बंध निर्बल होती है, मुख्य संसक्त बल अत्यधिक ध्रुवीकरण योग्य द्विसंयोजक सल्फर केंद्रों के बीच वैन डेर वाल्स की चर्चा होती है।

S-H बांड O-H बंध की तुलना में बहुत निर्बल है जैसा कि उनके संबंधित बंधन पृथक्करण ऊर्जा (बीडीई) में परिलक्षित होता है। BDE 366 kJ/mol (87 kcal/mol) CH3S−H के लिए है, जबकि BDE है 440 kJ/mol (110 kcal/mol) CH3O−H के लिए है।[10]सल्फर और हाइड्रोजन की वैद्युतीयऋणात्मकता में छोटे अंतर के कारण S-H बंध साधारण रासायनिक ध्रुवीयता है। इसके विपरीत, हाइड्रॉक्सिल समूहों में O-H बंध अत्यधिक ध्रुवीय होते हैं। थिओल्स में उनके संबंधित अल्कोहल के सापेक्ष कम बॉन्ड द्विध्रुवीय क्षण होता है।

नामकरण

ऐल्किलथियोल्स को नाम देने के कई प्रकार हैं:

  • एल्केन के नाम में प्रत्यय -थियोल जोड़ा जाता है। यह विधि अल्कोहल (रसायन विज्ञान) के लगभग समान है और इसका उपयोग IUPAC द्वारा किया जाता है, उदा. CH3SH मेथेनेथियोल होगा।
  • मेरकैप्टन शब्द समतुल्य अल्कोहल कंपाउंड के नाम पर अल्कोहल की स्थान लेता है। उदाहरण: CH3SH मिथाइल मर्कैप्टन होगा, जैसे कि CH3OH को मिथाइल अल्कोहल कहते हैं।
  • सल्फहाइड्रील- या मर्कैप्टो- शब्द का प्रयोग उपसर्ग के रूप में किया जाता है, उदा. मर्कैपटॉप्यूरिन होता है

भौतिक गुण

गंध

कई थिओल्स में लहसुन जैसी तेज गंध होती है। थिओल्स की गंध, विशेष रूप से कम आणविक भार वाले, अधिकांशतः मजबूत और प्रतिकारक होते हैं। स्कन्क्स के स्प्रे में मुख्य रूप से कम आणविक भार वाले थिओल्स और सिद्धिकरण होते हैं।[11][12][13][14][15] इन यौगिकों को मानव नाक द्वारा प्रति अरब केवल 10 भागों की सांद्रता पर पता लगाया जा सकता है।[16] मानव पसीने में (R)/(S)-3-मिथाइल-3-मर्कैप्टो-1-ओल (MSH) होता है, जो प्रति अरब 2 भागों में पता लगाया जा सकता है और इसमें फल, प्याज जैसी गंध होती है। (मिथाइलथियो) मेथेनेथियोल (MeSCH2SH; MTMT) मजबूत-महक वाष्पशील थिओल है, जो पुरुष चूहा मूत्र में पाए जाने वाले प्रति अरब स्तरों पर भी पता लगाया जा सकता है। लॉरेंस सी. काट्ज़ और सहकर्मियों ने दिखाया कि एमटीएमटी अर्ध-रासायनिक के रूप में कार्य करता है, कुछ चूहों घ्राण संवेदी न्यूरॉन्स को सक्रिय करता है, मादा चूहों को आकर्षित करता है।[17] ताँबा को विशिष्ट चूहों घ्राण ग्रहीता, MOR244-3 द्वारा आवश्यक दिखाया गया है, जो MTMT के साथ-साथ विभिन्न अन्य थिओल्स और संबंधित यौगिकों के लिए अत्यधिक उत्तरदायी है।[18] मानव घ्राण ग्रहीता, OR2T11 की पहचान की गई है, जो तांबे की उपस्थिति में, गैस गंधकों (नीचे देखें) एथेनथियोल और टर्ट-ब्यूटिलथियोल . टी-ब्यूटाइल मर्कैप्टन के साथ-साथ अन्य कम आणविक भार थिओल्स के प्रति अत्यधिक प्रतिक्रियाशील है, जिसमें एलिल भी सम्मिलित है। मानव लहसुन की सांस में पाया जाने एलिल मर्कैप्टन, और तेज महक वाला चक्रीय सल्फाइड थिएंटा को[19] सल्फर और यीस्ट (शराब) के बीच अनपेक्षित प्रतिक्रिया और पराबैंगनी प्रकाश के संपर्क में आने वाली बीयर की बदबूदार गंध के कारण शराब के दोषों के वर्ग के लिए थिओल्स भी उत्तरदायी हैं।

सभी थिओल्स में अप्रिय गंध नहीं होती है। उदाहरण के लिए, फ्यूरान-2-यलमेथेनेथियोल भुनी हुई कॉफ़ी की सुगंध में योगदान देता है, जबकि [[अंगुरफल मर्कैप्टन]], टेरपीन थिओल, अंगूर की विशिष्ट गंध के लिए उत्तरदायी है। बाद वाले यौगिक का प्रभाव केवल कम सांद्रता पर उपस्थित होता है। शुद्ध मर्कैप्टन में अप्रिय गंध होती है।

संयुक्त राज्य अमेरिका में, प्राकृतिक गैस वितरकों को 1937 में न्यू लंदन, टेक्सास में घातक न्यू लंदन स्कूल विस्फोट के बाद प्राकृतिक गैस (जो स्वाभाविक रूप से गंधहीन है) में थिओल्स, मूल रूप से एथेनथियोल जोड़ने की आवश्यकता थी। अधिकांश वर्तमान में उपयोग किए जाने वाले गैस गंधक में मर्कैप्टन और सल्फाइड के मिश्रण होते हैं, जिसमें प्राकृतिक गैस में मुख्य गंध घटक के रूप में टर्ट-ब्यूटिलथियोल होता है।[20] ऐसी स्थितियों में जहां वाणिज्यिक उद्योग में थिओल्स का उपयोग किया जाता है, जैसे कि तरल पेट्रोलियम गैस टैंकर और बल्क हैंडलिंग सिस्टम, गंध को नष्ट करने के लिए ऑक्सीकरण उत्प्रेरक का उपयोग किया जाता है। कॉपर-आधारित ऑक्सीकरण उत्प्रेरक वाष्पशील थिओल्स को प्रभावहीन प्रभावहीन कर देता है और उन्हें निष्क्रिय उत्पादों में बदल देता है।

क्वथनांक और घुलनशीलता

थिओल्स पानी के अणुओं और आपस में हाइड्रोजन बंध से बहुत कम जुड़ाव दिखाते हैं। इसलिए, उनके क्वथनांक कम होते हैं और समान आणविक भार वाले अल्कोहल की तुलना में पानी और अन्य विलायक ध्रुवता, घुलनशीलता और मिश्रण में कम घुलनशील होते हैं। इस कारण से भी, थिओल्स और उनके संबंधित सल्फाइड कार्यात्मक समूह संरचनात्मक आइसोमर में समान घुलनशीलता विशेषताओं और क्वथनांक होते हैं, जबकि यह अल्कोहल और उनके संबंधित आइसोमेरिक ईथर के लिए सही नहीं है।

बंधन

अल्कोहल में O-H बंध की तुलना में थिओल्स में S-H बंध निर्बल है। CH3X−H के लिए आबंध एन्थैलपी X=S के लिए 365.07±2.1 kcal/mol और X=O के लिए 440.2±3.0 kcal/mol है।[21] थिओल से हाइड्रोजन-परमाणु अमूर्तन सूत्र RS के साथ थिएल मूलक देता है, जहां R = ऐल्किल या ऐरिल है।

लक्षण वर्णन

वाष्पशील थिओल्स को उनकी विशिष्ट गंध से सरलता से और लगभग बिना किसी त्रुटि के पता लगाया जाता है। गैस क्रोमैटोग्राफ के लिए सल्फर-विशिष्ट विश्लेषक उपयोगी होते हैं। स्पेक्ट्रोस्कोपिक संकेतक भारी जल हैं। D2O-विनिमय योग्य SH संकेत में 1H NMR स्पेक्ट्रम (33S एनएमआर-सक्रिय है परन्तु द्विसंयोजक सल्फर के लिए संकेत बहुत व्यापक और कम उपयोगिता वाले हैं[22]) | VSH बंध 2400 cm−1 आईआर स्पेक्ट्रम में निकट दिखाई देता है।[4]नाइट्रोप्रासाइड प्रतिक्रिया में, मुक्त थियोल समूह लाल रंग देने के लिए सोडियम नाइट्रोप्रासाइड और अमोनियम हाइड्रॉक्साइड के साथ प्रतिक्रिया करते हैं।

तैयारी

उद्योग में, मेथेनथियोल को मेथनॉल के साथ हाइड्रोजन सल्फाइड की प्रतिक्रिया से तैयार किया जाता है। यह विधि मेथेनेथिओल के औद्योगिक संश्लेषण के लिए नियोजित है:

CH3OH + H2S → CH3SH + H2O

ऐसी अभिक्रियाएँ अम्लीय उत्प्रेरकों की उपस्थिति में संपन्न होती हैं। थिओल्स के अन्य प्रमुख मार्ग में अल्केन में हाइड्रोजन सल्फाइड को सम्मिलित करना है। ऐसी प्रतिक्रियाएं सामान्यतौर पर एसिड उत्प्रेरक या यूवी प्रकाश की उपस्थिति में आयोजित की जाती हैं। हलोजन विस्थापन, उपयुक्त कार्बनिक हलाइड और सोडियम हाइड्रोजन सल्फाइड का उपयोग भी किया गया है।[23] एक अन्य विधि में सोडियम हाइड्रोसल्फाइड का क्षारीकरण सम्मिलित है।

RX + NaSH → RSH + NaX (X = Cl, Br, I)

इस विधि का उपयोग क्लोरोएसेटिक एसिड से थियोग्लाइकोलिक एसिड के उत्पादन के लिए किया जाता है।

प्रयोगशाला के तरीके

सामान्य तौर पर, विशिष्ट प्रयोगशाला स्तर पर, सल्फाइड के प्रतिस्पर्धी गठन के कारण सोडियम हाइड्रोसल्फाइड के साथ हैलोजेन एल्केन की सीधी प्रतिक्रिया अक्षम होती है। इसके बदले, थाईयूरिया के S-अल्काइलेशन के माध्यम से एल्काइल हलाइड्स को थिओल्स में परिवर्तित किया जाता है। यह बहुस्थान, एक-पॉट प्रक्रिया आइसोथियोरोनियम नमक की मध्यस्थता के माध्यम से आगे बढ़ती है, जो अलग चरण में हाइड्रोलाइज्ड होती है:[24][25]

CH3CH2Br + SC(NH2)2 → [CH3CH2SC(NH2)2]Br
[CH3CH2SC(NH2)2]Br +NaOH → CH3CH2SH + OC(NH2)2 +NaBr

विशेष रूप से सक्रिय वाले थियोरिया मार्ग प्राथमिक हलाइड्स के साथ अच्छी तरह से काम करता है | द्वितीयक और तृतीयक थीसोल कम सरलता से तैयार किए जाते हैं। संबंधित थायोकेटल के माध्यम से कीटोन से द्वितीयक थिओल्स तैयार किए जा सकते हैं।[26] संबंधित दो-चरणीय प्रक्रिया में थायोसल्फोनेट (बंटे लवण) देने के लिए थायोसल्फेट का क्षारीकरण सम्मिलित है, जिसके बाद हाइड्रोलिसिस होता है। विधि थियोग्लिकोलिक एसिड के संश्लेषण द्वारा सचित्र है:

ClCH2CO2H + NaS2O3 → Na[O3S2CH2CO2H] + NaCl
Na[O3S2CH2CO2H] + H2O → HSCH2CO2H + NaHSO4
ऑर्गनोलिथियम यौगिक और ग्रिग्नार्ड अभिकर्मक सल्फर के साथ प्रतिक्रिया करके थिओलेट्स देते हैं, जो आसानी से हाइड्रोलाइज्ड होते हैं:[27]
RLi + S → RSLi
RSLi + HCl → RSH + LiCl

फेनॉल्स को उनके O-एरिल डायलकाइलथियोकार्बामेट्स के पुनर्व्यवस्था के माध्यम से थायोफेनोल्स में परिवर्तित किया जा सकता है।[28] सल्फाइड, विशेष रूप से बेंज़िल आकलन और थायोएसिटल्स के निम्न प्रति एल्काइलीकरण द्वारा थिओल्स तैयार किए जाते हैं।[29] थायोफेनोल्स S-एरीलेशन द्वारा निर्मित होते हैं या डायज़ोनियम छोड़ने वाले समूह को सल्फ़हाइड्रील आयनों (SH-) के साथ प्रतिस्थापित करते हैं।):[30][31]

ArN+
2
+ SH → ArSH + N2

प्रतिक्रियाएं

अल्कोहल के रसायन विज्ञान के समान, थिओल्स सल्फाइड, थायोएसीटल और थीओयस्टर बनाते हैं, जो क्रमशः ईथर, एसिटल और एस्टर के अनुरूप होते हैं। थिओल्स और अल्कोहल भी उनकी प्रतिक्रियाशीलता में बहुत भिन्न होते हैं, थिओल्स अल्कोहल की तुलना में अत्यधिक सरलता से ऑक्सीकृत होते हैं। थियोलेट्स संबंधित एल्कोक्साइड्स की तुलना में अत्यधिक शक्तिशाली न्यूक्लियोफाइल हैं।

S-अल्काइलेशन

थिओल्स, या अत्यधिक विशिष्ट उनके संयुग्मित आधार, सल्फाइड देने के लिए सरलता से अल्काइलेटेड होते हैं:

RSH + R′Br + B → RSR′ + [HB]Br  (B = आधार)

अम्लता

थिओल्स सरलता से अवक्षेपित हो जाते हैं।[32] अल्कोहल के सापेक्ष, थिओल्स अत्यधिक अम्लीय होते हैं। थिओल के संयुग्मित आधार को थिओलेट कहा जाता है। ब्यूटेनथियोल में ब्यूटेनॉल के लिए pKa बनाम 15 का 1.05 होता है। थियोफिनॉल में फिनॉल के लिए pKa विरुद्ध 6 का 10 होता है। एक अत्यधिक अम्लीय थियोल पेंटाफ्लूरोथाओफिनॉल (C6F5SH) pKa 2.68 के साथ होता है। इस प्रकार, थियोलेट्स को क्षार धातु हाइड्रॉक्साइड्स के साथ प्रयोग करके थियोलेट्स से प्राप्त किया जा सकता है।

थियोफेनोल से थियोफेनोलेट का संश्लेषण

रिडॉक्स

थियोल, विशेष रूप से आधार की उपस्थिति में, कार्बनिक डाइसल्फ़ाइड (R-S-S-R) देने के लिए ब्रोमिन और आयोडीन जैसे अभिकर्मकों द्वारा सरलता से रेडॉक्स होते हैं।

2 R−SH + Br2 → R−S−S−R + 2 HBr

सोडियम हाइपोक्लोराइट या हाइड्रोजन पेरोक्साइड जैसे अत्यधिक शक्तिशाली अभिकर्मकों द्वारा ऑक्सीकरण भी सल्फोनिक एसिड (RSO3H) उत्पन्न कर सकता है।)।

R−SH + 3 H2O2 → RSO3H + 3 H2O

उत्प्रेरकों की उपस्थिति में ऑक्सीजन द्वारा ऑक्सीकरण भी किया जा सकता है:[33]

2 R–SH + 1⁄2 O2 → RS−SR + H2O

थियोल-डाइसल्फ़ाइड एक्सचेंज में थिओल्स भाग लेते हैं:

RS−SR + 2 R′SH → 2 RSH + R′S−SR′

यह प्रतिक्रिया प्रकृति में महत्वपूर्ण है।

धातु आयन संकुलन

धातु आयनों के साथ, थियोलेट्स संक्रमण धातु थिओलेट जटिल बनाने के लिए लिगेंड के रूप में व्यवहार करते हैं। मर्कैप्टन शब्द लैटिन के मर्क्यूरियम कैप्टान्स (पारा संग्रहण) से लिया गया है।[7]क्योंकि थियोलेट समूह पारा (तत्व) यौगिकों के साथ इतनी मजबूती से बंधता है। सख्त/कोमल अम्ल/क्षार (HSAB) सिद्धांत के अनुसार, सल्फर अपेक्षाकृत नरम (ध्रुवीय) परमाणु है। यह थिओल्स की पारा, सीसा, या कैडमियम जैसे नरम तत्वों और आयनों को बाँधने की प्रवृत्ति की व्याख्या करता है। धातु थिओलेट्स की स्थिरता संबंधित सल्फाइड खनिजों के समानांतर होती है।

थायॉक्सैन्थेट्स

थियोलेट्स कार्बन डाइसल्फ़ाइड के साथ (RSCS
2
) प्रतिक्रिया करके थायोज़ांथेट देता है |

थियल मूलक

Main article: थियल मूलक

मर्कैप्टन से प्राप्त मुक्त मूलकों, जिन्हें थियल मूलक कहा जाता है, सामान्यतौर पर कार्बनिक रसायन विज्ञान और जैव रसायन में प्रतिक्रियाओं की व्याख्या करने के लिए उपयोग किए जाते हैं। उनके पास सूत्र RS है जहां R कार्बनिक प्रतिस्थापक है जैसे एल्काइल या एरील है।[6]वे कई मार्गों से उत्पन्न होते हैं या उत्पन्न हो सकते हैं, परन्तु मुख्य विधि थिओल्स से SH-परमाणु अमूर्त है। अन्य विधि में कार्बनिक डाइसल्फ़ाइड के होमोलिसिस (रसायन) सम्मिलित हैं।[34] जीव विज्ञान में थाईल मूलक डीऑक्सीराइबोन्यूक्लिक एसिड के निर्माण के लिए उत्तरदायी होते हैं, जो डीएनए के लिए ब्लॉक बनाते हैं। यह रूपांतरण राइबोन्यूक्लियोटाइड रिडक्टेस (चित्र देखें) द्वारा उत्प्रेरित होता है।[35] थायल मध्य भी जीव विज्ञान में विआक्सीकारक, ग्लूटेथिओन के ऑक्सीकरण द्वारा निर्मित होते हैं। थियल मूलकों (सल्फर-केंद्रित) हाइड्रोजन परमाणु विनिमय रासायनिक संतुलन के माध्यम से कार्बन-केंद्रित मूलकों में परिवर्तित हो सकते हैं। कार्बन-केंद्रित मूलकों के गठन से C-C बंध या आधार के विखंडन के माध्यम से प्रोटीन की क्षति हो सकती है।

क्योंकि S-H  बंध के निर्बल होने के कारण, थिओल्स मुक्त कणों के अपमार्जक के रूप में कार्य कर सकते हैं।

जैविक महत्व

राइबोन्यूक्लियोटाइड रिडक्टेस के लिए उत्प्रेरक चक्र, जीवन की आनुवंशिक मशीनरी के निर्माण में थायल रेडिकल्स की भूमिका का प्रदर्शन करता है।

[[सिस्टीन]] और सिस्टीन

एमिनो एसिड सिस्टीन के कार्यात्मक समूह के रूप में, थियोल समूह जीव विज्ञान में बहुत महत्वपूर्ण भूमिका निभाता है। जब दो सिस्टीन अवशेषों (मोनोमर्स या घटक इकाइयों के रूप में) के थिओल समूह प्रोटीन फोल्डिंग के दौरान एक-दूसरे के पास लाए जाते हैं, तो ऑक्सीकरण डाइसल्फ़ाइड बंध (−S−S−) के साथ सिस्टीन इकाई उत्पन्न कर सकता है। डाइसल्फ़ाइड बंध प्रोटीन की तृतीयक संरचना में योगदान कर सकते हैं यदि सिस्टीन एक ही पेप्टाइड श्रृंखला का भाग हैं, या विभिन्न पेप्टाइड श्रृंखलाओं के बीच बहुत मजबूत सहसंयोजक बंधन बनाकर बहु-इकाई प्रोटीन की चतुष्कोणीय संरचना में योगदान करते हैं। बालों को सीधा करने वाली तकनीकों द्वारा सिस्टीन-सिस्टीन संतुलन की एक भौतिक अभिव्यक्ति प्रदान की जाती है।[36] एंजाइम की सक्रिय साइट में सल्फ़हाइड्रील समूह एंजाइम के मूलाधार (जैव रसायन) के साथ-साथ असहसंयोजक बंन भी बना सकते हैं, जो उत्प्रेरक ट्रायड्स में सहसंयोजक उत्त्प्रेरण में योगदान करते हैं। सक्रिय साइट सिस्टीन अवशेष सिस्टीन प्रोटीज उत्प्रेरक त्रिक में कार्यात्मक इकाई हैं। सिस्टीन के अवशेष भारी धातु आयनों (Zn2+, Cd2+, Pb2+, Hg2+, AG+) कोमल सल्फाइड और कोमल मेटल के बीच उच्च बंधुता के कारण ( सख्त और कोमल अम्ल और क्षार देखें)। यह प्रोटीन को विकृत और निष्क्रिय कर सकता है, और भारी धातु विषाक्तता का तंत्र है।

ड्रग्स जिसमें थियोल समूह होता है | 6-मर्कैपटॉप्यूरिन (कैंसररोधी) कैप्टोप्रिल (प्रति अतिसंवेदी) डी-पेनीसिलेमाईन (प्रतिआर्थ्रिटिक) सोडियम ऑरोथियोमालेट (प्रति आर्थ्रिटिक) है| [37]

सहकारक

कई सहकारक (जैव रसायन) (गैर-प्रोटीन-आधारित सहायक अणु) में थिओल्स होते हैं। फैटी एसिड और संबंधित लंबी-श्रृंखला हाइड्रोकार्बन का जैवसंश्लेषण और गिरावट एक पाड़ पर आयोजित की जाती है जो थियोल कोएंजाइम A से प्राप्त थिओस्टर के माध्यम से बढ़ती श्रृंखला को आधार देती है। मीथेन का जैवसंश्लेषण, पृथ्वी पर प्रमुख हाइड्रोकार्बन, द्वारा मध्यस्थता प्रतिक्रिया से उत्पन्न होता है। कोएंजाइम M, 2-मर्कैप्टोइथाइल सल्फोनिक एसिड. थियोलेट्स, थिओल्स से प्राप्त संयुग्म आधार, कई धातु आयनों के साथ मजबूत परिसरों का निर्माण करते हैं, विशेष रूप से जिन्हें नरम के रूप में वर्गीकृत किया गया है। धातु थिओलेट्स की स्थिरता संबंधित सल्फाइड खनिजों के समानांतर होती है।

स्कन्क्स में

स्कन्क्स (पशुफार्म) के रक्षात्मक स्प्रे में मुख्य रूप से कम आणविक-वजन वाले थिओल्स और दुर्गंध वाले सिद्धिकरण होते हैं, जो स्कंक को शिकारियों से बचाता है। उल्लू स्कंक का शिकार करने में सक्षम होते हैं, क्योंकि उनमें सूंघने की क्षमता नहीं होती है।[38]

थियोल्स के उदाहरण

यह भी देखें

संदर्भ

  1. Dictionary Reference: thiol Archived 2013-04-11 at the Wayback Machine
  2. θεῖον Archived 2017-05-10 at the Wayback Machine, Henry George Liddell, Robert Scott, A Greek–English Lexicon
  3. Dictionary Reference: mercaptan Archived 2012-11-13 at the Wayback Machine
  4. 4.0 4.1 Patai, Saul, ed. (1974). थियोल ग्रुप की केमिस्ट्री। भाग ---- पहला. London: Wiley. doi:10.1002/9780470771310. ISBN 9780470771310.
  5. Patai, Saul, ed. (1974). The Chemistry of the Thiol Group. Part 2. London: Wiley. doi:10.1002/9780470771327. ISBN 9780470771327.
  6. 6.0 6.1 R. J. Cremlyn (1996). ऑर्गनोसल्फर केमिस्ट्री का परिचय. Chichester: John Wiley and Sons. ISBN 978-0-471-95512-2.
  7. 7.0 7.1 Oxford American Dictionaries (Mac OS X Leopard).
  8. See:
  9. "अल्कानेथिओल्स". Royal Society of Chemistry. Retrieved 4 September 2019.
  10. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  11. Andersen K. K.; Bernstein D. T. (1978). "स्ट्राइप्ड स्कंक की गंध के कुछ रासायनिक घटक ("मेफाइटिस मेफाइटिस")". Journal of Chemical Ecology. 1 (4): 493–499. doi:10.1007/BF00988589. S2CID 9451251.
  12. Andersen K. K., Bernstein D. T.; Bernstein (1978). "1-ब्यूटेनथियोल और स्ट्राइप्ड स्कंक". Journal of Chemical Education. 55 (3): 159–160. Bibcode:1978JChEd..55..159A. doi:10.1021/ed055p159.
  13. Andersen K. K.; Bernstein D. T.; Caret R. L.; Romanczyk L. J., Jr. (1982). "धारीदार बदमाश के रक्षात्मक स्राव के रासायनिक घटक ("मेफाइटिस मेफाइटिस")". Tetrahedron. 38 (13): 1965–1970. doi:10.1016/0040-4020(82)80046-X.
  14. Wood W. F.; Sollers B. G.; Dragoo G. A.; Dragoo J. W. (2002). "हूडेड स्कंक के रक्षात्मक स्प्रे में वाष्पशील घटक, मेफाइटिस मैक्रोरा". Journal of Chemical Ecology. 28 (9): 1865–70. doi:10.1023/A:1020573404341. PMID 12449512. S2CID 19217201.
  15. William F. Wood. "स्कंक स्प्रे की केमिस्ट्री". Dept. of Chemistry, Humboldt State University. Archived from the original on October 8, 2010. Retrieved January 2, 2008.
  16. Aldrich, T.B. (1896). "इस स्राव के शारीरिक गुणों पर टिप्पणी के साथ मेफाइटिस मेफिटिका (कॉमन स्कंक) की गुदा ग्रंथियों के स्राव का एक रासायनिक अध्ययन". J. Exp. Med. 1 (2): 323–340. doi:10.1084/jem.1.2.323. PMC 2117909. PMID 19866801.
  17. Lin, Dayu; Zhang, Shaozhong; Block, Eric; Katz, Lawrence C. (2005). "माउस मुख्य घ्राण बल्ब में सामाजिक संकेतों को कूटबद्ध करना". Nature. 434 (7032): 470–477. Bibcode:2005Natur.434..470L. doi:10.1038/nature03414. PMID 15724148. S2CID 162036.
  18. Duan, Xufang; Block, Eric; Li, Zhen; Connelly, Timothy; Zhang, Jian; Huang, Zhimin; Su, Xubo; Pan, Yi; et al. (2012). "धातु-समन्वय गंधकों का पता लगाने में तांबे की महत्वपूर्ण भूमिका". Proc. Natl. Acad. Sci. U.S.A. 109 (9): 3492–3497. Bibcode:2012PNAS..109.3492D. doi:10.1073/pnas.1111297109. PMC 3295281. PMID 22328155.
  19. "कॉपर सड़े हुए अंडे की दुर्गंध के प्रति हमारी संवेदनशीलता की कुंजी है". chemistryworld.com. Archived from the original on 10 May 2017. Retrieved 3 May 2018.
  20. Roberts, J. S., ed. (1997). किर्क-ओथमर एनसाइक्लोपीडिया ऑफ केमिकल टेक्नोलॉजी. Weinheim: Wiley-VCH.[page needed]
  21. Luo, Y.-R.; Cheng, J.-P. (2017). "Bond Dissociation Energies". In J. R. Rumble (ed.). रसायन और भौतिकी पुस्तिका. CRC Press.
  22. Man, Pascal P. "Sulfur-33 NMR references". www.pascal-man.com. Archived from the original on 23 August 2017. Retrieved 3 May 2018.
  23. John S Roberts, "Thiols", in Kirk-Othmer Encyclopedia of Chemical Technology, 1997, Wiley-VCH, Weinheim. doi:10.1002/0471238961.2008091518150205.a01
  24. Speziale, A. J. (1963). "Ethanedithiol". Organic Syntheses.; Collective Volume, vol. 4, p. 401.
  25. Urquhart, G. G.; Gates, J. W. Jr.; Connor, Ralph (1941). "एन-डोडेसिल मर्कैप्टन". Org. Synth. 21: 36. doi:10.15227/orgsyn.021.0036.
  26. S. R. Wilson, G. M. Georgiadis (1990). "Mecaptans from Thioketals: Cyclododecyl Mercaptan". Organic Syntheses.; Collective Volume, vol. 7, p. 124.
  27. E. Jones and I. M. Moodie (1990). "2-Thiophenethiol". Organic Syntheses.; Collective Volume, vol. 6, p. 979.
  28. Melvin S. Newman and Frederick W. Hetzel (1990). "Thiophenols from Phenols: 2-Naphthalenethiol". Organic Syntheses.; Collective Volume, vol. 6, p. 824.
  29. Ernest L. Eliel, Joseph E. Lynch, Fumitaka Kume, and Stephen V. Frye (1993). "Chiral 1,3-oxathiane from (+)-Pulegone: Hexahydro-4,4,7-trimethyl-4H-1,3-benzoxathiin". Organic Syntheses.{{cite journal}}: CS1 maint: multiple names: authors list (link); Collective Volume, vol. 8, p. 302
  30. Kazem-Rostami, Masoud; Khazaei, Ardeshir; Moosavi-Zare, Ahmad; Bayat, Mohammad; Saednia, Shahnaz (2012). "हल्के परिस्थितियों में संबंधित ट्रायज़ेन्स से थियोफेनोल्स का उपन्यास वन-पॉट संश्लेषण". Synlett. 23 (13): 1893–1896. doi:10.1055/s-0032-1316557. S2CID 196805424.
  31. Leuckart, Rudolf (1890). "सुगंधित mercaptans तैयार करने के लिए एक नई विधि" [A new method for the preparation of aromatic mercaptans]. Journal für Praktische Chemie. 2nd series (in Deutsch). 41: 179–224. doi:10.1002/prac.18900410114.
  32. M. E. Alonso; H. Aragona (1978). "Sulfide Synthesis in Preparation of Unsymmetrical Dialkyl Disulfides: Sec-butyl Isopropyl Disulfide". Org. Synth. 58: 147. doi:10.15227/orgsyn.058.0147.
  33. Akhmadullina, A. G.; Kizhaev, B. V.; Nurgalieva, G. M.; Khrushcheva, I. K.; Shabaeva, A. S.; et al. (1993). "प्रकाश हाइड्रोकार्बन फीडस्टॉक के विषम उत्प्रेरक विमुद्रीकरण". Chemistry and Technology of Fuels and Oils. 29 (3): 108–109. doi:10.1007/bf00728009. S2CID 97292021. Archived from the original on 2011-08-15.
  34. Roy, Kathrin-Maria (2005). "Thiols and Organic Sulphides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_767.
  35. Stubbe, JoAnne; Nocera, Daniel G.; Yee, Cyril S.; Chang, Michelle C. Y. (2003). "Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer?". Chem. Rev. 103 (6): 2167–2202. doi:10.1021/cr020421u. PMID 12797828.
  36. Reece, Urry; et al. (2011). कैम्पबेल जीव विज्ञान (Ninth ed.). New York: Pearson Benjamin Cummings. pp. 65, 83.
  37. Malle, E (2007). "Myeloperoxidase: a target for new drug development?". British Journal of Pharmacology. 152 (6): 838–854. doi:10.1038/sj.bjp.0707358. PMC 2078229. PMID 17592500.
  38. "Understanding Owls – The Owls Trust". theowlstrust.org. Archived from the original on 5 February 2018. Retrieved 3 May 2018.


बाहरी संबंध