डाइसर

From Vigyanwiki

डाइसर, जिसे एंडोरिबोन्यूक्लिज़ डाइसर या आरएनज़ मोटिफ के साथ हेलिकेज़ के रूप में भी जाना जाता है, एक एंजाइम है जो मनुष्यों में जीन द्वारा एन्कोड किया जाता है। RNase III परिवार का हिस्सा होने के नाते, डाइसर डबल- स्ट्रैंडेड आरएनए (dsRNA) और प्री-माइक्रोRNA (प्री-miRNA) को क्रमशः छोटे डबल-स्ट्रैंडेड RNA टुकड़ों में विभाजित करता है, जिन्हें क्रमशः छोटा हस्तक्षेप करने वाला RNA और microRNA कहा जाता है। ये टुकड़े लगभग 20-25 आधार जोड़े हैं जो दिशात्मकता (आणविक जीव विज्ञान) 3′-छोर पर दो-आधार ओवरहैंग के साथ हैं। डाइसर आरएनए-प्रेरित साइलेंसिंग कॉम्प्लेक्स (आरआईएससी) के सक्रियण की सुविधा प्रदान करता है, जो आरएनए हस्तक्षेप के लिए आवश्यक है। RISC में एक उत्प्रेरक घटक अर्गोनॉट है, जो एक एंडोन्यूक्लिएज है जो दूत RNA (mRNA) को अपघटित करने में सक्षम है।

डिस्कवरी

डाइसर को इसका नाम 2001 में स्टोनी ब्रुक विश्वविद्यालय के पीएचडी छात्र एमिली बर्नस्टीन द्वारा कोल्ड स्प्रिंग हार्बर प्रयोगशाला में ग्रेगरी हैनॉन की प्रयोगशाला में शोध करते समय दिया गया था। बर्नस्टीन ने डबल-स्ट्रैंडेड आरएनए से छोटे आरएनए अंशों को उत्पन्न करने के लिए जिम्मेदार एंजाइम की खोज की। डीएसआरएनए अभिकर्मक के साथ आरएनएआई मार्ग शुरू करने के बाद इसे आरआईएससी एंजाइम कॉम्प्लेक्स से इसअलग करके लगभग 22 न्यूक्लियोटाइड आरएनए टुकड़े उत्पन्न करने की डाइसर की क्षमता की खोज की गई थी। इस प्रयोग से पता चला कि आरआईएससी अवलोकन योग्य छोटे न्यूक्लियोटाइड टुकड़े को उत्पन्न करने के लिए ज़िम्मेदार नहीं था। आरएनए टुकड़े बनाने के लिए आरएनएएस III परिवार एंजाइमों की क्षमताओं का परीक्षण करने वाले बाद के प्रयोगों ने खोज को ड्रोसोफिला सीजी4792 तक सीमित कर दिया, जिसे अब डाइसर नाम दिया गया है।[1]

डाइसर ऑर्थोलॉग कई अन्य जीवों में उपस्थित हैं। मॉस में Physcomitrella DCL1b को पेटेंट करता है, जो चार DICER प्रोटीनों में से एक है, जो miRNA जैवजनन में सम्मिलित नहीं है, बल्कि miRNA लक्ष्य प्रतिलेखों को डाइस करने में सम्मिलित है। इस प्रकार, जीन अभिव्यक्ति के नियमन के लिए एक नवीन तंत्र, miRNAs द्वारा जीन की एपिजेनेटिक्स साइलेंसिंग की खोज की गई।

क्रिस्टल संरचना के संदर्भ में, खोजा जाने वाला पहला डाइसर प्रोटोजोआ जिआर्डिया इंटेस्टाइनलिस से था। यह काम इयान मैकरे द्वारा कैलिफोर्निया विश्वविद्यालय, बर्कले में जेनिफर डूडना की प्रयोगशाला में पोस्टडॉक्टोरल फेलो के रूप में शोध करते समय किया गया था। एक्स - रे क्रिस्टलोग्राफी द्वारा एक PAZ डोमेन और दो RNase III डोमेन की खोज की गई। प्रोटीन का आकार 82 डाल्टन (इकाई) है, जो संरक्षित कार्यात्मक कोर का प्रतिनिधित्व करता है जो बाद में अन्य जीवों में बड़े डाइसर प्रोटीन में पाया गया; उदाहरण के लिए, मनुष्यों में यह 219 kDa है। मनुष्यों से G. इंटेस्टाइनलिस के डाइसर के आकार में अंतर मानव डाइसर के भीतर कम से कम पांच अलग-अलग डोमेन उपस्थित होने के कारण है। ये डोमेन डाइसर गतिविधि विनियमन, डीएसआरएनए प्रसंस्करण और आरएनए हस्तक्षेप प्रोटीन कारक कार्यप्रणाली में महत्वपूर्ण हैं।

कार्यात्मक डोमेन

Giardia आंतों से डाइसर प्रोटीन का एक अणु, जो dsRNA के siRNAs के विदलन को उत्प्रेरित करता है। RNase III डोमेन हरे, PAZ डोमेन पीले, प्लेटफ़ॉर्म डोमेन लाल और कनेक्टर हेलिक्स नीले रंग के होते हैं।[2]

मानव डाइसर (जिसे hsDicer या DICER1 के नाम से भी जाना जाता है) को राइबोन्यूक्लिज़ III वर्गीकृत किया गया है क्योंकि यह डबल-स्ट्रैंडेड RNA को तोड़ता है। दो RNaseIII डोमेन के अलावा, इसमें एक हेलीकाप्टर डोमेन, एक PAZ (Piwi/Argonaute/Zwille) प्रोटीन डोमेन, [3][4] और दो डबल स्ट्रैंडेड आरएनए बाइंडिंग डोमेन (DUF283 और dsRBD)सम्मिलितहैं।[5]

वर्तमान शोध से पता चलता है कि PAZ डोमेन dsRNA के 2 न्यूक्लियोटाइड 3' ओवरहैंग को बाँधने में सक्षम है, जबकि उत्प्रेरक डोमेन स्ट्रैंड्स के दरार को शुरू करने के लिए dsRNA के चारों ओर एक छद्म-डिमर बनाते हैं। इसके परिणामस्वरूप dsRNA स्ट्रैंड का कार्यात्मक रूप से छोटा होना संभव हो जाता है। PAZ और RNaseIII डोमेन के बीच की दूरी कनेक्टर हेलिक्स के कोण द्वारा निर्धारित की जाती है और माइक्रो RNA उत्पाद की लंबाई को प्रभावित करती है।[2]डीएसआरबीडी डोमेन डीएसआरएनए को बांधता है, हालांकि डोमेन की विशिष्ट बाध्यकारी साइट को परिभाषित नहीं किया गया है। यह संभव है कि यह डोमेन अन्य नियामक प्रोटीन (मनुष्यों में TRBP, R2D2, ड्रोसोफिला में Loqs) के साथ एक कॉम्प्लेक्स के हिस्से के रूप में काम करता है ताकि RNaseIII डोमेन को प्रभावी ढंग से स्थापित किया जा सके और इस प्रकार sRNA उत्पादों की विशिष्टता को नियंत्रित किया जा सके।[6] हेलिकेज़ डोमेन को लंबे सबस्ट्रेट्स के प्रसंस्करण में सम्मिलितकिया गया है।[6]


आरएनए हस्तक्षेप में भूमिका

एंजाइम डाइसर क्रमशः छोटे हस्तक्षेप करने वाले आरएनए या माइक्रोआरएनए बनाने के लिए डबल स्ट्रैंडेड आरएनए या प्री-एमआईआरएनए को ट्रिम करता है। इन संसाधित आरएनए को आरएनए-प्रेरित साइलेंसिंग कॉम्प्लेक्स (आरआईएससी) में सम्मिलितकिया गया है, जो अनुवाद (आनुवांशिकी) को रोकने के लिए मैसेंजर आरएनए को लक्षित करता है।[7]

माइक्रो आरएनए

RNA हस्तक्षेप एक प्रक्रिया है जहां RNA अणुओं का miRNA में टूटना विशिष्ट मेजबान miRNA अनुक्रमों की जीन अभिव्यक्ति को रोकता है। miRNA का उत्पादन कोशिका के भीतर नाभिक में प्राथमिक miRNA (pri-miRNA) से शुरू होता है। इन लंबे अनुक्रमों को छोटे पूर्ववर्ती miRNA (pri-miRNA) में विभाजित किया जाता है, जो आमतौर पर हेयरपिन संरचना के साथ 70 न्यूक्लियोटाइड होते हैं। pri-miRNA को DGCR8 द्वारा पहचाना जाता है और Drosha द्वारा विभाजित करके pri-miRNA बनाया जाता है, एक प्रक्रिया जो नाभिक में होती है। फिर इन प्री-miRNA को साइटोप्लाज्म में निर्यात किया जाता है, जहां उन्हें परिपक्व miRNA बनाने के लिए डाइसर द्वारा विखंडित किया जाता है।।[8]


छोटा हस्तक्षेप आरएनए

छोटे हस्तक्षेप करने वाले आरएनए (siRNA) उत्पन्न होते हैं और डबल-स्ट्रैंडेड आरएनए को डाइसर के साथ छोटे टुकड़ों में विभाजित करके miRNA के समान कार्य करते हैं, जिनकी लंबाई 21 से 23 न्यूक्लियोटाइड होती है।[6]MiRNAs और siRNAs दोनों ही RNA-प्रेरित साइलेंसिंग कॉम्प्लेक्स (RISC) को सक्रिय करते हैं, जो पूरक लक्ष्य mRNA अनुक्रम पाता है और RNase का उपयोग करके RNA को साफ करता है।[9] यह बदले में आरएनए हस्तक्षेप द्वारा विशेष जीन को शांत कर देता है। RNA और miRNAs इस तथ्य में भिन्न हैं कि siRNAs आमतौर पर mRNA अनुक्रम के लिए विशिष्ट होते हैं जबकि miRNAs, mRNA अनुक्रम के लिए पूरी तरह से पूरक नहीं होते हैं। miRNAs समान अनुक्रम वाले लक्ष्यों के साथ बातचीत कर सकते हैं, जो विभिन्न जीनों के अनुवाद को रोकता है।[10] सामान्य तौर पर, आरएनए हस्तक्षेप मनुष्यों जैसे जीवों के भीतर सामान्य प्रक्रियाओं का एक अनिवार्य हिस्सा है, और यह एक ऐसा क्षेत्र है जिस पर कैंसर के लक्ष्यों के लिए निदान और चिकित्सीय उपकरण के रूप में शोध किया जा रहा है।[8]

RNA इंटरफेरेंस में प्रयुक्त miRNA का गठन

रोग

धब्बेदार अध: पतन

विकसित देशों में उम्र से संबंधित धब्बेदार अध: पतन अंधेपन का एक प्रमुख कारण है। इस बीमारी में डाइसर की भूमिका तब स्पष्ट हो गई जब यह पता चला कि प्रभावित रोगियों के रेटिनल पिगमेंट एपिथेलियम (आरपीई) में डाइसर का स्तर कम हो गया था। डाइसर के साथ चूहे ने दस्तक दी, उनके आरपीई में केवल डाइसर की कमी थी, इसी तरह के लक्षण प्रदर्शित किए। हालांकि, अन्य चूहों में ड्रोसा और पाशा (प्रोटीन) जैसे महत्वपूर्ण आरएनएआई पाथवे प्रोटीन की कमी थी, उनमें डाइसर-नॉकआउट चूहों की तरह धब्बेदार अध: पतन के लक्षण नहीं थे। इस अवलोकन ने रेटिनल स्वास्थ्य में एक डाइसर विशिष्ट भूमिका का सुझाव दिया जो आरएनएआई मार्ग से स्वतंत्र था और इस प्रकार si/miRNA पीढ़ी का कार्य नहीं था। अपर्याप्त डाइसर स्तर वाले रोगियों में एलयू आरएनए (एएलयू तत्वों के आरएनए प्रतिलेख) नामक आरएनए का एक रूप बढ़ा हुआ पाया गया। आरएनए के ये गैर कोडिंग स्ट्रैंड डीएसआरएनए संरचनाओं को बनाने वाले लूप कर सकते हैं जो एक स्वस्थ रेटिना में डाइसर द्वारा खराब हो जाएंगे। हालांकि, अपर्याप्त डाइसर स्तरों के साथ, एलयू आरएनए का संचय सूजन के परिणामस्वरूप आरपीई का अध: पतन होता है।[11][12]


कर्क

घातक कैंसर में परिवर्तित miRNA अभिव्यक्ति प्रोफाइल miRNA की एक महत्वपूर्ण भूमिका का सुझाव देते हैं। और इस प्रकार कैंसर के विकास और निदान में निर्णायक भूमिका निभाती है miRNAs ट्यूमर दमनकर्ता के रूप में कार्य कर सकते हैं और इसलिए उनकी परिवर्तित अभिव्यक्ति के परिणामस्वरूप ट्यूमरजनन हो सकता है।[13] फेफड़े और डिम्बग्रंथि के कैंसर के विश्लेषण में, खराब पूर्वानुमान और रोगी के जीवित रहने के समय में कमी, डाइसर और ड्रोसा अभिव्यक्ति में कमी के साथ संबंधित है। घटे हुए डाइसर mRNA स्तर उन्नत ट्यूमर चरण के साथ सहसंबद्ध होते हैं। हालांकि, प्रोस्टेट जैसे अन्य कैंसर में उच्च डाइसर अभिव्यक्ति[14] और इसोफेजियल, खराब रोगी निदान के साथ सहसंबंध दिखाया गया है। कैंसर के प्रकारों के बीच यह विसंगति बताती है कि विभिन्न ट्यूमर प्रकारों के बीच डाइसर से जुड़ी अद्वितीय आरएनएआई नियामक प्रक्रियाएं भिन्न होती हैं।[8]

डाइसर डीएनए की मरम्मत में भी सम्मिलित है। डीएनए क्षति की मरम्मत और अन्य तंत्रों की कम दक्षता के परिणामस्वरूप स्तनधारी कोशिकाओं में डीएनए की क्षति घटी हुई डाइसर अभिव्यक्ति के साथ बढ़ जाती है। उदाहरण के लिए, डबल स्ट्रैंड ब्रेक (डाइसर द्वारा निर्मित) से siRNA डबल स्ट्रैंड ब्रेक रिपेयर मैकेनिज्म में सम्मिलितप्रोटीन कॉम्प्लेक्स के लिए मार्गदर्शक के रूप में कार्य कर सकता है और क्रोमेटिन संशोधनों को भी निर्देशित कर सकता है। इसके अतिरिक्त, आयनिंग या पराबैंगनी विकिरण के कारण डीएनए क्षति के परिणामस्वरूप miRNAs अभिव्यक्ति स्वरूप बदल जाते हैं। आरएनएआई तंत्र ट्रांसपोज़न साइलेंसिंग के लिए ज़िम्मेदार हैं और उनकी अनुपस्थिति में, जैसे कि जब डाइसर को बाहर/नीचे खटखटाया जाता है, तो सक्रिय ट्रांसपोज़न हो सकते हैं जो डीएनए को नुकसान पहुंचाते हैं। डीएनए क्षति के संचय के परिणामस्वरूप कोशिकाओं में ऑन्कोजेनिक म्यूटेशन हो सकता है और इस प्रकार ट्यूमर का विकास हो सकता है।[8]

अन्य शर्तें

श्वानोमैटोसिस के साथ बहुकोशिकीय गण्डमाला को इस जीन में उत्परिवर्तन से जुड़ी एक ऑटोसोमल प्रमुख स्थिति के रूप में दिखाया गया है।[15]

वायरल रोगजनन

आरएनए वायरस द्वारा संक्रमण आरएनएआई कैस्केड को ट्रिगर कर सकता है। यह संभावना है कि डाइसर वायरल प्रतिरक्षा (चिकित्सा) में वायरस के रूप में सम्मिलित है जो पौधे और पशु कोशिकाओं दोनों को संक्रमित करता है जिसमें आरएनएआई प्रतिक्रिया को बाधित करने के लिए डिज़ाइन किया गया प्रोटीन होता है। मनुष्यों में, वायरस एचआईवी-1, इंफ्लुएंजा, और चेचक ऐसे आरएनएआई को दबाने वाले प्रोटीन को कूटबद्ध करते हैं। डाइसर का निषेध वायरस के लिए फायदेमंद है क्योंकि डाइसर वायरल dsRNA को विभाजित करने में सक्षम है और उत्पाद को आरआईएससी पर लोड करने में सक्षम है जिसके परिणामस्वरूप वायरल mRNA का लक्षित क्षरण होता है; इस प्रकार संक्रमण से लड़ना। वायरल रोगजनन के लिए एक अन्य संभावित तंत्र सेलुलर miRNA मार्गों को बाधित करने के तरीके के रूप में डाइसर की नाकाबंदी है।[16]

कीड़ों में

ड्रोसोफिला में, डाइसर-1 पूर्व-miRNA को संसाधित करके माइक्रोआरएनए (miRNAs) उत्पन्न करता है, डाइसर-2 लंबे डबल-स्ट्रैंडेड आरएनए (डीएसआरएनए) से छोटे हस्तक्षेप करने वाले आरएनए (siRNAs) के उत्पादन के लिए जिम्मेदार है।[17] कीड़े डाइसर को एक शक्तिशाली एंटीवायरल प्रोटीन के रूप में उपयोग कर सकते हैं। यह खोज विशेष रूप से महत्वपूर्ण है क्योंकि मच्छर संभावित घातक arboviruses सहित कई वायरल बीमारियों के संचरण के लिए जिम्मेदार हैं: वेस्ट नील विषाणु, डेंगू बुखार और पीला बुखार[18] जबकि मच्छर, विशेष रूप से मिस्रवासियों के मंदिर प्रजाति, इन विषाणुओं के वाहक के रूप में काम करते हैं, वे विषाणु के इच्छित मेजबान नहीं हैं। मादा मच्छर को अपने अंडे विकसित करने के लिए कशेरुक रक्त की आवश्यकता के परिणामस्वरूप संचरण होता है। कीड़ों में आरएनएआई मार्ग अन्य जानवरों के समान ही है; डाइसर-2 वायरल आरएनए को काटता है और इसे आरआईएससी कॉम्प्लेक्स पर लोड करता है जहां एक स्ट्रैंड आरएनएआई उत्पादों के उत्पादन के लिए एक टेम्पलेट के रूप में कार्य करता है और दूसरा खराब हो जाता है। म्यूटेशन वाले कीट अपने आरएनएआई मार्ग के गैर-कार्यात्मक घटकों की ओर ले जाने वाले उत्परिवर्तन वाले कीट उन विषाणुओं के लिए वायरल लोड में वृद्धि दिखाते हैं जो वे ले जाते हैं या उन विषाणुओं के प्रति संवेदनशीलता में वृद्धि करते हैं जिनके वे मेजबान हैं। मनुष्यों की तरह, कीट विषाणुओं ने भी आरएनएआई मार्ग से बचने के लिए तंत्र विकसित कर लिया है। उदाहरण के तौर पर, ड्रोसोफिला सी वायरस प्रोटीन 1ए के लिए एनकोड करता है जो डीएसआरएनए से जुड़ जाता है और इस प्रकार इसे डाइसर दरार के साथ-साथ आरआईएससी लोडिंग से बचाता है। हेलियोथिस विरेसेंस एस्कोवायरस 3ए, डाइसर के RNase III डोमेन के समान एक RNase III एंजाइम को एनकोड करता है जो DSRNA सब्सट्रेट के लिए प्रतिस्पर्धा कर सकता है और साथ ही RISC लोडिंग को रोकने के लिए siRNA डुप्लेक्स को ख़राब कर सकता है।।[19]


नैदानिक ​​और चिकित्सीय अनुप्रयोग

डाइसर का उपयोग एंजाइम की अभिव्यक्ति के स्तर के आधार पर यह पहचानने के लिए किया जा सकता है कि शरीर के भीतर ट्यूमर उपस्थित हैं या नहीं। एक अध्ययन से पता चला है कि कैंसर से पीड़ित कई रोगियों में डाइसर की अभिव्यक्ति का स्तर कम हो गया था। उसी अध्ययन से पता चला कि कम डाइसर अभिव्यक्ति का संबंध रोगी की कम जीवित रहने की अवधि से है।[8]नैदानिक ​​उपकरण होने के साथ-साथ, डाइसर का उपयोग जीन साइलेंसिंग के लिए विदेशी siRNA को अंतःशिरा में इंजेक्ट करके रोगियों के इलाज के लिए किया जा सकता है।।[20] चूहों जैसी स्तनधारी प्रजातियों में siRNA को दो तरह से दिखाया गया था। एक तरीका सीधे सिस्टम में इंजेक्ट करना होगा, जिसके लिए डाइसर फ़ंक्शन की आवश्यकता नहीं होगी। दूसरा तरीका यह होगा कि इसे प्लास्मिड द्वारा पेश किया जाए जो छोटे हेयरपिन आरएनए के लिए एनकोड करता है, जिन्हें डाइसर द्वारा siRNA में विभाजित किया जाता है।[21] siRNA को चिकित्सीय रूप से उत्पादित करने के लिए डाइसर का उपयोग करने के फायदों में से एक लक्ष्य की विशिष्टता और विविधता होगी जो वर्तमान में उपयोग किए जा रहे एंटीबॉडी या छोटे अणु अवरोधकों की तुलना में इसे प्रभावित कर सकता है। सामान्य तौर पर, छोटे आणविक अवरोधक विशिष्टता के साथ-साथ असहनीय दुष्प्रभावों के मामले में कठिन होते हैं। एंटीबॉडी siRNA के समान विशिष्ट हैं, लेकिन यह केवल लिगैंड्स या सेल सतह रिसेप्टर्स के विरुद्ध उपयोग करने में सक्षम होने तक सीमित है। दूसरी ओर,intracellular ग्रहण की कम दक्षता siRNA के इंजेक्शन की मुख्य बाधा है।[8]इंजेक्ट किए गए SiRNA में रक्त में खराब स्थिरता होती है और यह गैर-विशिष्ट प्रतिरक्षा की उत्तेजना का कारण बनता है।[22] इसके अलावा, चिकित्सीय रूप से miRNA के उत्पादन में विशिष्टता की कमी है क्योंकि miRNA को mRNA से जोड़ने के लिए केवल 6-8 न्यूक्लियोटाइड बेस पेयरिंग की आवश्यकता होती है।[23]

डाइसर जैसा प्रोटीन

पादप जीनोम जानवरों और कीड़ों के डाइसर के समान कार्य और प्रोटीन डोमेन वाले प्रोटीन जैसे डाइसर के लिए एन्कोड करते हैं। उदाहरण के लिए, मॉडल जीव अरबीडोफिसिस थालीआना में, चार डाइसर जैसे प्रोटीन बनाए जाते हैं और उन्हें DCL1 से DCL4 नामित किया जाता है। DCL1 उल्टे दोहराव से miRNA उत्पादन और sRNA उत्पादन में सम्मिलितहै। DCL2 सिस-अभिनय एंटीसेन्स ट्रांस्क्रिप्ट से siRNA बनाता है जो वायरल प्रतिरक्षा और रक्षा में सहायता करता है। DCL3 siRNA उत्पन्न करता है जो क्रोमैटिन संशोधन में सहायक होता है और DCL4 ट्रांस-एक्टिंग siRNA मेटाबोलिज्म और पोस्ट-ट्रांसक्रिप्शनल स्तर पर ट्रांसक्रिप्ट साइलेंसिंग में सम्मिलितहोता है। इसके अतिरिक्त, अरबिडोप्सिस फूलने के लिए डीसीएल 1 और 3 महत्वपूर्ण हैं। अरेबिडोप्सिस में, डीसीएल नॉकआउट गंभीर विकासात्मक समस्याओं का कारण नहीं बनता है।

चावल और अंगूर भी डीसीएल का उत्पादन करते हैं क्योंकि डाइसर तंत्र कई जीवों की एक सामान्य रक्षा रणनीति है। चावल ने उत्पादित 5 डीसीएल के लिए अन्य कार्य विकसित किए हैं और वे अरबिडोप्सिस की तुलना में कार्य और विकास में अधिक महत्वपूर्ण भूमिका निभाते हैं।इसके अतिरिक्त, चावल के विभिन्न पादप कोशिका प्रकारों में अभिव्यक्ति पैटर्न भिन्न-भिन्न होते हैं, जबकि अरबिडोप्सिस में अभिव्यक्ति अधिक सजातीय है। चावल डीसीएल की अभिव्यक्ति सूखे, लवणता और ठंड सहित जैविक तनाव स्थितियों से प्रभावित हो सकती है। इस प्रकार ये तनाव कारक पौधे के वायरल प्रतिरोध को कम कर सकते हैं। एराबिडोप्सिस के विपरीत, डीसीएल प्रोटीन के कार्य की हानि चावल में विकास संबंधी दोषों का कारण बनती है।[24]


यह भी देखें

  • पित्रैक हाव भाव
  • आरएनए-प्रेरित साइलेंसिंग कॉम्प्लेक्स
  • आरएनए हस्तक्षेप
  • माइक्रोआरएनए
  • छोटा हस्तक्षेप आरएनए
  • द्रोषा
  • रिबोन्यूक्लिज़ III
  • एमआरएनए

संदर्भ

  1. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001). "आरएनए इंटरफेरेंस के दीक्षा चरण में बाइडेंटेट राइबोन्यूक्लिएज की भूमिका". Nature. 409 (6818): 363–6. Bibcode:2001Natur.409..363B. doi:10.1038/35053110. PMID 11201747. S2CID 4371481. closed access
  2. 2.0 2.1 Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (Jan 2006). "डाइसर द्वारा डबल-स्ट्रैंडेड आरएनए प्रसंस्करण के लिए संरचनात्मक आधार". Science. 311 (5758): 195–8. Bibcode:2006Sci...311..195M. doi:10.1126/science.1121638. PMID 16410517. S2CID 23785494.
  3. "Entrez Gene: DICER1 Dicer1, Dcr-1 homolog (Drosophila)".
  4. Matsuda S, Ichigotani Y, Okuda T, Irimura T, Nakatsugawa S, Hamaguchi M (Jan 2000). "आणविक क्लोनिंग और एक उपन्यास मानव जीन (एचर्एनए) का लक्षण वर्णन जो एक ख्यात आरएनए-हेलिकेज को कूटबद्ध करता है". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1490 (1–2): 163–9. doi:10.1016/S0167-4781(99)00221-3. PMID 10786632.
  5. Hammond SM (Oct 2005). "डाइसिंग और स्लाइसिंग: आरएनए इंटरफेरेंस पाथवे की कोर मशीनरी". FEBS Letters. 579 (26): 5822–9. doi:10.1016/j.febslet.2005.08.079. PMID 16214139. S2CID 14495726.
  6. 6.0 6.1 6.2 {{cite journal | vauthors = Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD | title = फॉस्फेट और R2D2 एक एटीपी-चालित राइबोन्यूक्लिएज, डिसर-2 की सब्सट्रेट विशिष्टता को प्रतिबंधित करते हैं| journal = Molecular Cell | volume = 42 | issue = 2 | pages = 172–84 | date = Apr 2011 | pmid = 21419681 | pmc = 3115569 | doi = 10.1016/j.molcel.2011.03.002 }
  7. Hammond SM, Bernstein E, Beach D, Hannon GJ (Mar 2000). "एक आरएनए-निर्देशित न्यूक्लियस ड्रोसोफिला कोशिकाओं में पोस्ट-ट्रांसक्रिप्शनल जीन साइलेंसिंग की मध्यस्थता करता है". Nature. 404 (6775): 293–6. Bibcode:2000Natur.404..293H. doi:10.1038/35005107. PMID 10749213. S2CID 9091863.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 Merritt WM, Bar-Eli M, Sood AK (Apr 2010). "The dicey role of Dicer: implications for RNAi therapy". Cancer Research. 70 (7): 2571–4. doi:10.1158/0008-5472.CAN-09-2536. PMC 3170915. PMID 20179193.
  9. {{cite journal | vauthors = Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A | title = डिसर विशिष्टता और दक्षता के लिए dsRNA संरचना का योगदान| journal = RNA | volume = 11 | issue = 5 | pages = 674–82 | date = May 2005 | pmid = 15811921 | pmc = 1370754 | doi = 10.1261/rna.7272305 }
  10. {{cite journal | vauthors = Zeng Y, Yi R, Cullen BR | title = माइक्रोआरएनए और छोटे हस्तक्षेप करने वाले आरएनए समान तंत्र द्वारा एमआरएनए अभिव्यक्ति को रोक सकते हैं| journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 100 | issue = 17 | pages = 9779–84 | date = Aug 2003 | pmid = 12902540 | pmc = 187842 | doi = 10.1073/pnas.1630797100 | bibcode = 2003PNAS..100.9779Z | doi-access = free }
  11. Meister G (Mar 2011). "Vision: Dicer leaps into view". Nature. 471 (7338): 308–9. Bibcode:2011Natur.471..308M. doi:10.1038/471308a. PMID 21412326.
  12. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, Cho WG, Kaneko H, Fowler BJ, Bogdanovich S, Albuquerque RJ, Hauswirth WW, Chiodo VA, Kugel JF, Goodrich JA, Ponicsan SL, Chaudhuri G, Murphy MP, Dunaief JL, Ambati BK, Ogura Y, Yoo JW, Lee DK, Provost P, Hinton DR, Núñez G, Baffi JZ, Kleinman ME, Ambati J (May 2012). "DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88". Cell. 149 (4): 847–59. doi:10.1016/j.cell.2012.03.036. PMC 3351582. PMID 22541070.
  13. Tang KF, Ren H (2012). "डीएनए क्षति की मरम्मत में डिसर की भूमिका". International Journal of Molecular Sciences. 13 (12): 16769–78. doi:10.3390/ijms131216769. PMC 3546719. PMID 23222681.
  14. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, Dhir R (Nov 2006). "प्रोस्टेट एडेनोकार्सिनोमा में माइक्रोआरएनए मशीनरी के एक घटक डिसर का अप-विनियमन". The American Journal of Pathology. 169 (5): 1812–20. doi:10.2353/ajpath.2006.060480. PMC 1780192. PMID 17071602.
  15. Rivera B, Nadaf J, Fahiminiya S, Apellaniz-Ruiz M, Saskin A, Chong AS, Sharma S, Wagener R, Revil T, Condello V, Harra Z, Hamel N, Sabbaghian N, Muchantef K, Thomas C, de Kock L, Hébert-Blouin MN, Bassenden AV, Rabenstein H, Mete O, Paschke R, Pusztaszeri MP, Paulus W, Berghuis A, Ragoussis J, Nikiforov YE, Siebert R, Albrecht S, Turcotte R, Hasselblatt M, Fabian MR, Foulkes WD (2019) DGCR8 microprocessor defect characterizes familial multinodular goiter with schwannomatosis. J Clin Invest
  16. Berkhout B, Haasnoot J (May 2006). "वायरस के संक्रमण और सेलुलर आरएनए हस्तक्षेप मशीनरी के बीच परस्पर क्रिया". FEBS Letters. 580 (12): 2896–902. doi:10.1016/j.febslet.2006.02.070. PMC 7094296. PMID 16563388.
  17. Cenik, ES; Fukunaga, R; Lu, G; Dutcher, R; Wang, Y; Tanaka Hall, TM; Zamore, PD (22 April 2011). "Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease". Molecular Cell. 42 (2): 172–84. doi:10.1016/j.molcel.2011.03.002. PMC 3115569. PMID 21419681.
  18. "मच्छर जनित रोग". National Center for Infections Disease, Center for Disease Control and Prevention. Archived from the original on 31 January 2014. Retrieved 22 April 2014.
  19. Bronkhorst AW, van Rij RP (Aug 2014). "The long and short of antiviral defense: small RNA-based immunity in insects". Current Opinion in Virology. 7: 19–28. doi:10.1016/j.coviro.2014.03.010. PMID 24732439.
  20. Kamlah F, Eul BG, Li S, Lang N, Marsh LM, Seeger W, Grimminger F, Rose F, Hänze J (Mar 2009). "हाइपोक्सिया-प्रेरक कारकों के खिलाफ निर्देशित siRNA का अंतःशिरा इंजेक्शन एक लुईस फेफड़े के कार्सिनोमा कैंसर मॉडल में जीवित रहता है". Cancer Gene Therapy. 16 (3): 195–205. doi:10.1038/cgt.2008.71. PMID 18818708.
  21. "संवर्धित स्तनधारी कोशिकाओं में जीन कार्यप्रणाली का अध्ययन करने के लिए आरएनए हस्तक्षेप द्वारा जीन साइलेंसिंग का नियमित रूप से उपयोग किया जा रहा है". Life Technologies. Retrieved 23 April 2014.
  22. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004). "कैंसर siRNA थेरेपी ट्यूमर चयनात्मक वितरण द्वारा लिगैंड-लक्षित स्टरली स्टेबलाइज़्ड नैनोपार्टिकल के साथ". Nucleic Acids Research. 32 (19): e149. doi:10.1093/nar/gnh140. PMC 528817. PMID 15520458.
  23. Chi SW, Zang JB, Mele A, Darnell RB (Jul 2009). "Argonaute HITS-CLIP माइक्रोआरएनए-एमआरएनए इंटरेक्शन मैप्स को डिकोड करता है". Nature. 460 (7254): 479–86. Bibcode:2009Natur.460..479C. doi:10.1038/nature08170. PMC 2733940. PMID 19536157.
  24. Liu Q, Feng Y, Zhu Z (Aug 2009). "पौधों में डिसर-लाइक (DCL) प्रोटीन". Functional & Integrative Genomics. 9 (3): 277–86. doi:10.1007/s10142-009-0111-5. PMID 19221817. S2CID 28801338.


बाहरी संबंध

  • Overview of all the structural information available in the PDB for UniProt: Q9UPY3 (Human Endoribonuclease Dicer) at the PDBe-KB.
  • Overview of all the structural information available in the PDB for UniProt: Q8R418 (Mouse Endoribonuclease Dicer) at the PDBe-KB.