औसत पूर्ण विचलन

From Vigyanwiki

एक डेटा सेट का औसत निरपेक्ष विचलन एक केंद्रीय प्रवृत्ति से निरपेक्ष मूल्य विचलन का औसत है। यह सांख्यिकीय फैलाव या परिवर्तनशीलता का सारांश आँकड़े है। सामान्य रूप में केंद्रीय बिंदु अंकगणितीय माध्य, माध्यिका, सांख्यिकी या केंद्रीय प्रवृत्ति के किसी अन्य माप का परिणाम या दिए गए डेटा सेट से संबंधित कोई संदर्भ मान हो सकता है। औसत पूर्ण विचलन में माध्य निरपेक्ष विचलन और मध्य निरपेक्ष विचलन सम्मिलित हैं।

सांख्यिकीय विस्तार के उपाय

पूर्ण विचलन के संदर्भ में सांख्यिकीय फैलाव के कई उपायों को परिभाषित किया गया है। शब्द औसत निरपेक्ष विचलन विशिष्ट रूप से सांख्यिकीय विस्तार के उपाय की पहचान नहीं करता है क्योंकि ऐसे कई उपाय हैं जिनका उपयोग निरपेक्ष विचलन को मापने के लिए किया जा सकता हैI केंद्रीय प्रवृत्ति के कई उपाय हैं जिनका उपयोग भी किया जा सकता है। इस प्रकार पूर्ण विचलन की विशिष्ट पहचान के लिए विचलन के माप और केंद्रीय प्रवृत्ति के माप दोनों को निर्दिष्ट करना आवश्यक है। सांख्यिकीय शास्त्र ने अभी तक एक मानक संकेतन को नहीं अपनाया है क्योंकि माध्य के चारों ओर #माध्य निरपेक्ष विचलन और माध्यिका के चारों ओर #मध्य निरपेक्ष विचलन दोनों को साहित्य में उनके प्रारंभिक एमएडी द्वारा निरूपित किया गया है जिससे भ्रम हो सकता है क्योंकि सामान्य तौर पर उनके मूल्य एक दूसरे से काफी भिन्न हो सकते हैं।

औसत केंद्रीय बिंदु के चारों ओर पूर्ण विचलन

सेट का औसत पूर्ण विचलन {x1, x2, ..., xn} है

केंद्रीय प्रवृत्ति के माप का विकल्प माध्य विचलन के मान पर एक उल्लेखनीय प्रभाव पड़ता है। उदाहरण के लिए, डेटा सेट {2, 2, 3, 4, 14} के लिए:

केंद्रीय मान की माप शुद्ध विचलन का मान
अंकगणित मान = 5
मध्य = 3
मोड = 2

माध्य के चारों ओर पूर्ण विचलन

माध्य निरपेक्ष विचलन जिसे माध्य विचलन या कभी-कभी औसत निरपेक्ष विचलन भी कहा जाता हैI डेटा माध्य के आस-पास डेटा निरपेक्ष विचलन माध्य स्थित हैI चित्र में ज्ञात है माध्य से औसत दूरी A है। सामान्य रूप में औसत निरपेक्ष विचलन किसी निर्दिष्ट केंद्रीय बिंदु के संबंध में इस उपयोग को संदर्भित कर सकता हैI

एमएडी को मानक विचलन के स्थान पर उपयोग करने का प्रस्ताव दिया गया है क्योंकि यह वास्तविकता से मेल खाता है I एमएडी मानक विचलन की तुलना में परिवर्तनशीलता का एक सरल उपाय हैI यह विद्यालयी शिक्षण में उपयोगी हो सकता है।[1][2]इस पद्धति की पूर्वानुमान सटीकता औसत त्रुटि विधि से बहुत निकटता से संबंधित है जो कि पूर्वानुमानों की औसत त्रुटि से संबंधित है। हालांकि ये विधियां बहुत निकट से संबंधित हैंI मानक विचलन का औसत पूर्ण विचलन का अनुपात होता है जिसे इस प्रकार प्रदर्शित किया जा सकता है I इस प्रकार यदि सामान्य रूप से x अपेक्षित मूल्य 0 के साथ समान रूप से सदर्भित तो चर हैI तो ये समीकरण प्रस्तुत होता हैI

दूसरे शब्दों में माध्य निरपेक्ष विचलन मानक विचलन का लगभग 0.8 गुना होता है। हालांकि माध्य औसत विचलन/मानक विचलन के अनुपात के मूल्यों को , छोटे n के लिए पूर्वाग्रह के साथ निम्नलिखित सीमा के साथ वितरित करते हैंI[3]माध्य से औसत पूर्ण विचलन मानक विचलन से कम या उसके बराबर है इसे सिद्ध करने का एक तरीका जेन्सेन की असमानता पर निर्भर करता है।

Proof

Jensen's inequality is , where φ is a convex function, this implies for that:

Since both sides are positive, and the square root is a monotonically increasing function in the positive domain:

For a general case of this statement, see Hölder's inequality.

माध्यिका के चारों ओर पूर्ण विचलन

माध्यिका वह बिंदु है जिसके बारे में माध्य विचलन न्यूनतम किया जाता है। माध्यिका अपने माध्यिका के चारों ओर यादृच्छिक चर के पैमाने का प्रत्यक्ष माप प्रदान करती हैI

स्केल पैरामीटर का अधिकतम संभावना अनुमानक है

चूंकि माध्य औसत पूर्ण दूरी को कम करता हैI माध्यिका से औसत निरपेक्ष विचलन माध्य से औसत निरपेक्ष विचलन से कम या उसके समानांतर होता है। वास्तव में माध्यिका से औसत निरपेक्ष विचलन हमेशा किसी अन्य निश्चित संख्या से औसत निरपेक्ष विचलन से कम या उसके समानांतर होता है।

जहां सूचक है
यह प्रतिनिधित्व एमएडी औसत सहसंबंध गुणांक प्राप्त करने की अनुमति देता है।

एक केंद्रीय बिंदु के चारों ओर औसत पूर्ण विचलन

जबकि सैद्धांतिक रूप से औसत पूर्ण विचलन के लिए माध्य या किसी अन्य केंद्रीय बिंदु को केंद्रीय बिंदु के रूप में लिया जा सकता है इसके बजाय अक्सर माध्य मान लिया जाता है।

माध्यिका के चारों ओर माध्यिका निरपेक्ष विचलन

माध्यिका निरपेक्ष विचलन माध्यिका से निरपेक्ष विचलन का माध्यिका है। यह पैमाने का मजबूत उपाय है।

उदाहरण के लिए {2, 2, 3, 4, 14}: 3 माध्यिका है इसलिए माध्यिका से निरपेक्ष विचलन {1, 1, 0, 1, 11} हैं ({0, 1, 1, 1 के रूप में पुनर्क्रमित) 11}) 1 की माध्यिका के साथ इस मामले में बाहरी 14 के मान से अप्रभावित है इसलिए औसत पूर्ण विचलन 1 है। सममित वितरण के लिए औसत पूर्ण विचलन अंतर-चतुर्थक श्रेणी के आधे के बराबर है।

अधिकतम पूर्ण विचलन

एक बिंदु के चारों ओर अधिकतम पूर्ण विचलन उस बिंदु से एक नमूने के पूर्ण विचलन का अधिकतम है। जबकि केंद्रीय प्रवृत्ति का सख्ती से माप नहीं हैI ऊपर के रूप में औसत पूर्ण विचलन के लिए सूत्र का उपयोग करके अधिकतम पूर्ण विचलन पाया जा सकता है अधिकतम नमूना है।

न्यूनीकरण

पूर्ण विचलन से प्राप्त सांख्यिकीय फैलाव के उपाय केंद्रीय प्रवृत्ति के विभिन्न उपायों को फैलाव को कम करने के रूप में दर्शाते हैंI मध्यिका केंद्रीय प्रवृत्ति का माप है जो पूर्ण विचलन से सबसे अधिक जुड़ा हुआ है। कुछ स्थान मापदंडों की तुलना इस प्रकार की जा सकती है:

  • L2 मानदंड मानक आँकड़े: माध्य माध्य वर्ग त्रुटि को कम करता हैI
  • L1 मानदंड मानक आँकड़े: माध्यिका औसत पूर्ण विचलन को न्यूनतम करती हैI
  • समान मानदंड L मानक आँकड़े: मध्य-श्रेणी अधिकतम निरपेक्ष विचलन को न्यूनतम करती हैI
  • L आदर्श आँकड़े: उदाहरण के लिए पहले और तीसरे चतुर्थक का औसत जो पूरे वितरण के औसत पूर्ण विचलन को कम करता हैI ऊपर और नीचे 25% के बाद वितरण के अधिकतम पूर्ण विचलन को भी कम करता हैI

अनुमान

Graph 01.jpg

एक नमूने का औसत निरपेक्ष विचलन जनसंख्या के औसत निरपेक्ष विचलन का पक्षपाती अनुमानक है। निष्पक्ष अनुमानक होने के लिए पूर्ण विचलन के लिए सभी नमूना पूर्ण विचलनों का अपेक्षित मान जनसंख्या पूर्ण विचलन के बराबर होना चाहिए। हालाँकि ऐसा नहीं है। जनसंख्या 1,2,3 के लिए माध्यिका के बारे में जनसंख्या निरपेक्ष विचलन और माध्य के बारे में जनसंख्या निरपेक्ष विचलन दोनों 2/3 हैं। आकार 3 के माध्य के बारे में सभी नमूना निरपेक्ष विचलन का औसत जो जनसंख्या से खींचा जा सकता है, 44/81 हैI जबकि माध्यिका के बारे में सभी नमूना निरपेक्ष विचलन का औसत 4/9 है। इसलिए, पूर्ण विचलन एक पक्षपाती अनुमानक है।

हालाँकि यह तर्क माध्य-निष्पक्षता की धारणा पर आधारित है। स्थान के प्रत्येक माप में निष्पक्षता का अपना रूप होता हैI यहाँ निष्पक्षता का प्रासंगिक रूप माध्यिका निष्पक्षता है।

Graph 02.jpg

यह भी देखें

Chart 01.jpg

* विचलन (सांख्यिकी)

संदर्भ

  1. Kader, Gary (March 1999). "साधन और एमएडीएस". Mathematics Teaching in the Middle School. 4 (6): 398–403. Archived from the original on 2013-05-18. Retrieved 20 February 2013.
  2. Franklin, Christine, Gary Kader, Denise Mewborn, Jerry Moreno, Roxy Peck, Mike Perry, and Richard Scheaffer (2007). सांख्यिकी शिक्षा में मूल्यांकन और निर्देश के लिए दिशानिर्देश (PDF). American Statistical Association. ISBN 978-0-9791747-1-1. Archived (PDF) from the original on 2013-03-07. Retrieved 2013-02-20.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. See also Geary's 1936 and 1946 papers: Geary, R. C. (1936). Moments of the ratio of the mean deviation to the standard deviation for normal samples. Biometrika, 28(3/4), 295–307 and Geary, R. C. (1947). Testing for normality. Biometrika, 34(3/4), 209–242.

बाहरी संबंध