एक्सॉन शफ़लिंग

From Vigyanwiki

एक्सॉन शफ़लिंग नए जीन के निर्माण के लिए आणविक तंत्र है। यह ऐसी प्रक्रिया है जिसके माध्यम से विभिन्न जीनों से दो या दो से अधिक एक्सॉन को साथ एक्टोपिक पुनर्संयोजन, या एक्सॉन प्रतिरूप, नई एक्सॉन-इंट्रॉन संरचना बनाने के लिए लाया जा सकता है।[1] ऐसे विभिन्न तंत्र हैं जिनके माध्यम से एक्सॉन शफलिंग होती है: , पेरेंट्स के जीनोम के यौन पुनर्संयोजन क्रोमोसोमल और निषेधित पुनर्संयोजन ट्रांसपोज़न के समय मध्यस्थता एक्सॉन शफलिंग क्रॉसओवर होती है।।

एक्सॉन शफ़लिंग कुछ स्प्लिस फ़्रेम नियमों का पालन करता है। इंट्रोन्स दो निरंतर कोडन (चरण 0 इंट्रॉन) के मध्य, कोडन के पहले और दूसरे न्यूक्लियोटाइड (चरण 1 इंट्रॉन) के मध्य, या कोडन के दूसरे और तीसरे न्यूक्लियोटाइड (चरण 2 इंट्रॉन) के मध्य अनुक्रम डालकर जीन के रीडिंग फ्रेम को बाधित कर सकते हैं। इसके अतिरिक्त एक्सॉन को फ्लैंकिंग इंट्रॉन के चरण के आधार पर नौ भिन्न-भिन्न समूहों में वर्गीकृत किया जा सकता है (सममित: 0-0, 1-1, 2-2 और असममित: 0-1, 0-2, 1-0, 1-2, आदि) सममित एक्सॉन एकमात्र ऐसे हैं जिन्हें इंट्रॉन में डाला जा सकता है, प्रतिरूप से निकलना पड़ सकता है, या रीडिंग फ्रेम को परिवर्तित किए बिना हटाया जा सकता है।[2]

इतिहास

एक्सॉन शफ़लिंग पहली बार 1978 में प्रारंभ की गई थी जब वाल्टर गिल्बर्ट ने पाया कि इंट्रॉन का अस्तित्व प्रोटीन के विकास में प्रमुख भूमिका निभा सकता है।[3] यह नोट किया गया था कि इंट्रोन्स के अन्दर पुनर्संयोजन एक्सॉन को स्वतंत्र रूप से मिश्रित करने में सहायता कर सकता है और इंट्रोन्स के मध्य में दोहराए जाने वाले खंड एक्सोनिक अनुक्रमों में शफ़लिंग करने के लिए पुनर्संयोजन के लिए हॉटस्पॉट बना सकते हैं। चूँकि, यूकैर्योसाइटों में इन इंट्रोन्स की उपस्थिति और प्रोकैर्योसाइटों में अनुपस्थिति ने उस समय के बारे में विचार उत्पन्न कर दी जिसमें यह इंट्रोन्स प्रकट हुए थे। दो सिद्धांत प्रदर्शित: इंट्रोन्स प्रारंभिक सिद्धांत और इंट्रोन्स देर सिद्धांत इंट्रोन्स प्रारंभिक सिद्धांत के समर्थकों का मानना ​​था कि इंट्रोन्स और आरएनए स्प्लिसिंग आरएनए संसार के अवशेष थे और इसलिए प्रारंभ में प्रोकैरियोट्स और यूकेरियोट्स दोनों में इंट्रोन्स थे। चूँकि, प्रोकैरियोट्स ने उच्च दक्षता प्राप्त करने के लिए अपने इंट्रोन्स को समाप्त कर दिया था, जबकि यूकेरियोट्स ने इंट्रोन्स और पूर्वजों की आनुवंशिक प्लास्टिसिटी को बनाये रखा था। दूसरी ओर, इंट्रोन्स लेट थ्योरी के समर्थकों का मानना ​​है कि प्रोकैरियोटिक जीन पैतृक जीन से मिलते जुलते हैं और यूकेरियोट्स के जीन में इंट्रोन्स को पश्चात् में डाला गया था। अब जो स्पष्ट है वह यह है कि यूकेरियोटिक एक्सॉन-इंट्रॉन संरचना स्थिर नहीं है, इंट्रॉन को निरंतर जीन से डाला और हटाया जाता है और इंट्रॉन का विकास एक्सॉन शफलिंग के समानांतर विकसित होता है।

प्रोटीन विकास में प्रमुख भूमिका निभाने के लिए एक्सॉन शफलिंग के लिए स्प्लिसोसोमल इंट्रोन्स की उपस्थिति होनी थी। यह इस तथ्य के कारण था कि आरएनए संसार के सेल्फ-स्प्लिसिंग इंट्रॉन, इंट्रोनिक पुनर्संयोजन द्वारा एक्सॉन-शफलिंग के लिए अनुपयुक्त थे। इन इंट्रोन्स का आवश्यक कार्य था और इसलिए इन्हें पुनः संयोजित नहीं किया जा सका था। इसके अतिरिक्त इस बात के भी पूर्ण प्रमाण हैं कि स्प्लिसोसोमल इंट्रोन्स वर्तमान में विकसित हुए हैं और उनके विकासवादी वितरण में प्रतिबंधित हैं। इसलिए, युवा प्रोटीन के निर्माण में एक्सॉन शफ़लिंग प्रमुख भूमिका बन गई।

इसके अतिरिक्त, उस समय को अधिक स्पष्ट रूप से परिभाषित करने के लिए जब यूकेरियोट्स में एक्सॉन शफ़लिंग महत्वपूर्ण हो गया था, इस तंत्र के माध्यम से विकसित होने वाले मॉड्यूलर प्रोटीन के विकासवादी वितरण की जांच विभिन्न जीवों जैसे इशरीकिया कोली , सैक्रोमाइसेस सेरेविसिया और अरबीडोफिसिस थालीआना में की गई थी। इन अध्ययनों से पता चला कि जीनोम कॉम्पैक्टनेस और क्रोनिक और प्रतिरूप वाले अनुक्रमों के अनुपात के मध्य विपरीत संबंध था, और मेटाज़ोन विकिरण के पश्चात् एक्सॉन शफ़लिंग महत्वपूर्ण हो गया था।[4]

तंत्र

पेरेंट्स के जीनोम के यौन पुनर्संयोजन के समय क्रॉसओवर

यूकेरियोट्स का विकास पेरेंट्स के जीनोम के यौन पुनर्संयोजन द्वारा मध्यस्थ होता है और चूंकि इंट्रॉन एक्सॉन की तुलना में लंबे होते हैं, इसलिए अधिकांश क्रॉसओवर गैर-कोडिंग क्षेत्रों में होते हैं। इन इंट्रोन्स में बड़ी संख्या में ट्रांसपोज़ेबल तत्व और पुनरावृत अनुक्रम होते हैं जो गैर-समरूप जीन के पुनर्संयोजन को बढ़ावा देते हैं। इसके अतिरिक्त यह भी दिखाया गया है कि मोज़ेक प्रोटीन मोबाइल डोमेन से बने होते हैं जो विकास के समय विभिन्न जीनों में विस्तृत हो गए हैं और जो स्वयं को मोड़ने में सक्षम हैं।

उक्त डोमेन के गठन और शफ़लिंग के लिए तंत्र है, यह मॉड्यूलराइजेशन परिकल्पना है। इस तंत्र को तीन चरणों में विभाजित किया गया है। पहला चरण प्रोटीन डोमेन की सीमाओं के अनुरूप स्थिति में इंट्रोन्स का सम्मिलन है। दूसरा चरण तब होता है जब प्रोटोमॉड्यूल सम्मिलित इंट्रोन्स के अन्दर पुनर्संयोजन द्वारा अग्रानुक्रम प्रतिरूप से निकलता है। तीसरा चरण तब होता है जब या से अधिक प्रोटोमोड्यूल्स को क्रोनिक पुनर्संयोजन द्वारा भिन्न गैर-समरूप जीन में स्थानांतरित किया जाता है। मॉड्यूलरलाइज़ेशन की सभी अवस्थाएँ विभिन्न डोमेन जैसे कि हेमोस्टैटिक प्रोटीन में देखी गई हैं।[2]

ट्रांसपोसॉन की मध्यस्थता

लंबा अंतरित तत्व (लाइन)-1

एक्सॉन शफ़लिंग के लिए संभावित तंत्र लंबे समय तक विस्तृत हुआ तत्व (पंक्ति) -1 मध्यस्थ 3' ट्रांसडक्शन है। चूँकि सबसे पहले यह समझना महत्वपूर्ण है कि पंक्तियां क्या हैं। पंक्तियां आनुवंशिक तत्वों का समूह है जो यूकेरियोटिक जीनोम में प्रचुर मात्रा में पाए जाते हैं।[5] पंक्ति 1 मनुष्यों में पाई जाने वाली सबसे सामान्य पंक्ति है। इसे आरएनए पोलीमरेज़ II द्वारा एमआरएनए देने के लिए प्रतिलेखित किया जाता है जो दो प्रोटीनों के लिए कोड करता है: ओआरएफ1 और ओआरएफ2, जो ट्रांसपोज़िशन के लिए आवश्यक हैं।[6]

ट्रांसपोज़िशन पर, एल1 3' फ्लैंकिंग डीएनए के साथ जुड़ जाता है और गैर-एल1 अनुक्रम को नए जीनोमिक स्थान पर ले जाता है। इस नए स्थान का समजातीय अनुक्रम में या दाता डीएनए अनुक्रम के निकट होना आवश्यक नहीं है। इस पूरी प्रक्रिया के समय दाता डीएनए अनुक्रम अपरिवर्तित रहता है क्योंकि यह आरएनए मध्यवर्ती के माध्यम से कॉपी-पेस्ट विधि से कार्य करता है; चूँकि, केवल L1 के 3' क्षेत्र में स्थित क्षेत्रों को ही प्रतिरूप के लिए लक्षित किया गया है।

फिर भी, यह मानने का कारण है कि यह प्रत्येक बार सच नहीं हो सकता जैसा कि निम्नलिखित उदाहरण से पता चलता है। मानव एटीएम जीन मानव ऑटोसोमल-रिसेसिव डिसऑर्डर अटैक्सिया-टेलैंगिएक्टेसिया के लिए उत्तरदायी है और क्रोमोसोम 11 पर स्थित है। चूँकि, क्रोमोसोम 7 में आंशिक एटीएम अनुक्रम पाया जाता है। आणविक विशेषताओं से पता चलता है कि इस प्रतिरूप को एल 1 रेट्रोट्रांसपोजिशन द्वारा मध्यस्थ किया गया था: व्युत्पन्न अनुक्रम 15 बीपी लक्ष्य पक्ष प्रतिरूप (टीएसडी) द्वारा फ़्लैंक किया गया था, 5 'अंत के आसपास का अनुक्रम एल 1 एंडोन्यूक्लिज़ क्लीवेज साइट और पॉली (ए) पूंछ पूर्ववर्ती के लिए सर्वसम्मति अनुक्रम से मेल खाता था। डी 3' टीएसडी किन्तु चूँकि L1 तत्व न तो रेट्रोट्रांसपोज़्ड सेगमेंट में उपस्थित था और न ही मूल अनुक्रम में, सेगमेंट की गतिशीलता को 3' ट्रांसडक्शन द्वारा नहीं समझाया जा सकता है। अतिरिक्त जानकारी ने इस विश्वास को जन्म दिया है कि डीएनए अनुक्रम का ट्रांस-मोबिलाइजेशन एक्सॉन में शफ़लिंग करने के लिए एल1 का और तंत्र है, किन्तु इस विषय पर और अधिक शोध किया जाना चाहिए।[7]

हेलिट्रॉन

एक अन्य तंत्र जिसके माध्यम से एक्सॉन शफलिंग होती है वह हेलिट्रॉन (जीव विज्ञान) का उपयोग है। चावल, कृमि और थेल क्रेस्ट जीनोम के प्रतिरूप वाले डीएनए खंडों के अध्ययन के समय पहली बार हेलिट्रॉन ट्रांसपोज़न की खोज की गई थी। हेलिट्रॉन की पहचान सभी यूकेरियोटिक साम्राज्यों में की गई है, किन्तु प्रतियों की संख्या प्रजातियों से भिन्न होती है।

हेलिट्रॉन एन्कोडेड प्रोटीन रोलिंग-सर्कल (आरसी) प्रतिकृति आरंभकर्ता (आरइपी) और डीएनए हेलिकेज़ (हेल) डोमेन से बने होते हैं। रेप डोमेन एंडोन्यूक्लियोलाइटिक क्रैक, डीएनए स्थानांतरण और बंधाव के लिए उत्प्रेरक प्रतिक्रियाओं में सम्मिलित है। इसके अतिरिक्त इस डोमेन में तीन रूपांकन सम्मिलित हैं। डीएनए बाइंडिंग के लिए पहला रूपांकन आवश्यक है। दूसरे रूपांकन में दो हिस्टिडीन हैं और यह धातु आयन बंधन में सम्मिलित है। अंत में तीसरे रूपांकन में दो टायरोसिन होते हैं और डीएनए क्रैक और बंधाव को उत्प्रेरित करते हैं।

हेलिट्रॉन द्वारा जीन कैप्चर के तीन मॉडल हैं: 'रीड-थ्रू मॉडल 1 (आरटीएम1), 'रीड-थ्रू मॉडल 2 (आरटीएम2) और फिलर डीएनए मॉडल (एफडीएनए) आरटीएम1 मॉडल के अनुसार हेलिट्रॉन के 3' सिरे पर प्रतिकृति टर्मिनेटर की आकस्मिक अस्तव्यस्तता से जीनोमिक डीएनए का स्थानान्तरण होता है। यह रीड-थ्रू हेलिट्रॉन तत्व और इसके डाउनस्ट्रीम जीनोमिक क्षेत्रों से बना है, जो यादृच्छिक डीएनए साइट से घिरा हुआ है, जो डे नोवो आरसी टर्मिनेटर के रूप में कार्य करता है। आरटीएम2 मॉडल के अनुसार दूसरे हेलिट्रॉन का 3' टर्मिनस ट्रांसपोज़िशन के आरसी टर्मिनेटर के रूप में कार्य करता है। यह आरसी टर्मिनेटर की अस्तव्यस्तता के पश्चात् होता है। अंत में एफडीएनए मॉडल में जीन या गैर-कोडिंग क्षेत्रों के भाग हेलिट्रॉन में होने वाले डीएस डीएनए ब्रेक की सुधार के समय गलती से टेम्पलेट के रूप में कार्य कर सकते हैं।[8] तथापि हेलिट्रॉन बहुत ही महत्वपूर्ण विकासवादी उपकरण सिद्ध हुए हैं, किन्तु उनके स्थानान्तरण के तंत्र के विशिष्ट विवरण अभी तक परिभाषित नहीं किए गए हैं।

हेलिट्रॉन का उपयोग करके विकास का उदाहरण सामान्यतः मक्के में पाई जाने वाली विविधता है। मक्के में हेलिट्रॉन ट्रांसपोज़ेबल तत्वों का उपयोग करके जीनिक और नॉनजेनिक क्षेत्रों में निरंतर परिवर्तन का कारण बनते हैं, जिससे विभिन्न मक्का लाइनों के मध्य विविधता आती है।

लॉन्ग-टर्मिनल रिपीट (एलटीआर) रेट्रोट्रांस्पोन्स

लॉन्ग-टर्मिनल रिपीट (एलटीआर) रेट्रोट्रांसपोज़न अन्य तंत्र का भाग है जिसके माध्यम से एक्सॉन शफ़लिंग होता है। वह सामान्यतः दो ओपन रीडिंग फ्रेम (ओआरएफ) को एनकोड करते हैं। गैग नामक पहला ओआरएफ वायरल संरचनात्मक प्रोटीन से संबंधित है। पोल नाम का दूसरा ओआरएफ पॉलीप्रोटीन है जो एसपारटिक प्रोटीज (एपी) से बना है जो पॉलीप्रोटीन को तोड़ता है, आरएनएएस एच (आरएच) जो डीएनआर-आरएनए हाइब्रिड को विभाजित करता है, रिवर्स ट्रांसक्रिपटेस (आरटी) जो ट्रांसपोज़न आरएनए की सीडीएनए प्रतिलिपि और डीडीई इंटीग्रेज बनाता है जो होस्ट के जीनोम में सीडीएनए सम्मिलित करता है। इसके अतिरिक्त एलटीआर रेट्रोट्रांसपोंसंस को पांच उपसमूहों में वर्गीकृत किया गया है: Ty1/copia, Ty3/gypsy, Bel/Pao, रेट्रोवायरस और अंतर्जात रेट्रोवायरस [9] एलटीआर रेट्रोट्रांसपोंसों को उनके ट्रांसपोज़िशन चक्र तंत्र में आरएनए मध्यवर्ती की आवश्यकता होती है। रेट्रोट्रांसपोन्सन रेट्रोवायरल आरटी से संबंधित रिवर्स ट्रांसक्रिपटेस का उपयोग करके आरएनए स्ट्रैंड के आधार पर सीडीएनए कॉपी को संश्लेषित करते हैं। फिर रेट्रोजीन बनाने के लिए सीडीएनए कॉपी को नई जीनोमिक स्थितियों में डाला जाता है।[10] यह तंत्र एक्सॉन शफ़लिंग के माध्यम से चावल और अन्य घास प्रजातियों के जीन विकास में महत्वपूर्ण सिद्ध हुआ है।

टर्मिनल इनवर्टेड रिपीट (टीआईआर) के साथ ट्रांसपोज़न

टर्मिनल इनवर्टेड रिपीट (टीआईआर) के साथ डीएनए ट्रांसपोज़न भी जीन शफ़लिंग में योगदान कर सकता है। पौधों में, पैक-टाइप नामक कुछ गैर-स्वायत्त तत्व अपनी गतिशीलता के समय जीन के टुकड़ों को पकड़ सकते हैं।[11] ऐसा प्रतीत होता है कि यह प्रक्रिया निकट पैक-टाइप ट्रांसपोज़न के मध्य रहने वाले जेनिक डीएनए के अधिग्रहण और उसके पश्चात् के एकत्रीकरण द्वारा मध्यस्थ होती है।[12]

निषेधित पुनर्संयोजन

अंत में, निषेधित पुनर्संयोजन (आईआर) अन्य तंत्र है जिसके माध्यम से एक्सॉन शफ़लिंग होता है। आईआर लघु समजात अनुक्रमों या गैरसमजात अनुक्रमों के मध्य पुनर्संयोजन है।[13]

आईआर के दो वर्ग हैं: पहला उन एंजाइमों की त्रुटियों से मेल खाता है जो डीएनए को काटते हैं और जुड़ते हैं (अर्थात, डीएनएस।) यह प्रक्रिया प्रतिकृति प्रोटीन द्वारा प्रारंभ की जाती है जो डीएनए संश्लेषण के लिए प्राइमर उत्पन्न करने में सहायता करती है। जबकि डीएनए स्ट्रैंड को संश्लेषित किया जा रहा है, दूसरे को विस्थापित किया जा रहा है। यह प्रक्रिया तब समाप्त होती है जब विस्थापित स्ट्रैंड उसी प्रतिकृति प्रोटीन द्वारा उसके सिरों से जुड़ जाता है। आईआर का दूसरा वर्ग छोटे समरूप अनुक्रमों के पुनर्संयोजन से मेल खाता है जो पहले उल्लिखित एंजाइमों द्वारा मान्यता प्राप्त नहीं हैं। चूँकि, उन्हें गैर-विशिष्ट एंजाइमों द्वारा पहचाना जा सकता है जो प्रतिरूप के मध्य कमी प्रारंभ करते हैं। फिर प्रतिरूप को प्रदर्शित करने के लिए एक्सोन्यूक्लिज़ द्वारा सिरों को हटा दिया जाता है। फिर प्रतिरूप नष्ट हो जाता है और परिणामी अणु की सुधार पोलीमरेज़ और लिगेज का उपयोग करके की जाती है।[14]

यह भी देखें

संदर्भ

  1. Long M, Betrán E, Thornton K, Wang W (November 2003). "The origin of new genes: glimpses from the young and old". Nature Reviews. Genetics. 4 (11): 865–875. doi:10.1038/nrg1204. PMID 14634634. S2CID 33999892.
  2. 2.0 2.1 Kolkman JA, Stemmer WP (May 2001). "एक्सॉन शफ़लिंग द्वारा प्रोटीन का निर्देशित विकास". Nature Biotechnology. 19 (5): 423–428. doi:10.1038/88084. PMID 11329010. S2CID 10629066.
  3. Gilbert, Walter (February 1978). "Why genes in pieces?". Nature (in English). 271 (5645): 501. Bibcode:1978Natur.271..501G. doi:10.1038/271501a0. ISSN 1476-4687. PMID 622185. S2CID 4216649.
  4. Patthy L (September 1999). "जीनोम विकास और एक्सॉन-शफ़लिंग का विकास--एक समीक्षा". Gene. 238 (1): 103–114. doi:10.1016/S0378-1119(99)00228-0. PMID 10570989.
  5. Singer MF (March 1982). "SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes". Cell. 28 (3): 433–434. doi:10.1016/0092-8674(82)90194-5. PMID 6280868. S2CID 22129236.
  6. Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O'Shea KS, Moran JV, Cullen BR (June 2006). "लंबे अंतराल वाले तत्व 1 और अलु रेट्रोट्रांसपोज़िशन के सेलुलर अवरोधक". Proceedings of the National Academy of Sciences of the United States of America. 103 (23): 8780–8785. Bibcode:2006PNAS..103.8780B. doi:10.1073/pnas.0603313103. PMC 1482655. PMID 16728505.
  7. Ejima Y, Yang L (June 2003). "रेट्रोट्रांसपोसन-मध्यस्थता एक्सॉन शफलिंग के लिए एक तंत्र के रूप में जीनोमिक डीएनए का ट्रांस मोबिलाइजेशन". Human Molecular Genetics. 12 (11): 1321–1328. doi:10.1093/hmg/ddg138. PMID 12761047.
  8. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (September 2005). "हेलिट्रॉन-जैसे ट्रांसपोज़न द्वारा जीन दोहराव और एक्सॉन शफलिंग से मक्के में अंतःप्रजातीय विविधता उत्पन्न होती है". Nature Genetics. 37 (9): 997–1002. doi:10.1038/ng1615. PMID 16056225. S2CID 10401931.
  9. Muszewska A, Hoffman-Sommer M, Grynberg M (2011). "कवक में एलटीआर रेट्रोट्रांसपोज़न". PLOS ONE. 6 (12): e29425. Bibcode:2011PLoSO...629425M. doi:10.1371/journal.pone.0029425. PMC 3248453. PMID 22242120.
  10. Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, et al. (August 2006). "पादप जीनोम में पुनर्स्थापन द्वारा काइमेरिक जीन उत्पत्ति की उच्च दर". The Plant Cell. 18 (8): 1791–1802. doi:10.1105/tpc.106.041905. PMC 1533979. PMID 16829590.
  11. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (September 2004). "पैक-एमयूएलई ट्रांसपोज़ेबल तत्व पौधों में जीन विकास में मध्यस्थता करते हैं". Nature. 431 (7008): 569–573. Bibcode:2004Natur.431..569J. doi:10.1038/nature02953. PMID 15457261. S2CID 4363679.
  12. Catoni M, Jonesman T, Cerruti E, Paszkowski J (February 2019). "अरेबिडोप्सिस में पैक-सीएसीटीए ट्रांसपोज़न का एकत्रीकरण जीन फेरबदल के तंत्र का सुझाव देता है". Nucleic Acids Research. 47 (3): 1311–1320. doi:10.1093/nar/gky1196. PMC 6379663. PMID 30476196.
  13. van Rijk A, Bloemendal H (July 2003). "Molecular mechanisms of exon shuffling: illegitimate recombination". Genetica. 118 (2–3): 245–249. doi:10.1023/A:1024138600624. PMID 12868613. S2CID 1754730.
  14. Ehrlich SD, Bierne H, d'Alençon E, Vilette D, Petranovic M, Noirot P, Michel B (December 1993). "अवैध पुनर्संयोजन के तंत्र". Gene. 135 (1–2): 161–166. doi:10.1016/0378-1119(93)90061-7. PMID 8276254.