उत्सर्जन वर्णक्रम
रासायनिक तत्व या रासायनिक यौगिक का उत्सर्जन वर्णक्रम उच्च ऊर्जा अवस्था से निम्न ऊर्जा अवस्था में संक्रमण करने वाले इलेक्ट्रॉन के कारण उत्सर्जित विद्युत चुम्बकीय विकिरण की आवृत्तियों का वर्णक्रम है। उत्सर्जित फोटॉन की फोटॉन ऊर्जा दो अवस्थाओं के बीच ऊर्जा अंतर के बराबर होती है। प्रत्येक परमाणु के लिए कई संभावित इलेक्ट्रॉन संक्रमण होते हैं और प्रत्येक संक्रमण में एक विशिष्ट ऊर्जा अंतर होता है। विभिन्न संक्रमणों का संग्रह विभिन्न विकीर्ण तरंगदैर्घ्य की ओर ले जाता है, एक उत्सर्जन वर्णक्रम (स्पेक्ट्रम) बनाता है। प्रत्येक तत्व का उत्सर्जन वर्णक्रम अद्वितीय है इसलिए, अज्ञात संरचना के मामले में तत्वों की पहचान करने के लिए किरणों के वर्ण-क्रम को मापने की विद्या (स्पेक्ट्रोस्कोपी) का उपयोग किया जा सकता है। इसी प्रकार अणुओं के उत्सर्जन स्पेक्ट्रा का उपयोग पदार्थों के रासायनिक विश्लेषण में किया जा सकता है।
उत्सर्जन
भौतिकी में, उत्सर्जन वह प्रक्रिया है जिसके द्वारा कण की एक उच्च ऊर्जा क्वांटम यांत्रिक स्थिति एक फोटॉन के उत्सर्जन के माध्यम से कम में परिवर्तित हो जाती है, जिसके परिणामस्वरूप प्रकाश का उत्पादन होता है। उत्सर्जित प्रकाश की आवृत्ति संक्रमण की ऊर्जा का एक कार्य है।
चूँकि ऊर्जा को संरक्षित किया जाना चाहिए, दो अवस्थाओं के बीच ऊर्जा का अंतर फोटॉन द्वारा वहन की गई ऊर्जा के बराबर होता है। संक्रमणों की ऊर्जा अवस्थाओं से आवृत्तियों की बहुत बड़ी श्रृंखला पर उत्सर्जन हो सकता है। उदाहरण के लिए, परमाणुओं और अणुओं में इलेक्ट्रॉनिक अवस्थाओं के युग्मन द्वारा दृश्य प्रकाश उत्सर्जित होता है (तब घटना को प्रतिदीप्ति या स्फुरदीप्ति कहा जाता है)। दूसरी ओर, परमाणु खोल संक्रमण उच्च ऊर्जा गामा किरणें उत्सर्जित कर सकते हैं, जबकि परमाणु स्पिन संक्रमण कम ऊर्जा रेडियो तरंगें उत्सर्जित करते हैं।
किसी वस्तु का उत्सर्जन यह निर्धारित करता है कि उसके द्वारा कितना प्रकाश उत्सर्जित किया गया है। यह स्टीफ़न-बोल्ट्ज़मैन कानून के माध्यम से वस्तु के अन्य गुणों से संबंधित हो सकता है।
अधिकांश पदार्थों के लिए, उत्सर्जन की मात्रा तापमान और वस्तु की स्पेक्ट्रोस्कोपिक संरचना के साथ बदलती है, जिससे रंग तापमान और उत्सर्जन रेखाएं दिखाई देती हैं। कई तरंग दैर्ध्य पर सटीक मापन उत्सर्जन स्पेक्ट्रोस्कोपी के माध्यम से किसी पदार्थ की पहचान की अनुमति देता है।
विकिरण के उत्सर्जन को प्रायः अर्ध-शास्त्रीय क्वांटम यांत्रिकी का उपयोग करके वर्णित किया जाता है: कण के ऊर्जा स्तर और स्पेसिंग को क्वांटम यांत्रिकी से निर्धारित किया जाता है और प्रकाश को एक दोलनशील विद्युत क्षेत्र के रूप में माना जाता है जो संक्रमण को चला सकता है यदि यह प्रणाली की प्राकृतिक आवृत्ति के साथ अनुनाद में है। क्वांटम यांत्रिकी समस्या का समय-निर्भर पर्टरबेशन थयोरी का उपयोग करके इलाज किया जाता है और सामान्य परिणाम की ओर जाता है जिसे फर्मी के सुनहरे नियम के रूप में जाना जाता है। क्वांटम इलेक्ट्रोडायनामिक्स द्वारा विवरण को हटा दिया गया है, हालांकि अर्ध-शास्त्रीय संस्करण अधिकांश व्यावहारिक संगणनाओं में अधिक उपयोगी बना हुआ है।
उत्पत्ति
जब परमाणु में इलेक्ट्रॉन उत्तेजित होते हैं, उदाहरण के लिए गर्म होने से, अतिरिक्त ऊर्जा इलेक्ट्रॉनों को उच्च ऊर्जा कक्षकों में धकेलती है। जब इलेक्ट्रॉन वापस नीचे गिरते हैं और उत्तेजित अवस्था को छोड़ते हैं, तो ऊर्जा फोटॉन के रूप में फिर से उत्सर्जित होती है। फोटॉन की तरंग दैर्ध्य (या समतुल्य, आवृत्ति) दो राज्यों के बीच ऊर्जा के अंतर से निर्धारित होती है। ये उत्सर्जित फोटॉन तत्व के वर्णक्रम का निर्माण करते हैं।
तथ्य यह है कि तत्व के परमाणु उत्सर्जन वर्णक्रम में केवल कुछ रंग दिखाई देते हैं, इसका मतलब है कि प्रकाश की केवल कुछ आवृत्तियां ही उत्सर्जित होती हैं। इनमें से प्रत्येक आवृत्ति सूत्र द्वारा ऊर्जा से संबंधित है:
इससे यह निष्कर्ष निकलता है कि केवल विशिष्ट ऊर्जा वाले फोटॉन ही परमाणु द्वारा उत्सर्जित होते हैं। परमाणु उत्सर्जन वर्णक्रम का सिद्धांत नियोन संकेतों में विविध रंगों के साथ-साथ रासायनिक ज्वाला परीक्षण के परिणाम (नीचे वर्णित) की व्याख्या करता है।
प्रकाश की आवृत्तियाँ जो एक परमाणु उत्सर्जित कर सकता है, उन अवस्थाओं पर निर्भर करता है जिनमें इलेक्ट्रॉन हो सकते हैं। उत्तेजित होने पर, इलेक्ट्रॉन उच्च ऊर्जा स्तर या कक्षीय में चला जाता है। जब इलेक्ट्रॉन वापस अपने जमीनी स्तर पर गिरता है तो प्रकाश उत्सर्जित होता है।
उपरोक्त तस्वीर हाइड्रोजन के लिए दृश्यमान प्रकाश उत्सर्जन वर्णक्रम दिखाती है। यदि हाइड्रोजन का केवल एक परमाणु उपस्थिति होती है, तो किसी दिए गए पल में केवल एक ही तरंग दैर्ध्य देखा जाता। कई संभावित उत्सर्जन देखे गए हैं क्योंकि नमूने में कई हाइड्रोजन परमाणु होते हैं जो विभिन्न प्रारंभिक ऊर्जा अवस्थाओं में होते हैं और विभिन्न अंतिम ऊर्जा अवस्थाओं तक पहुँचते हैं। इन विभिन्न संयोजनों से विभिन्न तरंग दैर्ध्य पर एक साथ उत्सर्जन होता है।
अणुओं से विकिरण
साथ ही ऊपर चर्चा किए गए इलेक्ट्रॉनिक संक्रमण, एक अणु की ऊर्जा भी घूर्णी संक्रमण, कंपन संक्रमण और वाइब्रोनिक संक्रमण (संयुक्त कंपन और इलेक्ट्रॉनिक) संक्रमणों के माध्यम से बदल सकती है। ये ऊर्जा संक्रमण अक्सर कई अलग-अलग वर्णक्रमीय रेखाओं के निकट दूरी वाले समूहों की ओर ले जाते हैं, जिन्हें वर्णक्रमीय बैंड के रूप में जाना जाता है। अनिर्णीत बैंड स्पेक्ट्रा वर्णक्रमीय सातत्य के रूप में प्रकट हो सकते हैं।
उत्सर्जन स्पेक्ट्रोस्कोपी
प्रकाश में विभिन्न तरंग दैर्ध्य के विद्युत चुम्बकीय विकिरण होते हैं इसलिए, जब तत्वों या उनके यौगिकों को ज्वाला पर या विद्युत चाप द्वारा गर्म किया जाता है तो वे प्रकाश के रूप में ऊर्जा उत्सर्जित करते हैं। इस प्रकाश का विश्लेषण, एक स्पेक्ट्रोस्कोप की सहायता से हमें एक विच्छिन्न वर्णक्रम देता है। स्पेक्ट्रोस्कोप या स्पेक्ट्रोमीटर एक उपकरण है जिसका उपयोग प्रकाश के घटकों को अलग करने के लिए किया जाता है, जिनकी तरंग दैर्ध्य अलग-अलग होती है। वर्णक्रम रेखाओं की एक श्रृंखला में प्रकट होता है जिसे रेखा वर्णक्रम कहा जाता है। इस रेखा वर्णक्रम को परमाणु वर्णक्रम कहा जाता है जब यह एक परमाणु से तात्विक रूप में उत्पन्न होता है। प्रत्येक तत्व का एक अलग परमाणु वर्णक्रम होता है। किसी तत्व के परमाणुओं द्वारा लाइन स्पेक्ट्रा का उत्पादन इंगित करता है कि परमाणु केवल एक निश्चित मात्रा में ऊर्जा विकीर्ण कर सकता है। इससे यह निष्कर्ष निकलता है कि बंधे हुए इलेक्ट्रॉनों में ऊर्जा की कोई मात्रा नहीं हो सकती है, लेकिन केवल एक निश्चित मात्रा में ऊर्जा होती है।
सामग्री की संरचना निर्धारित करने के लिए उत्सर्जन वर्णक्रम का उपयोग किया जा सकता है, क्योंकि यह आवर्त सारणी के प्रत्येक रासायनिक तत्व के लिए अलग है। एक उदाहरण खगोलीय स्पेक्ट्रोस्कोपी है: प्राप्त प्रकाश का विश्लेषण करके तारों की संरचना की पहचान करना।
जब इन तत्वों को गर्म किया जाता है तो कुछ तत्वों की उत्सर्जन वर्णक्रम विशेषताएँ नग्न आंखों से स्पष्ट रूप से दिखाई देती हैं। उदाहरण के लिए, जब प्लेटिनम के तार को सोडियम नाइट्रेट के घोल में डुबोया जाता है और फिर लौ में डाला जाता है, तो सोडियम परमाणु एम्बर पीले रंग का उत्सर्जन करते हैं। इसी तरह, जब इंडियम को ज्वाला में डाला जाता है, तो लौ नीली हो जाती है। ये निश्चित विशेषताएं तत्वों को उनके परमाणु उत्सर्जन वर्णक्रम द्वारा पहचानने की अनुमति देती हैं। सभी उत्सर्जित रोशनी नग्न आंखों के लिए बोधगम्य नहीं हैं, क्योंकि वर्णक्रम में पराबैंगनी किरणें और अवरक्त विकिरण भी सम्मिलित होती हैं।
एक उत्सर्जन वर्णक्रम तब बनता है जब एक उत्तेजित गैस को सीधे स्पेक्ट्रोस्कोप के माध्यम से देखा जाता है।
उत्सर्जन स्पेक्ट्रोस्कोपी एक स्पेक्ट्रोस्कोपी तकनीक है जो परमाणुओं या अणुओं द्वारा उत्सर्जित फोटॉनों की तरंग दैर्ध्य की जांच करती है, जो एक उत्तेजित अवस्था से निम्न ऊर्जा अवस्था में संक्रमण के दौरान होती है। प्रत्येक तत्व अपनी इलेक्ट्रॉनिक संरचना के अनुसार असतत तरंग दैर्ध्य के एक विशिष्ट सेट का उत्सर्जन करता है और इन तरंग दैर्ध्य को देखकर नमूने की मौलिक संरचना निर्धारित की जा सकती है। उत्सर्जन स्पेक्ट्रोस्कोपी 19वीं शताब्दी के अंत में विकसित हुई और परमाणु उत्सर्जन स्पेक्ट्रा के सैद्धांतिक स्पष्टीकरण में प्रयासों ने अंततः क्वांटम यांत्रिकी का नेतृत्व किया।
ऐसे कई तरीके हैं जिनसे परमाणुओं को उत्तेजित अवस्था में लाया जा सकता है। इलेक्ट्रोमैग्नेटिक रेडिएशन के साथ इंटरेक्शन का उपयोग प्रतिदीप्ति स्पेक्ट्रोस्कोपी, प्रोटॉन या कण-प्रेरित एक्स-रे उत्सर्जन में अन्य भारी कणों और एनर्जी-डिस्पर्सिव एक्स-रे स्पेक्ट्रोस्कोपी या एक्स-रे प्रतिदीप्ति में इलेक्ट्रॉनों या एक्स-रे फोटॉनों में किया जाता है। नमूने (सैम्पल) को उच्च तापमान पर गर्म करना सबसे आसान तरीका है, जिसके बाद नमूना परमाणुओं के बीच टकराव से उत्तेजना उत्पन्न होती है। इस विधि का उपयोग ज्वाला उत्सर्जन स्पेक्ट्रोस्कोपी में किया जाता है और यह एंडर्स जोनास एंग्स्ट्रॉम द्वारा उपयोग की जाने वाली विधि भी थी जब उन्होंने 1850 के दशक में असतत उत्सर्जन लाइनों की घटना की खोज की थी।[1]
यद्यपि उत्सर्जन रेखाएं परिमाणित ऊर्जा अवस्थाओं के बीच एक संक्रमण के कारण होती हैं और पहली बार में बहुत तेज दिख सकती हैं, उनकी एक सीमित चौड़ाई होती है, अर्थात वे प्रकाश की एक से अधिक तरंग दैर्ध्य से बनी होती हैं। इस वर्णक्रमीय रेखा के विस्तार के कई अलग-अलग कारण हैं।
उत्सर्जन स्पेक्ट्रोस्कोपी को अक्सर प्रकाशीय उत्सर्जन स्पेक्ट्रोस्कोपी के रूप में संदर्भित किया जाता है क्योंकि जो उत्सर्जित किया जा रहा है उसकी प्रकाश प्रकृति होती है।
इतिहास
1756 में थॉमस मेलविल ने अल्कोहल (रसायन) की लपटों में नमक (रसायन विज्ञान) मिलाने पर रंग के विशिष्ट पैटर्न के उत्सर्जन को देखा।[2] 1785 तक जेम्स ग्रेगोरी (खगोलविद और गणितज्ञ) ने विवर्तन ग्रेटिंग के सिद्धांतों की खोज की और अमेरिकी खगोलशास्त्री डेविड रिटनहाउस ने पहला अभियांत्रिक विवर्तन ग्रेटिंग बनाया।[3][4] 1821 में जोसेफ वॉन फ्रौनहोफर ने प्रिज्म को तरंगदैर्घ्य फैलाव (ऑप्टिक्स) के स्रोत के रूप में बदलने की इस महत्वपूर्ण प्रायोगिक छलांग को ठोस बनाया, वर्णक्रमीय रिज़ॉल्यूशन में सुधार किया और विसर्जित तरंग दैर्ध्य को परिमाणित करने की अनुमति दी।[5]
1835 में, चार्ल्स व्हीटस्टोन ने बताया कि विभिन्न धातुओं को उनके स्पार्क और आर्क परमाणु उत्सर्जन स्पेक्ट्रोस्कोपी के उत्सर्जन स्पेक्ट्रा में चमकदार रेखाओं द्वारा अलग किया जा सकता है, जिससे लौ स्पेक्ट्रोस्कोपी का विकल्प प्रस्तुत किया जा सकता है।[6][7]
1849 में, जे. बी.एल. फौकॉल्ट ने प्रयोगात्मक रूप से प्रदर्शित किया कि एक ही तरंग दैर्ध्य पर अवशोषण और उत्सर्जन रेखाएं दोनों एक ही सामग्री के कारण होती हैं, दोनों के बीच अंतर प्रकाश स्रोत के तापमान से उत्पन्न होता है।[8][9]
1853 में, स्वीडन के भौतिक विज्ञानी एंडर्स जोनास एंग्स्ट्रॉम ने गैस स्पेक्ट्रा के बारे में अवलोकन और सिद्धांत प्रस्तुत किए।[10] एंगस्ट्रॉम ने बताया कि एक गरमागरम गैस उसी तरंग दैर्ध्य की चमकदार किरणों का उत्सर्जन करती है जो इसे अवशोषित कर सकती हैं। उसी समय सर जॉर्ज स्टोक्स और विलियम थॉमसन (केल्विन) समान अभिधारणाओं पर चर्चा कर रहे थे।[8]एंगस्ट्रॉम ने हाइड्रोजन से उत्सर्जन वर्णक्रम को भी मापा, जिसे बाद में बामर लाइनों के रूप में दर्शाया गया।[11][12]
1854 और 1855 में, डेविड ऑल्टर ने धातुओं और गैसों के स्पेक्ट्रा पर टिप्पणियों को प्रकाशित किया, जिसमें हाइड्रोजन की बामर लाइनों का एक स्वतंत्र अवलोकन भी उपस्थिति था।[13][14]
1859 तक, गुस्ताव किरचॉफ और रॉबर्ट बन्सन ने देखा कि कई फ्राउनहोफर लाइन्स (सौर स्पेक्ट्रम में रेखाएं) गर्म तत्वों के स्पेक्ट्रा में पहचानी जाने वाली विशेषता उत्सर्जन रेखाओं के साथ मेल खाती हैं।[15][16] यह सही ढंग से निकाला गया था कि सौर वर्णक्रम में गहरी रेखाएं सौर वातावरण में रासायनिक तत्वों द्वारा अवशोषण के कारण होती हैं।[17]
लौ उत्सर्जन स्पेक्ट्रोस्कोपी में प्रायोगिक तकनीक
विश्लेषण किए जाने वाले संबंधित पदार्थ वाले घोल को बर्नर में रखा जाता है और एक महीन स्प्रे के रूप में लौ में फैलाया जाता है। विलायक पहले वाष्पित हो जाता है, बारीक विभाजित ठोस कणों को छोड़ता है जो लौ के सबसे गर्म क्षेत्र में चले जाते हैं जहां अणुओं के पृथक्करण के माध्यम से गैसीय परमाणु और आयन उत्पन्न होते हैं। यहाँ इलेक्ट्रॉन ऊपर वर्णित के अनुसार उत्साह और होताणढ हैं और अनायास फोटॉन को निम्न ऊर्जा अवस्थाओं में क्षय करने के लिए उत्सर्जित करते हैं। आसान पहचान के लिए मोनोक्रोमेटर का उपयोग करना सामान्य बात है।
एक सामान्य स्तर पर, लौ उत्सर्जन स्पेक्ट्रोस्कोपी को केवल एक ज्वाला और धातु के लवण के नमूनों का उपयोग करके देखा जा सकता है। गुणात्मक विश्लेषण की इस विधि को ज्वाला परीक्षण कहा जाता है। उदाहरण के लिए, लौ में रखे सोडियम लवण सोडियम आयनों से पीले रंग में चमकेंगे, जबकि स्ट्रोंटियम (रोड फ्लेयर्स में प्रयुक्त) आयन इसे लाल रंग में रंगते हैं। ताँबे का तार नीले रंग की ज्वाला उत्पन्न करेगा, हालाँकि क्लोराइड की उपस्थिति में हरा रंग देता है (CuCl द्वारा आण्विक योगदान)।
उत्सर्जन गुणांक
उत्सर्जन गुणांक एक विद्युतचुंबकीय स्रोत के प्रति इकाई समय में बिजली उत्पादन में एक गुणांक है, जो भौतिकी में परिकलित मूल्य है। गैस का उत्सर्जन गुणांक प्रकाश की तरंग दैर्ध्य के साथ बदलता रहता है। इसमें एमएस −3sr-1की इकाइयां हैं।[18] इसका उपयोग बिजली उत्पादन के प्रति MWh पर्यावरण उत्सर्जन (द्रव्यमान द्वारा) के माप के रूप में भी किया जाता है, उत्सर्जन कारक देखें।
प्रकाश का प्रकीर्णन
थॉमसन के प्रकीर्णन में एक आवेशित कण आपतित प्रकाश में विकिरण उत्सर्जित करता है। कण एक साधारण परमाणु इलेक्ट्रॉन हो सकता है, इसलिए उत्सर्जन गुणांक के व्यावहारिक अनुप्रयोग हैं।
यदि X dV dΩ dλ आयतन तत्व द्वारा प्रकीर्णित ऊर्जा है dV ठोस कोण में dΩ तरंग दैर्ध्य के बीच λ और λ + dλ प्रति इकाई समय तो उत्सर्जन गुणांक है X
थॉमसन प्रकीर्णन में X के मूल्यों की प्रकीर्णन घटना प्रवाह हो सकता है, आवेशित कणों का घनत्व और उनके थॉमसन अंतर क्रॉस सेक्शन (क्षेत्र / ठोस कोण) से भविष्यवाणी की जा सकती है।
सहज उत्सर्जन
फोटॉन उत्सर्जक एक गर्म शरीर में इसके तापमान और कुल बिजली विकिरण से संबंधित एक मोनोक्रोमैटिक उत्सर्जन गुणांक होता है। इसे कभी-कभी दूसरा आइंस्टीन गुणांक कहा जाता है और इसे क्वांटम यांत्रिकी सिद्धांत से निकाला जा सकता है।
यह भी देखें
- अवशोषण स्पेक्ट्रोस्कोपी
- अवशोषण स्पेक्ट्रम
- परमाणु वर्णक्रमीय रेखा
- विद्युत चुम्बकीय स्पेक्ट्रोस्कोपी
- गैस-डिस्चार्ज लैंप, गैस डिस्चार्ज लैंप के उत्सर्जन स्पेक्ट्रा की तालिका
- आइसोमेरिक शिफ्ट
- समस्थानिक बदलाव
- चमकदार गुणांक
- प्लाज्मा (भौतिकी) भौतिकी
- रिडबर्ग सूत्र
- वर्णक्रमीय सिद्धांत
- डायोड समीकरण में उत्सर्जन गुणांक प्रस्तुत है (जो यहां चर्चा किए गए से संबंधित नहीं है)
- किसी गर्म स्त्रोत से इलेक्ट्रॉन उत्सर्जन
संदर्भ
- ↑ Incorporated, SynLube. "Spectroscopy Oil Analysis". www.synlube.com (in English). Retrieved 2017-02-24.
- ↑ Melvill, Thomas (1756). "Observations on light and colours". Essays and Observations, Physical and Literary. Read Before a Society in Edinburgh, …. 2: 12–90. ; see pp. 33–36.
- ↑ See:
- Frauhofer. Jos. (1821) "Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben" (New modification of light by the mutual influence and the diffraction of [light] rays, and the laws thereof), Denkschriften der Königlichen Akademie der Wissenschaften zu München (Memoirs of the Royal Academy of Science in Munich), 8: 3–76.
- Fraunhofer, Jos. (1823) "Kurzer Bericht von den Resultaten neuerer Versuche über die Gesetze des Lichtes, und die Theorie derselben" (Short account of the results of new experiments on the laws of light, and the theory thereof) Annalen der Physik, 74(8): 337–378.
- ↑ Parker AR (March 2005). "A geological history of reflecting optics". Journal of the Royal Society, Interface. 2 (2): 1–17. doi:10.1098/rsif.2004.0026. PMC 1578258. PMID 16849159.
- ↑ OpenStax Astronomy, "Spectroscopy in Astronomy". OpenStax CNX. Sep 29, 2016 http://cnx.org/contents/1f92a120-370a-4547-b14e-a3df3ce6f083@3 open access publication – free to read
- ↑ Brian Bowers (2001). Sir Charles Wheatstone FRS: 1802-1875 (2nd ed.). IET. pp. 207–208. ISBN 978-0-85296-103-2.
- ↑ Wheatstone (1836). "On the prismatic decomposition of electrical light". Report of the Fifth Meeting of the British Association for the Advancement of Science; Held at Dublin in 1835. Notices and Abstracts of Communications to the British Association for the Advancement of Science, at the Dublin Meeting, August 1835. London, England: John Murray. pp. 11–12.
- ↑ 8.0 8.1 Brand, pp. 60-62
- ↑ See:
- Foucault, L. (1849). "Lumière électrique" [Electric light]. Société Philomatique de Paris. Extraits des Procès-Verbaux de Séances. (in French). 13: 16–20.
{{cite journal}}: CS1 maint: unrecognized language (link) - Foucault, L. (7 February 1849). "Lumière électrique" [Electric light]. L'Institut, Journal Universel des Sciences … (in French). 17 (788): 44–46.
{{cite journal}}: CS1 maint: unrecognized language (link)
- Foucault, L. (1849). "Lumière électrique" [Electric light]. Société Philomatique de Paris. Extraits des Procès-Verbaux de Séances. (in French). 13: 16–20.
- ↑ See:
- Ångström, A.J. (1852). "Optiska undersökningar" [Optical investigations]. Kongliga Vetenskaps-Akademiens Handlingar [Proceedings of the Royal Academy of Science] (in Swedish). 40: 333–360.
{{cite journal}}: CS1 maint: unrecognized language (link) - Ångström, A.J. (1855a). "Optische Untersuchungen" [Optical investigations]. Annalen der Physik und Chemie (in German). 94: 141–165.
{{cite journal}}: CS1 maint: unrecognized language (link) - Ångström, A.J. (1855b). "Optical researches". Philosophical Magazine. 4th series. 9: 327–342. doi:10.1080/14786445508641880.
- Ångström, A.J. (1852). "Optiska undersökningar" [Optical investigations]. Kongliga Vetenskaps-Akademiens Handlingar [Proceedings of the Royal Academy of Science] (in Swedish). 40: 333–360.
- ↑ Wagner, H. J. (2005). "Early Spectroscopy and the Balmer Lines of Hydrogen". Journal of Chemical Education. 82 (3): 380. Bibcode:2005JChEd..82..380W. doi:10.1021/ed082p380.1.
- ↑ (Ångström, 1852), p. 352 ; (Ångström, 1855b), p. 337.
- ↑ Retcofsky, H. L. (2003). "Spectrum Analysis Discoverer?". Journal of Chemical Education. 80 (9): 1003. Bibcode:2003JChEd..80.1003R. doi:10.1021/ed080p1003.1.
- ↑ See:
- Alter, David (1854). "On certain physical properties of light, produced by the combustion of different metals, in the electric spark, refracted by a prism". The American Journal of Science and Arts. 2nd series. 18: 55–57.
- Alter, D. (1855). "On certain physical properties of the light of the electric spark, within certain gases, as seen through a prism". The American Journal of Science and Arts. 2nd series. 19: 213–214. Alter's observations of hydrogen's optical spectrum appear on p. 213.
- ↑ See:
- Gustav Kirchhoff (1859) "Ueber die Fraunhofer'schen Linien" (On Fraunhofer's lines), Monatsbericht der Königlichen Preussische Akademie der Wissenschaften zu Berlin (Monthly report of the Royal Prussian Academy of Sciences in Berlin), 662–665.
- Gustav Kirchhoff (1859) "Ueber das Sonnenspektrum" (On the sun's spectrum), Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg (Proceedings of the Natural History / Medical Association in Heidelberg), 1 (7) : 251–255.
- ↑ G. Kirchhoff (1860). "Ueber die Fraunhofer'schen Linien". Annalen der Physik. 185 (1): 148–150. Bibcode:1860AnP...185..148K. doi:10.1002/andp.18601850115.
- ↑ G. Kirchhoff (1860). "Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht". Annalen der Physik. 185 (2): 275–301. Bibcode:1860AnP...185..275K. doi:10.1002/andp.18601850205.
- ↑ Carroll, Bradley W. (2007). An Introduction to Modern Astrophysics. CA, USA: Pearson Education. p. 256. ISBN 978-0-8053-0402-2.