आरसी ऑसिलेटर

From Vigyanwiki

रैखिक परिपथ, मुख्यतः इलेक्ट्रॉनिक ऑसिलेटर को विद्युत परिपथ पर जिसे सायनोसोडल आउटपुट संकेतों के आधार पर उत्पन्न किया जाता है, इस प्रकार के प्रवर्धक और आवृत्ति के चयनात्मक तत्व, इलेक्ट्रॉनिक फिल्टर से बनाया जाता है। रैखिक ऑसिलेटर परिपथ जो आरसी नेटवर्क का उपयोग करता है, प्रतिरोधों और संधारित्र का संयोजन, इसकी आवृत्ति चयनात्मक भाग के लिए आरसी ऑसिलेटर कहा जाता है।

विवरण

आरसी ऑसिलेटर प्रकार का फीडबैक ऑसिलेटर है, उनमें प्रवर्धक उपकरण, ट्रांजिस्टर, वेक्यूम - ट्यूब , या ऑप-एम्प होता है, जिसकी कुछ आउटपुट ऊर्जा प्रतिरोधों और संधारित्र के नेटवर्क के माध्यम से इसके इनपुट में वापस आ जाती है, आरसी नेटवर्क, धनात्मक प्रतिक्रिया को प्राप्त करने के लिए जिससे यह उत्पन्न होता है, इसके द्वारा दोलन को साइनसोइडल वोल्टेज द्वार प्रकट किया जाता हैं।[1][2][3] इस प्रकार के ऑडियो संकेतक उत्पादक और इलेक्ट्रॉनिक संगीत वाद्ययंत्र जैसे अनुप्रयोगों में कम आवृत्ति, अधिकांशतः ऑडियो आवृत्ति का उत्पादन करने के लिए उपयोग किए जाते हैं।[4][5] इसके आधार पर आकाशवाणी आवृति पर, अन्य प्रकार का फीडबैक ऑसिलेटर, LC ऑसिलेटर का उपयोग किया जाता है, अपितु 100 kHz से कम फ़्रीक्वेंसी पर LC ऑसिलेटर के लिए आवश्यक प्रारंभ करने वाले और संधारित्र का आकार अत्यधिक भारात्मक हो जाता है, और इसके अतिरिक्त RC ऑसिलेटर का उपयोग किया जाता है।[6] उनके भारी प्रेरकों की कमी भी उन्हें माइक्रोइलेक्ट्रॉनिक उपकरणों में एकीकृत करना साधारण माना जाता है। चूंकि ऑसिलेटर की आवृत्ति प्रतिरोधों और संधारित्र के मूल्य से निर्धारित होती है, जो तापमान के साथ परिवर्तित होती रहती है, इस प्रकार आरसी ऑसिलेटर्स में क्रिस्टल ऑसिलेटर की तरह अच्छी आवृत्ति स्थिरता नहीं होती है।

दोलन की आवृत्ति बार्कहाउज़ेन स्थिरता कसौटी द्वारा निर्धारित की जाती है, जो यहाँ पर इस प्रकार प्रदर्शित होती हैं कि परिपथ केवल आवृत्तियों पर दोलन करेगा जिसके लिए फीडबैक पाश लाभ चारों ओर चरण के परिवर्तन को 360 डिग्री (2π रेडियंस) या 360 डिग्री के गुणक के बराबर माना जाता है, और लूप के इस प्रकार के लाभ से प्राप्त होने वाली प्रतिक्रिया पाश के चारों ओर प्रवर्धन के समान माना जाता है।[7][1] इस प्रकार फीडबैक आरसी नेटवर्क का उद्देश्य वांछित दोलन आवृत्ति पर सही फेज शिफ्ट कर दिया जाता है, इसलिए लूप में 360 डिग्री फेज शिफ्ट है, इसलिए साइन तरंग , लूप से गुजरने के पश्चात प्रारंभ में साइन तरंग के साथ फेज में होगी और इसे सुदृढ़ करें, जिसके परिणामस्वरूप धनात्मक प्रतिक्रिया मिलती है।[6] प्रवर्धक लाभ (इलेक्ट्रॉनिक्स) प्रदान करता है जिससे कि खोई हुई ऊर्जा की भरपाई हो सके क्योंकि संकेत फीडबैक नेटवर्क से गुजरता है, इस प्रकार निरंतर दोलन को उत्पन्न करने के लिए इसका उपयोग किया जाता हैं। इस प्रकार जब तक प्रवर्धक का लाभ इतना अधिक हो जाता है कि लूप के चारों ओर कुल लाभ एकीकरण या अधिक हो जाता है, तब तक परिपथ सामान्य रूप से दोलन करने लगता हैं।

आरसी ऑसिलेटर परिपथ में जो एकल इन्वर्टिंग एम्पलीफाइंग डिवाइस का उपयोग करते हैं, जैसे कि ट्रांजिस्टर, ट्यूब, या ऑप एम्प जो इनवर्टिंग इनपुट पर लागू फीडबैक के साथ होता है, प्रवर्धक फेज शिफ्ट का 180° प्रदान करता है, इसलिए आरसी नेटवर्क को अन्य प्रदान करना चाहिए। 180 डिग्री।[6] चूंकि प्रत्येक संधारित्र अधिकतम 90 डिग्री फेज शिफ्ट प्रदान कर सकता है, आरसी ऑसिलेटर्स को परिपथ में कम से कम दो आवृत्ति-निर्धारण संधारित्र (दो पोल (जटिल विश्लेषण) एस) की आवश्यकता होती है, और अधिकांश में तीन या अधिक होते हैं,[1]प्रतिरोधकों की तुलनीय संख्या के साथ उपयोग होता हैं।

यह एलसी ऑसिलेटर जैसे अन्य प्रकारों की तुलना में परिपथ को अलग-अलग आवृत्तियों पर ट्यूनिंग करना अधिक कठिन बनाता है, जिसमें आवृत्ति एकल एलसी परिपथ द्वारा निर्धारित की जाती है, इसलिए केवल तत्व को विविध होना चाहिए। चूंकि आवृत्ति को परिपथ तत्व को समायोजित करके छोटी सी सीमा में भिन्न किया जा सकता है, आरसी ऑसिलेटर को विस्तृत श्रृंखला में ट्यून करने के लिए दो या दो से अधिक प्रतिरोधों या संधारित्र को एकसमान रूप से भिन्न होना चाहिए, जिससे उन्हें ही शाफ्ट पर यांत्रिक रूप से साथ गैंग करने की आवश्यकता होती है।[2][8] दोलन आवृत्ति धारिता या प्रतिरोध के व्युत्क्रम के समानुपाती होती है, जबकि LC दोलक में आवृत्ति धारिता या अधिष्ठापन के व्युत्क्रम वर्गमूल के समानुपाती होती है।[9] तो इस प्रकार आरसी ऑसीलेटर में दिए गए चर संधारित्र द्वारा बहुत व्यापक आवृत्ति रेंज को कवर किया जा सकता है। उदाहरण के लिए, वेरिएबल संधारित्र जो 9:1 कैपेसिटेंस रेंज में भिन्न हो सकता है, इस प्रकार RC ऑसिलेटर को 9:1 फ़्रीक्वेंसी रेंज देगा, अपितु LC ऑसिलेटर में यह केवल 3:1 सीमा में उपयोग करता हैं।

सामान्य आरसी ऑसिलेटर परिपथ के कुछ उदाहरण नीचे सूचीबद्ध हैं:

फेज-शिफ्ट ऑसिलेटर

फेज-शिफ्ट ऑसिलेटर

फेज-शिफ्ट ऑसिलेटर में फीडबैक नेटवर्क तीन समान कैस्केड आरसी सेक्शन हैं।[10] इसके आधार पर सबसे सरल डिजाइन में प्रत्येक खंड में संधारित्र और प्रतिरोधों का समान मूल्य होता है और . फिर दोलन आवृत्ति पर प्रत्येक आरसी अनुभाग कुल 180 डिग्री के लिए 60 डिग्री चरण बदलाव में योगदान देता है। यहाँ पर दोलन आवृत्ति इस प्रकार है-

फीडबैक नेटवर्क में 1/29 का क्षीणन होता है, इसलिए परिपथ को दोलन करने के लिए लूप गेन देने के लिए ऑप-एम्प में 29 का लाभ होना चाहिए।

एक ट्विन-टी ऑसिलेटर

ट्विन-टी ऑसिलेटर

एक अन्य सामान्य डिजाइन ट्विन-टी ऑसिलेटर है क्योंकि यह समानांतर में संचालित दो टी आरसी परिपथ का उपयोग करता है। इस परिपथ के अनुसार आर-सी-आर टी है जो निम्न-पास फिल्टर के रूप में कार्य करता है। इसके आधार पर यहाँ दूसरा परिपथ C-R-C T है जो लो पास फिल्टर के रूप में कार्य करता है। इसके साथ ये परिपथ पुल बनाते हैं जिसे दोलन की वांछित आवृत्ति पर ट्यून किया जाता है। ट्विन-टी फिल्टर की सी-आर-सी शाखा में संकेत उन्नत है, आर-सी-आर में - विलंबित है, इसलिए वे आवृत्ति के लिए दूसरे को निरस्त कर सकते हैं, जिसके आधार पर यदि , यदि यह प्रवर्धक के लिए नकारात्मक प्रतिक्रिया के रूप में जुड़ा हुआ है, और x>2, प्रवर्धक ऑसिलेटर बन जाता है। (टिप्पणी: .)

चतुर्भुज दोलक

चतुर्भुज ऑसिलेटर फीडबैक लूप में दो कैस्केड ऑप-एम्प इंटीग्रेटर्स का उपयोग करता है, इस प्रकार इनवर्टिंग इनपुट या दो इंटीग्रेटर्स और इनवर्टर पर लागू संकेत के साथ। इस परिपथ का लाभ यह है कि दो ऑप-एम्प्स के साइनसोइडल आउटपुट 90 डिग्री चरण से बाहर (चतुर्भुज में) हैं। यह कुछ संचार परिपथों में उपयोगी है।

साइन और कोसाइन आउटपुट को स्क्वायर करके, उन्हें साथ जोड़कर, (पाइथागोरियन त्रिकोणमितीय पहचान) स्थिर घटाकर, और इन्वर्टर के चारों ओर लूप गेन को समायोजित करने वाले गुणक के अंतर को लागू करके चतुर्भुज ऑसिलेटर को स्थिर करना संभव है। इस तरह के परिपथ में निरंतर इनपुट और अत्यधिक कम विरूपण के निकट-तात्कालिक आयाम प्रतिक्रिया होती है।

कम विरूपण वाले ऑसिलेटर्स

ऊपर वर्णित बार्कहाउज़ेन मानदंड दोलन के आयाम को निर्धारित नहीं करता है। आयाम के संबंध में केवल रैखिक परिपथ घटकों वाला ऑसिलेटर परिपथ अस्थिर है। जब तक लूप गेन ठीक है, साइन तरंग का आयाम स्थिर रहेगा, अपितु घटकों के मूल्य में प्रवाह के कारण गेन में थोड़ी सी भी वृद्धि के कारण आयाम बिना सीमा के तेजी से बढ़ेगा। इसी प्रकार यह थोड़ी सी भी कमी के कारण साइन तरंग तेजी से शून्य हो जाएगी। इसलिए, सभी व्यावहारिक ऑसिलेटर्स के पास फीडबैक लूप में नॉनलाइनियर घटक होना चाहिए, लाभ को कम करने के लिए जैसे-जैसे आयाम बढ़ता है, आयाम पर स्थिर संचालन के लिए अग्रणी होता है, जहां लूप इस प्रकार के लाभ एकीकरण को प्रकट करता है।

अधिकांश सामान्य ऑसिलेटरों में, अरैखिकता प्रवर्धक की संतृप्ति (क्लिपिंग) मात्र है, क्योंकि ज्या तरंग का आयाम विद्युत आपूर्ति रेलों तक पहुंचता है। ऑसिलेटर को से अधिक छोटे-संकेत लूप लाभ के लिए डिज़ाइन किया गया है। उच्च लाभ ऑसिलेटर को कभी-कभी उपस्थित ध्वनि को घातीय रूप से बढ़ाकर प्रारंभ करने की अनुमति देता है।[11] इस प्रकार जैसे-जैसे साइन तरंग का उच्चतम मान सप्लाई रेल्स के पास पहुँचता हैं, प्रवर्धक डिवाइस की संतृप्ति चोटियों को चपटा (क्लिप) कर देती है, जिससे लाभ कम हो जाता है। उदाहरण के लिए, छोटे संकेतों के लिए ऑसिलेटर का लूप लाभ 3 हो सकता है, अपितु जब आउटपुट बिजली आपूर्ति रेल में से तक पहुंच जाता है तो लूप लाभ तुरंत शून्य हो जाता है।[12] इस प्रकार इसका शुद्ध प्रभाव यह है कि चक्र पर औसत लाभ होने पर दोलक का आयाम स्थिर हो जाएगा। यदि औसत लूप लाभ से अधिक है, तो आउटपुट आयाम तब तक बढ़ता है जब तक कि गैर-रैखिकता औसत लाभ को तक कम नहीं कर देती, यदि औसत लूप लाभ से कम है, तो औसत लाभ होने तक आउटपुट आयाम घट जाता है। बिजली आपूर्ति रेल में चलने की तुलना में लाभ को कम करने वाली गैर-रैखिकता भी अधिक सूक्ष्म हो सकती है।[13]

इस लाभ औसत का परिणाम आउटपुट संकेत में कुछ हार्मोनिक विरूपण है। यदि छोटा-संकेत लाभ से थोड़ा अधिक है, तो केवल थोड़ी मात्रा में संपीड़न की आवश्यकता होती है, इसलिए बहुत अधिक हार्मोनिक विरूपण नहीं होगा। यदि छोटा-संकेत लाभ से अधिक है, तो महत्वपूर्ण विकृति उपस्थित होगी।[14] चूंकि मज़बूती से प्रारंभ करने के लिए ऑसिलेटर को से ऊपर अत्यधिक लाभ होना चाहिए।

तो ऐसे ऑसिलेटर्स में जो बहुत कम-विरूपण साइन तरंग उत्पन्न करते हैं, प्रणाली जो पूरे चक्र के दौरान लाभ को लगभग स्थिर रखती है, का उपयोग किया जाता है। सामान्य डिजाइन फीडबैक परिपथ में इस प्रकार के दीपक या थर्मिस्टर का उपयोग करता है।[15][16] ये दोलक टंगस्टन के विद्युत प्रतिरोध का शोषण करते हैं दीपक का विद्युत फिलामेंट उसके तापमान के अनुपात में बढ़ता है, इस प्रकार यहाँ पर थर्मिस्टर इसी प्रकार कार्य करता है। इसके आधार पर दीपक दोनों आउटपुट आयाम को मापता है और ही समय में ऑसिलेटर लाभ को नियंत्रित करता है। जिसके आधार पर ऑसिलेटर का संकेत स्तर फिलामेंट को गर्म करता है। यदि स्तर बहुत अधिक है, तो फिलामेंट का तापमान धीरे-धीरे बढ़ता है, प्रतिरोध बढ़ता है, और लूप गेन गिर जाता है, इस प्रकार ऑसिलेटर का आउटपुट स्तर कम हो जाता है। यदि स्तर बहुत कम है, तो लैम्प ठंडा हो जाता है और लाभ बढ़ाता है। 1939 HP200A ऑसिलेटर इस तकनीक का उपयोग करता है। यहाँ पर आधुनिक विविधताएं स्पष्ट स्तर के डिटेक्टरों और लाभ-नियंत्रित प्रवर्धकों का उपयोग कर सकती हैं।

स्वचालित लाभ नियंत्रण के साथ वीन ब्रिज ऑसिलेटर। आरबी छोटा गरमागरम दीपक है। आमतौर पर, R1 = R2 = R और C1 = C2 = C. सामान्य ऑपरेशन में, Rb स्वयं उस बिंदु तक गर्म होता है जहां इसका प्रतिरोध Rf/2 है।

वीन ब्रिज ऑसिलेटर

सबसे आम गेन-स्टेबलाइज्ड परिपथ में से वीन ब्रिज ऑसिलेटर है।[17] इस परिपथ में, दो आरसी परिपथ का उपयोग किया जाता है, आरसी घटकों के साथ श्रृंखला में और समानांतर में आरसी घटकों के साथ उपयोग होता हैं। इस प्रकार वीन ब्रिज का उपयोग अक्सर ऑडियो संकेत जनरेटर में किया जाता है क्योंकि इसे सरलता से दो-खंड चर संधारित्र या दो खंड चर पोटेंशियोमीटर को जिसे कम आवृत्तियों पर पीढ़ी के लिए उपयुक्त चर संधारित्र की तुलना में अधिक सरलता से प्राप्त किया जाता है, जिसका उपयोग करके इसे ट्यून किया जा सकता है। यह मुख्य रूप से HP200A ऑडियो ऑसिलेटर वीन ब्रिज ऑसिलेटर है।

संदर्भ

  1. 1.0 1.1 1.2 Mancini, Ron; Palmer, Richard (March 2001). "Application Report SLOA060: Sine-Wave Oscillator" (PDF). Texas Instruments Inc. Retrieved August 12, 2015.
  2. 2.0 2.1 Gottlieb, Irving (1997). Practical Oscillator Handbook. Elsevier. pp. 49–53. ISBN 0080539386.
  3. Coates, Eric (2015). "Oscillators Module 1 - Oscillator Basics". Learn About Electronics. Eric Coates. Retrieved August 7, 2015.
  4. Coates, Eric (2015). "Oscillators Module 3 - AF Sine Wave Oscillators" (PDF). Learn About Electronics. Eric Coates. Retrieved August 7, 2015.
  5. Chattopadhyay, D. (2006). Electronics (fundamentals And Applications). New Age International. pp. 224–225. ISBN 81-224-1780-9.
  6. 6.0 6.1 6.2 "RC Feedback Oscillators". Electronics tutorial. DAEnotes. 2013. Retrieved August 9, 2015.
  7. Rao, B.; Rajeswari, K.; Pantulu, P. (2012). Electronic Circuit Analysis. India: Pearson Education India. pp. 8.2–8.6, 8.11. ISBN 978-8131754283.
  8. Eric Coates, 2015, AF Sine Wave Oscillators, p. 10
  9. Groszkowski, Janusz (2013). Frequency of Self-Oscillations. Elsevier. pp. 397–398. ISBN 978-1483280301.
  10. Department of the Army (1962) [1959], Basic Theory and Application of Transistors, Technical Manuals, Dover, pp. 178–179, TM 11-690
  11. Strauss, Leonard (1970), "Almost Sinusoidal Oscillations — the linear approximation", Wave Generation and Shaping (second ed.), McGraw-Hill, pp. 663–720 at page 661, "It follows that if Aβ > 1 in the small-signal region, the amplitude will build up until the limiter stabilizes the system...."
  12. Strauss 1970, p. 694, "As the signal amplitude increases, the active device will switch from active operation to the zero-gain regions of cutoff and saturation."
  13. Strauss 1970, pp. 703–706, Exponential limiting—bipolar transistor.
  14. Strauss 1970, p. 664, "If gross nonlinear operation is permitted, the limiter will distort the signal and the output will be far from sinusoidal."
  15. Strauss 1970, p. 664, "Alternatively, an amplitude-controlled resistor or other passive nonlinear element may be included as part of the amplifier or in the frequency-determining network."
  16. Strauss 1970, pp. 706–713, Amplitude of Oscillation—Part II, Automatic Gain Control.
  17. Department of the Army 1962, pp. 179–180


बाहरी संबंध