आयतन प्रत्यास्थता गुणांक

From Vigyanwiki
समान संपीड़न का चित्रण

पदार्थ का आयतन प्रत्यास्थता गुणांक ( या ) किसी पदार्थ के संपीड़न के प्रतिरोध का एक उपाय है। इसे आयतन के परिणामी सापेक्षिक कमी के लिए अतिसूक्ष्म दबाव वृद्धि के अनुपात के रूप में परिभाषित किया गया है।[1]

मोडुली अन्य प्रकार के तनाव (भौतिकी) के लिए सामग्री की प्रतिक्रिया (तनाव) का वर्णन करते हैं: अपप्रपण मापांक अपप्रपण तनाव की प्रतिक्रिया का वर्णन करते है और यंग का मापांक सामान्य (लंबाई में खिंचाव) तनाव की प्रतिक्रिया का वर्णन करता है। किसी द्रव के लिए केवल आयतन गुणांक सार्थक होता है। लकड़ी या कागज जैसे जटिल अनिसोट्रोपिक सॉलिड के लिए, इन तीन मोडुली में इसके व्यवहार का वर्णन करने के लिए पर्याप्त जानकारी नहीं होती है और किसी को पूर्ण सामान्यीकृत हुक के नियम का उपयोग करना चाहिए। निश्चित तापमान पर आयतन प्रत्यास्थता गुणांक के व्युत्क्रम को इज़ोटेर्माल संपीड्यता कहा जाता है।

परिभाषा

आयतन प्रत्यास्थता गुणांक (जो सामान्य तौर पर धनात्मक होता है) को समीकरण द्वारा औपचारिक रूप से परिभाषित किया जा सकता है

जहाँ दबाव है, पदार्थ का प्रारंभिक आयतन है और आयतन के संबंध में दबाव के व्युत्पन्न को दर्शाता है। चूँकि आयतन घनत्व के व्युत्क्रमानुपाती होता है, यह उसी का अनुसरण करता है

जहाँ प्रारंभिक घनत्व है और घनत्व के संबंध में दबाव के व्युत्पन्न को दर्शाता है। आयतन प्रत्यास्थता गुणांक का व्युत्क्रम किसी पदार्थ को संपीड्यता देता है। सामान्य तौर पर आयतन प्रत्यास्थता गुणांक को स्थिर तापमान पर इज़ोटेर्मल आयतन प्रत्यास्थता गुणांक के रूप में परिभाषित किया जाता है, लेकिन स्थिर एन्ट्रापी पर एडियाबेटिक आयतन प्रत्यास्थता गुणांक के रूप में भी परिभाषित किया जा सकता है।

थर्मोडायनामिक संबंध

आयतन प्रत्यास्थता गुणांक थर्मोडायनामिक की एक मात्रा है और आयतन प्रत्यास्थता गुणांक को निर्दिष्ट करने के लिए यह निर्दिष्ट करना आवश्यक है कि संपीड़न के दौरान दबाव कैसे बदलता है: स्थिर-तापमान (इज़ोथर्मल ), निरंतर-एन्ट्रॉपी (आइसेंट्रोपिक प्रक्रिया ) और अन्य विविधताएं संभव हैं। इस तरह के भेद विशेष रूप से गैसों के लिए प्रासंगिक हैं।

एक आइडल गैस आइसेंट्रोपिक प्रक्रिया में है:

जहाँ ताप क्षमता अनुपात है इसलिए, आइसेंट्रोपिक आयतन प्रत्यास्थता गुणांक द्वारा दिया गया है

इसी प्रकार, एक आइडल गैस की समतापीय प्रक्रिया में:

इसलिए, इज़ोटेर्माल आयतन प्रत्यास्थता गुणांक द्वारा दिया गया है

.

जब गैस आइडल नहीं होती है, तो ये समीकरण बल्क मॉडुलस का केवल एक सन्निकटन देते हैं। एक द्रव में, बल्क मापांक और घनत्व ध्वनि की गति निर्धारित करते हैं (दबाव तरंगें), न्यूटन-लाप्लास सूत्र के अनुसार

ठोस पदार्थों में, और के मान बहुत समान होते हैं। ठोस भी अनुप्रस्थ तरंगों को बनाए रख सकते हैं: इन सामग्रियों के लिए एक अतिरिक्त प्रत्यास्थ मापांक, उदाहरण के लिए अपप्रपण मापांक तरंग गति निर्धारित करने के लिए आवश्यक है।

माप

लागू दबाव में पाउडर विवर्तन का उपयोग करके आयतन प्रत्यास्थता गुणांक को मापना संभव है।

यह द्रव का एक गुण है जो इसके दबाव में आयतन को बदलने की क्षमता दर्शाता है।

चयनित मान

सामान्य सामग्री के लिए अनुमानित आयतन प्रत्यास्थता गुणांक (K)
Material Bulk modulus in GPa Bulk modulus in Mpsi
Diamond (at 4K) [2] 443 64
Alumina[3] 162 ± 14 23.5
Steel 160 23.2
Limestone 65 9.4
Granite 50 7.3
Glass (see also diagram below table) 35 to 55 5.8
Graphite 2H (single crystal)[4] 34 4.9
Sodium chloride 24.42 3.542
Shale 10 1.5
Chalk 9 1.3
Rubber[5] 1.5 to 2 0.22 to 0.29
Sandstone 0.7 0.1
एक विशिष्ट बेस ग्लास पर आयतन प्रत्यास्थता गुणांक चयनित ग्लास घटक परिवर्धन का प्रभाव।[6]

35 GPa के आयतन प्रत्यास्थता गुणांक वाली सामग्री 0.35 GPa (~3500 बार) के बाहरी दबाव के अधीन होने पर इसकी मात्रा का एक प्रतिशत खो देती है।

अन्य पदार्थों के लिए अनुमानित आयतन प्रत्यास्थता गुणांक (K)।
Water 2.2 GPa (0.32 Mpsi) (value increases at higher pressures)
Methanol 823 MPa (at 20 °C and 1 Atm)
Air 142 kPa (adiabatic bulk modulus [or isentropic bulk modulus])
Air 101 kPa (isothermal bulk modulus)
Solid helium 50 MPa (approximate)


सूक्ष्म मूल

अंतरपरमाण्विक क्षमता और रैखिक लोच

The left one shows the interatomic potential and equilibrium position, while the right one shows the force
अंतरपरमाण्विक क्षमता और बल

चूंकि रैखिक लोच अंतर-परमाणु संपर्क का प्रत्यक्ष परिणाम है, यह बांड के विस्तार/संपीड़न से संबंधित है। इसके बाद इसे क्रिस्टलीय सामग्री के लिए अंतर-परमाणु क्षमता से प्राप्त किया जा सकता है।[7] पहले, आइए हम परस्पर क्रिया करने वाले दो परमाणुओं की स्थितिज ऊर्जा की जाँच करें। बहुत दूर के बिंदुओं से आरंभ करके वे एक दूसरे के प्रति आकर्षण महसूस करेंगे। जैसे-जैसे वे एक-दूसरे के पास आते हैं, उनकी संभावित ऊर्जा कम होती जाएगी। दूसरी ओर, जब दो परमाणु एक-दूसरे के बहुत निकट होते हैं, तो प्रतिकारक अन्योन्य क्रिया के कारण उनकी कुल ऊर्जा बहुत अधिक होगी। साथ में ये क्षमताएँ एक अंतर-परमाणु दूरी की प्रत्याभूति देता हैं जो एक न्यूनतम ऊर्जा स्थिति प्राप्त करती है। यह कुछ दूरी a0 पर होता है, जहां कुल बल शून्य होता है:

जहाँ U अंतरपरमाण्विक क्षमता है और r अंतरपरमाण्विक दूरी है। इसका मतलब है कि परमाणु संतुलन में हैं।

दो परमाणुओं के दृष्टिकोण को ठोस में विस्तारित करने के लिए एक साधारण मॉडल पर विचार करें कहते हैं, एक तत्व की 1-डी सरणी जिसमें अंतर-परमाणु दूरी a है और संतुलन दूरी a0 हैं। संभावित ऊर्जा-अंतर-परमाण्विक दूरी के संबंध के रुप में दो परमाणुओं की स्थिति के समान है, जो a0 पर न्यूनतम तक पहुंचता है इसके लिए टेलर विस्तार है:

संतुलन पर पहला व्युत्पन्न 0 है इसलिए डोमिनेट शब्द द्विघात है। जब विस्थापन छोटा हो, तो उच्च क्रम के निबंधन को छोड़ दिया जाना चाहिए। अभिव्यक्ति बन जाता है:

जो स्पष्ट रूप से रेखीय मूल्य सापेक्षता है।

ध्यान दें कि व्युत्पन्न दो पड़ोसी परमाणुओं पर विचार किया जाता है, इसलिए हुक का गुणांक है:

अंतर-परमाण्विक दूरी के स्थान पर आयतन प्रति परमाणु (Ω) के साथ इस फॉर्म को आसानी से 3-डी केस तक बढ़ाया जा सकता है।


परमाणु त्रिज्या के साथ संबंध

आयतन प्रत्यास्थता गुणांक जैसा कि ऊपर व्युत्पन्न किया गया है, सीधे अंतर-परमाणु क्षमता और आयतन प्रति परमाणु से संबंधित है। K को अन्य गुणों से जोड़ने के लिए अंतर-परमाणु क्षमता का और मूल्यांकन कर सकते हैं। सामान्य तौर पर, अंतर-परमाणु क्षमता को दूरी के एक कार्य के रूप में व्यक्त किया जा सकता है जिसमें दो शब्द होते हैं, एक शब्द आकर्षण के लिए और दूसरा शब्द प्रतिकर्षण के लिए।

जहाँ A > 0 आकर्षण शब्द का प्रतिनिधित्व करता है और B > 0 प्रतिकर्षण का प्रतिनिधित्व करता है। n और m सामान्य तौर पर अभिन्न होते हैं और m सामान्य तौर पर n से बड़ा होता है, जो प्रतिकर्षण की छोटी सीमा प्रकृति का प्रतिनिधित्व करता है। संतुलन की स्थिति में u अपने न्यूनतम स्तर पर है, इसलिए प्रथम कोटि का अवकलज 0 है।

जब r पास हो, n (सामान्य तौर पर 1 से 6) m (सामान्य तौर पर 9 से 12) से छोटा होता है, दूसरी अवधि को अनदेखा करें दूसरे व्युत्पन्न का मूल्यांकन करें

r और Ω के बीच संबंध को ज्ञात कीजिए

कई स्थितियों में, जैसे धातु या आयनिक सामग्री में आकर्षण बल इलेक्ट्रोस्टैटिक होता है, इसलिए हमारे पास n = 1 है

यह समान बंधन प्रकृति वाले परमाणुओं पर लागू होता है। यह संबंध क्षार धातुओं और कई आयनिक यौगिकों के भीतर सत्यापित है।[8]

यह भी देखें

  • लोच टेंसर


संदर्भ

  1. "थोक लोचदार गुण". hyperphysics. Georgia State University.
  2. Page 52 of "Introduction to Solid State Physics, 8th edition" by Charles Kittel, 2005, ISBN 0-471-41526-X
  3. Gallas, Marcia R.; Piermarini, Gasper J. (1994). "Bulk Modulus and Young's Modulus of Nanocrystalline γ-Alumina". Journal of the American Ceramic Society (in English). 77 (11): 2917–2920. doi:10.1111/j.1151-2916.1994.tb04524.x. ISSN 1551-2916.
  4. "Graphite Properties Page by John A. Jaszczak". pages.mtu.edu. Retrieved 2021-07-16.
  5. "Silicone Rubber". AZO materials.
  6. Fluegel, Alexander. "चश्मे के थोक मापांक की गणना". glassproperties.com.
  7. H., Courtney, Thomas (2013). सामग्री का यांत्रिक व्यवहार (2nd ed. Reimp ed.). New Delhi: McGraw Hill Education (India). ISBN 978-1259027512. OCLC 929663641.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. Gilman, J.J. (1969). सॉलिड्स में फ्लो के माइक्रोमैकेनिक्स. New York: McGraw-Hill. p. 29.


अग्रिम पठन