अनुमस्तिष्क मॉडल आर्टिक्यूलेशन नियंत्रक

From Vigyanwiki

एकल जोड़ के लिए CMAC प्रणाली का ब्लॉक आरेख। वेक्टर S को सभी जोड़ों के इनपुट के रूप में प्रस्तुत किया गया है। प्रत्येक जोड़ अलग से एक S -> A* मैपिंग और एक संयुक्त एक्चुएटर सिग्नल pi की गणना करता है। सभी जोड़ों के लिए समायोज्य वजन एक ही भौतिक मेमोरी में उपस्थित हो सकते हैं।[1]

सेरिबैलर मॉडल अंकगणितीय कंप्यूटर (CMAC) स्तनधारी सेरिबैलम के मॉडल पर आधारित एक प्रकार का तंत्रिका नेटवर्क है। इसे सेरेबेलर मॉडल आर्टिक्यूलेशन कंट्रोलर के रूप में भी जाना जाता है। यह एक प्रकार की सहयोगी मेमोरी है।[2]

CMAC को पहली बार 1975 में जेम्स एल्बस द्वारा रोबोटिक नियंत्रकों के लिए एक फ़ंक्शन मॉडलर के रूप में प्रस्तावित किया गया था[1] (इसलिए नाम), लेकिन इसका व्यापक रूप से सुदृढीकरण सीखने और मशीन लर्निंग समुदाय में स्वचालित वर्गीकरण के लिए उपयोग किया गया है। CMAC परसेप्ट्रॉन मॉडल का एक विस्तार है। यह इनपुट आयामों के लिए किसी फ़ंक्शन की गणना करता है। इनपुट स्पेस को हाइपर-आयतों में विभाजित किया गया है, जिनमें से प्रत्येक एक मेमोरी सेल से जुड़ा है। मेमोरी कोशिकाओं की सामग्री वजन होती है, जिसे प्रशिक्षण के दौरान समायोजित किया जाता है। सामान्यतः, इनपुट स्पेस के एक से अधिक परिमाणीकरण का उपयोग किया जाता है, ताकि इनपुट स्पेस में कोई भी बिंदु कई हाइपर-आयतों के साथ जुड़ा हो, और इसलिए कई मेमोरी कोशिकाओं के साथ। CMAC का आउटपुट इनपुट बिंदु द्वारा सक्रिय सभी मेमोरी सेल में वजन का बीजगणितीय योग है।

इनपुट बिंदु के मान में परिवर्तन के परिणामस्वरूप सक्रिय हाइपर-आयत के सेट में परिवर्तन होता है, और इसलिए CMAC आउटपुट में भाग लेने वाले मेमोरी सेल के सेट में परिवर्तन होता है। इसलिए CMAC आउटपुट को एक वितरित तरीके से संग्रहित किया जाता है, जैसे कि इनपुट स्पेस में किसी भी बिंदु से संबंधित आउटपुट कई मेमोरी कोशिकाओं में संग्रहीत मूल्य से प्राप्त होता है (इसलिए नाम सहयोगी मेमोरी)। इससे सामान्यीकरण मिलता है.

बिल्डिंग ब्लॉक्स

CMAC, 2D स्पेस के रूप में दर्शाया गया है

निकटवर्ती छवि में, CMAC के लिए दो इनपुट हैं, जिन्हें 2D स्पेस के रूप में दर्शाया गया है। इस स्थान को दो ओवरलैपिंग ग्रिड (एक को भारी रेखाओं में दिखाया गया है) के साथ विभाजित करने के लिए दो क्वांटाइज़िंग फ़ंक्शन का उपयोग किया गया है। मध्य के पास एक एकल इनपुट दिखाया गया है, और इसने छायांकित क्षेत्र के अनुरूप दो मेमोरी कोशिकाओं को सक्रिय कर दिया है। यदि दिखाए गए बिंदु के करीब कोई अन्य बिंदु होता है, तो यह सामान्यीकरण प्रदान करते हुए कुछ समान मेमोरी कोशिकाओं को साझा करेगा।

CMAC को इनपुट बिंदुओं और आउटपुट मानों के जोड़े प्रस्तुत करके और आउटपुट पर देखी गई त्रुटि के अनुपात से सक्रिय कोशिकाओं में वजन समायोजित करके प्रशिक्षित किया जाता है। इस सरल प्रशिक्षण एल्गोरिथ्म में अभिसरण का प्रमाण है।[3]

हाइपर-आयत में कर्नेल फ़ंक्शन जोड़ना सामान्य है, ताकि हाइपर-आयत के किनारे की ओर गिरने वाले बिंदुओं में केंद्र के पास गिरने वाले बिंदुओं की तुलना में कम सक्रियण हो।[4]

CMAC के व्यावहारिक उपयोग में उद्धृत प्रमुख समस्याओं में से एक आवश्यक मेमोरी आकार है, जो सीधे तौर पर इस्तेमाल की जाने वाली कोशिकाओं की संख्या से संबंधित है। इसे सामान्यतः हैश फ़ंक्शन का उपयोग करके सुधारा जाता है, और केवल इनपुट द्वारा सक्रिय होने वाली वास्तविक कोशिकाओं के लिए मेमोरी स्टोरेज प्रदान किया जाता है।

एक-चरण अभिसरण एल्गोरिथ्म

CMAC के वजन को अद्यतन करने के लिए प्रारंभ में न्यूनतम माध्य वर्ग (LMS) विधि का उपयोग किया जाता है। CMAC को प्रशिक्षित करने के लिए LMS का उपयोग करने का अभिसरण सीखने की दर के प्रति संवेदनशील है और विचलन का कारण बन सकता है। 2004 में,[5] CMAC को ऑनलाइन प्रशिक्षित करने के लिए एक पुनरावर्ती न्यूनतम वर्ग (RLS) एल्गोरिथ्म पेश किया गया था। इसमें सीखने की दर को व्यवस्थित करने की आवश्यकता नहीं है। इसका अभिसरण सैद्धांतिक रूप से सिद्ध हो चुका है और एक चरण में अभिसरण होने की प्रत्याभूति दी जा सकती है। इस RLS एल्गोरिथ्म की कम्प्यूटेशनल सम्मिश्रता O(N3) है।

CMAC तंत्रिका नेटवर्क की समानांतर पाइपलाइन संरचना [6]
Left पैनल: वास्तविक कार्य; दायां पैनल: डेरिवेटिव के साथ CMAC सन्निकटन

हार्डवेयर कार्यान्वयन अवसंरचना

QR अपघटन के आधार पर, एक एल्गोरिथ्म (QRLS) को O(N) सम्मिश्रता के लिए और सरल बनाया गया है। परिणामस्वरूप, इससे मेमोरी उपयोग और समय लागत में काफी कमी आती है। इस एल्गोरिदम को कार्यान्वित करने के लिए एक समानांतर पाइपलाइन सरणी संरचना प्रस्तुत की गई है।[6]

कुल मिलाकर QRLS एल्गोरिदम का उपयोग करके, CMAC तंत्रिका नेटवर्क अभिसरण की प्रत्याभूति दी जा सकती है, और प्रशिक्षण के एक चरण का उपयोग करके नोड्स के वजन को अद्यतन किया जा सकता है। इसकी समानांतर पाइपलाइन सरणी संरचना बड़े पैमाने पर उद्योग के उपयोग के लिए हार्डवेयर में लागू होने की बड़ी संभावना प्रदान करती है।

सतत CMAC

चूंकि CMAC ग्रहणशील क्षेत्र फंक्शन्स का आयताकार आकार B-स्प्लिंस फंक्शन्स के साथ CMAC को एकीकृत करके असंतुलित स्टेयरकेस फ़ंक्शन सन्निकटन उत्पन्न करता है, निरंतर CMAC अनुमानित फंक्शन्स के व्युत्पन्न के किसी भी क्रम को प्राप्त करने की क्षमता प्रदान करता है।

डीप CMAC

हाल के वर्षों में, कई अध्ययनों ने पुष्टि की है कि कई उथली संरचनाओं को एक ही गहरी संरचना में जमा करके, समग्र प्रणाली बेहतर डेटा प्रतिनिधित्व प्राप्त कर सकती है, और इस प्रकार, गैर-रेखीय और उच्च सम्मिश्रता कार्यों से अधिक प्रभावी ढंग से निपट सकती है। 2018 में, [7] एक गहन CMAC (DCMAC) ढांचे का प्रस्ताव किया गया था और DCMAC मापदंडों का अनुमान लगाने के लिए एक बैकप्रोपेगेशन एल्गोरिदम तैयार किया गया था। अनुकूली शोर रद्दीकरण कार्य के प्रायोगिक परिणामों से पता चला कि प्रस्तावित DCMAC पारंपरिक सिंगल-लेयर CMAC की तुलना में बेहतर ध्वनि रद्दीकरण प्रदर्शन प्राप्त कर सकता है।

सारांश

अनुमापकता लाखों न्यूरॉन्स या उससे आगे तक विस्तार करना आसान है
अभिसरण प्रशिक्षण हमेशा एक चरण में परिवर्तित हो सकता है
फलन व्युत्पन्न बी-स्प्लिंस इंटरपोलेशन को नियोजित करके प्राप्त करना आसान है
हार्डवेयर संरचना समांतर पाइपलाइन संरचना
मेमोरी प्रयोग न्यूरॉन्स की संख्या के संदर्भ में रैखिक
अभिकलनात्मक सम्मिश्रता O(N)

यह भी देखें

संदर्भ

  1. 1.0 1.1 J.S. Albus (1975). "A New Approach to Manipulator Control: the Cerebellar Model Articulation Controller (CMAC)". In: Trans. ASME, Series G. Journal of Dynamic Systems, Measurement and Control, Vol. 97, pp. 220–233, 1975.
  2. J.S. Albus (1979). "Mechanisms of Planning and Problem Solving in the Brain". In: Mathematical Biosciences. Vol. 45, pp. 247293, 1979.
  3. Y. Wong, CMAC Learning is Governed by a Single Parameter, IEEE International Conference on Neural Networks, San Francisco, Vol. 1, pp. 1439–43, 1993.
  4. P.C.E. An, W.T. Miller, and P.C. Parks, Design Improvements in Associative Memories for Cerebellar Model Articulation Controllers, Proc. ICANN, pp. 1207–10, 1991.
  5. Ting Qin, et al. "A learning algorithm of CMAC based on RLS." Neural Processing Letters 19.1 (2004): 49-61.
  6. 6.0 6.1 Ting Qin, et al. "Continuous CMAC-QRLS and its systolic array." Neural Processing Letters 22.1 (2005): 1-16.
  7. * Yu Tsao, et al. "Adaptive Noise Cancellation Using Deep Cerebellar Model Articulation Controller." IEEE Access Vol. 6, pp. 37395 - 37402, 2018.

अग्रिम पठन

बाहरी संबंध