सुपरमल्टीप्लेट: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|A representation of the supersymmetry algebra}}
{{Short description|A representation of the supersymmetry algebra}}
[[सैद्धांतिक भौतिकी]] में, एक सुपरमल्टीप्लेट एक सुपरसिमेट्री बीजगणित का एक [[समूह प्रतिनिधित्व]] है, संभवतः विस्तारित सुपरसिमेट्री के साथ।


फिर एक सुपरफ़ील्ड [[सुपरस्पेस]] पर एक फ़ील्ड है जिसे इस तरह के प्रतिनिधित्व में महत्व दिया जाता है। भोलेपन से, या फ्लैट सुपरस्पेस पर विचार करते समय, एक सुपरफ़ील्ड को केवल सुपरस्पेस पर एक फ़ंक्शन के रूप में देखा जा सकता है। औपचारिक रूप से, यह संबंधित वेक्टर बंडल का एक खंड (फाइबर बंडल) है।


घटनात्मक रूप से, [[कण]]ों का वर्णन करने के लिए सुपरफ़ील्ड का उपयोग किया जाता है। यह सुपरसिमेट्रिक क्षेत्र सिद्धांतों की एक विशेषता है कि कण जोड़े बनाते हैं, जिन्हें [[सुपरपार्टनर]] कहा जाता है, जहां [[बोसॉन]] को [[फरमिओन्स]] के साथ जोड़ा जाता है।
सैद्धांतिक भौतिकी में, एक '''सुपरमल्टीप्लेट''' संभवतः विस्तारित सुपरसिमेट्री के साथ एक सुपरसिममेट्री बीजगणित का प्रतिनिधित्व है।


इन सुपरसिमेट्रिक फ़ील्ड्स का उपयोग सुपरसिमेट्रिक क्वांटम फ़ील्ड सिद्धांतों के निर्माण के लिए किया जाता है, जहां फ़ील्ड्स को [[हर्मिटियन ऑपरेटर]]ों के लिए बढ़ावा दिया जाता है।
फिर एक सुपरफ़ील्ड [[सुपरस्पेस]] पर एक क्षेत्र है जिसे इस तरह के प्रतिनिधित्व में महत्व दिया जाता है। नेवली, या समतल सुपरस्पेस पर विचार करते समय, एक सुपरफ़ील्ड को केवल सुपरस्पेस पर एक फ़ंक्शन के रूप में देखा जा सकता है। जो कि औपचारिक रूप से, यह संबंधित सदिश बंडल का एक खंड (फाइबर बंडल) है।
 
 
घटनात्मक रूप से, [[कण]] का वर्णन करने के लिए सुपरफ़ील्ड का उपयोग किया जाता है। यह सुपरसिमेट्रिक क्षेत्र सिद्धांतों की एक विशेषता है कि कण जोड़े बनाते हैं, जिन्हें [[सुपरपार्टनर]] कहा जाता है, जहां [[बोसॉन]] को [[फरमिओन्स]] के साथ जोड़ा जाता है।
 
इन सुपरसिमेट्रिक क्षेत्र का उपयोग सुपरसिमेट्रिक क्वांटम क्षेत्र सिद्धांतों के निर्माण के लिए किया जाता है, जहां क्षेत्र को [[हर्मिटियन ऑपरेटर]] के लिए बढ़ावा दिया जाता है।


==इतिहास==
==इतिहास==
सुपरफील्ड्स की शुरुआत 1974 के एक लेख में [[ नमस्ते अब्दुस ]] और जे. ए. स्ट्रैथडी द्वारा की गई थी।<ref name="salam_strathdee">{{cite book |last1=Salam |first1=Abdus |last2=Strathdee |first2=J. |title=सुपर-गेज परिवर्तन|journal=World Scientific Series in 20th Century Physics |date=May 1994 |volume=5 |pages=404–409 |doi=10.1142/9789812795915_0047 |bibcode=1994spas.book..404S |isbn=978-981-02-1662-7 |url=https://www.worldscientific.com/doi/epdf/10.1142/9789812795915_0047 |access-date=3 April 2023}}</ref> कुछ महीनों बाद [[सर्जियो फेरारा]], [[जूलियस वेस]] और [[ब्रूनो ज़ुमिनो]] द्वारा सुपरफ़ील्ड पर संचालन और आंशिक वर्गीकरण प्रस्तुत किया गया। रेफरी नाम = fwz >{{cite journal |last1=Ferrara |first1=Sergio |last2=Wess |first2=Julius |last3=Zumino |first3=Bruno |title=सुपरगेज मल्टीप्लेट्स और सुपरफील्ड्स|journal=Phys. Lett. B |date=1974 |volume=51 |issue=3 |pages=239–241 |doi=10.1016/0370-2693(74)90283-4 |bibcode=1974PhLB...51..239F |url=https://dx.doi.org/10.1016/0370-2693%2874%2990283-4 |access-date=3 April 2023}}</ref>
सुपरफील्ड्स की प्रारंभ 1974 के एक लेख में [[ नमस्ते अब्दुस ]] और जे. ए. स्ट्रैथडी द्वारा की गई थी।<ref name="salam_strathdee">{{cite book |last1=Salam |first1=Abdus |last2=Strathdee |first2=J. |title=सुपर-गेज परिवर्तन|journal=World Scientific Series in 20th Century Physics |date=May 1994 |volume=5 |pages=404–409 |doi=10.1142/9789812795915_0047 |bibcode=1994spas.book..404S |isbn=978-981-02-1662-7 |url=https://www.worldscientific.com/doi/epdf/10.1142/9789812795915_0047 |access-date=3 April 2023}}</ref> कुछ महीनों पश्चात् [[सर्जियो फेरारा]], [[जूलियस वेस]] और [[ब्रूनो ज़ुमिनो]] द्वारा सुपरफ़ील्ड पर संचालन और आंशिक वर्गीकरण प्रस्तुत किया गया। <ref>रेफरी नाम = fwz >{{cite journal |last1=Ferrara |first1=Sergio |last2=Wess |first2=Julius |last3=Zumino |first3=Bruno |title=सुपरगेज मल्टीप्लेट्स और सुपरफील्ड्स|journal=Phys. Lett. B |date=1974 |volume=51 |issue=3 |pages=239–241 |doi=10.1016/0370-2693(74)90283-4 |bibcode=1974PhLB...51..239F |url=https://dx.doi.org/10.1016/0370-2693%2874%2990283-4 |access-date=3 April 2023}}<nowiki></ref></nowiki></ref>


==नामकरण और वर्गीकरण==
==नामकरण और वर्गीकरण==
सबसे अधिक उपयोग किए जाने वाले सुपरमल्टीप्लेट्स वेक्टर मल्टीप्लेट्स, चिरल मल्टीप्लेट्स (इंच) हैं <math>d = 4,\mathcal{N} = 1</math> उदाहरण के लिए सुपरसिमेट्री), हाइपरमल्टीप्लेट्स (में <math>d = 4,\mathcal{N} = 2</math> उदाहरण के लिए सुपरसिमेट्री), टेंसर मल्टीप्लेट्स और ग्रेविटी मल्टीप्लेट्स। वेक्टर मल्टीप्लेट का उच्चतम घटक एक गेज बोसॉन है, चिरल या हाइपरमल्टीप्लेट का उच्चतम घटक एक [[स्पिनर]] है, [[गुरुत्वाकर्षण]] मल्टीप्लेट का उच्चतम घटक एक ग्रेविटॉन है। नामों को इस प्रकार परिभाषित किया गया है कि वे [[आयामी कमी]] के तहत अपरिवर्तनीय रहें, हालांकि [[लोरेंत्ज़ समूह]] के प्रतिनिधित्व के रूप में क्षेत्रों का संगठन बदल जाता है।
सबसे अधिक उपयोग किए जाने वाले सुपरमल्टीप्लेट्स सदिश मल्टीप्लेट्स, चिरल मल्टीप्लेट्स (उदाहरण के लिए <math>d = 4,\mathcal{N} = 1</math> सुपरसिमेट्री में), हाइपरमल्टीप्लेट्स (उदाहरण के लिए <math>d = 4,\mathcal{N} = 2</math> सुपरसिमेट्री में), टेंसर मल्टीप्लेट्स और ग्रेविटी मल्टीप्लेट्स हैं। सदिश मल्टीप्लेट का उच्चतम घटक एक गेज बोसॉन है, चिरल या हाइपरमल्टीप्लेट का उच्चतम घटक एक स्पिनर है, गुरुत्वाकर्षण मल्टीप्लेट का उच्चतम घटक एक ग्रेविटॉन है। नामों को इस प्रकार परिभाषित किया गया है कि वे आयामी कमी के अनुसार अपरिवर्तनीय रहें, चूँकि लोरेंत्ज़ समूह के प्रतिनिधित्व के रूप में क्षेत्रों का संगठन बदल जाता है।


अलग-अलग मल्टीप्लेट्स के लिए इन नामों का उपयोग साहित्य में भिन्न-भिन्न हो सकता है। एक चिरल मल्टीप्लेट (जिसका उच्चतम घटक एक स्पिनर है) को कभी-कभी स्केलर मल्टीप्लेट के रूप में संदर्भित किया जा सकता है, और <math>d = 4,\mathcal{N} = 2</math> SUSY, एक वेक्टर मल्टीप्लेट (जिसका उच्चतम घटक एक वेक्टर है) को कभी-कभी चिरल मल्टीप्लेट के रूप में संदर्भित किया जा सकता है।
अलग-अलग मल्टीप्लेट्स के लिए इन नामों का उपयोग साहित्य में भिन्न-भिन्न हो सकता है। एक चिरल मल्टीप्लेट (जिसका उच्चतम घटक एक स्पिनर है) को कभी-कभी स्केलर मल्टीप्लेट के रूप में संदर्भित किया जा सकता है, और <math>d = 4,\mathcal{N} = 2</math> SUSY, एक सदिश मल्टीप्लेट (जिसका उच्चतम घटक एक सदिश है) को कभी-कभी चिरल मल्टीप्लेट के रूप में संदर्भित किया जा सकता है।


== डी में सुपरफ़ील्ड = 4, एन = 1 सुपरसिमेट्री ==
== d = 4, N = 1 सुपरसिममेट्री में सुपरफ़ील्ड ==
इस खंड में कन्वेंशन नोट्स का पालन करते हैं {{harvs|txt|last=Figueroa-O'Farrill|year=2001}}.
इस खंड में कन्वेंशन फिगुएरोआ-ओ'फैरिल (2001) के नोट्स का पालन करते हैं।


एक सामान्य जटिल सुपरफ़ील्ड <math>\Phi(x, \theta, \bar \theta)</math> में <math>d = 4, \mathcal{N} = 1</math> सुपरसिमेट्री का विस्तार इस प्रकार किया जा सकता है
एक सामान्य सम्मिश्र सुपरफ़ील्ड <math>\Phi(x, \theta, \bar \theta)</math> में <math>d = 4, \mathcal{N} = 1</math> सुपरसिमेट्री का विस्तार इस प्रकार किया जा सकता है


:<math>\Phi(x, \theta, \bar\theta) = \phi(x) + \theta\chi(x) + \bar\theta \bar\chi'(x) + \bar \theta \sigma^\mu \theta V_\mu(x) + \theta^2 F(x) + \bar \theta^2 \bar F'(x) + \bar\theta^2 \theta\xi(x) + \theta^2 \bar\theta \bar \xi' (x) + \theta^2 \bar\theta^2 D(x)</math>,
:<math>\Phi(x, \theta, \bar\theta) = \phi(x) + \theta\chi(x) + \bar\theta \bar\chi'(x) + \bar \theta \sigma^\mu \theta V_\mu(x) + \theta^2 F(x) + \bar \theta^2 \bar F'(x) + \bar\theta^2 \theta\xi(x) + \theta^2 \bar\theta \bar \xi' (x) + \theta^2 \bar\theta^2 D(x)</math>,


कहाँ <math>\phi, \chi, \bar \chi' , V_\mu, F, \bar F', \xi, \bar \xi', D</math> विभिन्न जटिल क्षेत्र हैं. यह एक अपरिवर्तनीय प्रतिनिधित्व सुपरमल्टीप्लेट नहीं है, और इसलिए अपरिवर्तनीय प्रतिनिधित्व को अलग करने के लिए विभिन्न बाधाओं की आवश्यकता होती है।
जहाँ <math>\phi, \chi, \bar \chi' , V_\mu, F, \bar F', \xi, \bar \xi', D</math> विभिन्न सम्मिश्र क्षेत्र हैं. यह एक अपरिवर्तनीय प्रतिनिधित्व सुपरमल्टीप्लेट नहीं है, और इसलिए अपरिवर्तनीय प्रतिनिधित्व को अलग करने के लिए विभिन्न बाधाओं की आवश्यकता होती है।


=== चिरल सुपरफ़ील्ड ===
=== चिरल सुपरफ़ील्ड ===
(एंटी-)चिरल सुपरफ़ील्ड एक सुपरमल्टीप्लेट है <math>d=4, \mathcal{N} = 1</math> अतिसममिति.
एक (एंटी-)चिरल सुपरफ़ील्ड <math>d=4, \mathcal{N} = 1</math> सुपरसिममेट्री का एक सुपरमल्टीप्लेट है।


चार आयामों में, न्यूनतम <math>\mathcal{N}=1</math> सुपरसममेट्री को सुपरस्पेस की धारणा का उपयोग करके लिखा जा सकता है। सुपरस्पेस में सामान्य स्पेस-टाइम निर्देशांक होते हैं <math>x^{\mu}</math>, <math>\mu=0,\ldots,3</math>, और चार अतिरिक्त फर्मिओनिक निर्देशांक <math>\theta_\alpha,\bar\theta^\dot\alpha</math> साथ <math>\alpha, \dot\alpha = 1,2</math>, दो-घटक (वेइल) स्पिनर और उसके संयुग्म के रूप में परिवर्तित हो रहा है।
चार आयामों में, सुपरस्पेस की धारणा का उपयोग करके न्यूनतम <math>\mathcal{N}=1</math> सुपरसिमेट्री लिखी जा सकती है। सुपरस्पेस में सामान्य स्पेस-टाइम निर्देशांक <math>x^{\mu}</math>,<math>\mu=0,\ldots,3</math> और चार अतिरिक्त फर्मिओनिक निर्देशांक <math>\theta_\alpha,\bar\theta^\dot\alpha</math> के साथ <math>\alpha, \dot\alpha = 1,2</math> सम्मिलित हैं, जो दो-घटक (वेइल) स्पिनर और उसके संयुग्म के रूप में परिवर्तित होते हैं।


में <math>d = 4,\mathcal{N} = 1</math> [[अतिसममिति]], एक चिरल सुपरफ़ील्ड, चिरल सुपरस्पेस पर एक फ़ंक्शन है। (पूर्ण) सुपरस्पेस से चिरल सुपरस्पेस तक एक प्रक्षेपण मौजूद है। तो, चिरल पर एक फ़ंक्शन
 
सुपरस्पेस पूर्ण सुपरस्पेस के लिए [[विभेदक ज्यामिति]] हो सकता है। ऐसा कार्य <math>\Phi(x, \theta, \bar\theta)</math> सहसंयोजक बाधा को संतुष्ट करता है <math>\overline{D}\Phi=0</math>, कहाँ <math>\bar D</math> सहसंयोजक व्युत्पन्न है, जो सूचकांक संकेतन में दिया गया है
<math>d = 4,\mathcal{N} = 1</math> सुपरसिमेट्री में, एक चिरल सुपरफ़ील्ड, चिरल सुपरस्पेस पर एक फ़ंक्शन है। (पूर्ण) सुपरस्पेस से चिरल सुपरस्पेस तक एक प्रक्षेपण उपस्थित है। तो, चिरल सुपरस्पेस पर एक फ़ंक्शन को पूर्ण सुपरस्पेस पर वापस खींचा जा सकता है। ऐसा फ़ंक्शन <math>\Phi(x, \theta, \bar\theta)</math> सहसंयोजक बाधा <math>\overline{D}\Phi=0</math> को संतुष्ट करता है, जहां <math>\bar D</math> सहसंयोजक व्युत्पन्न है, जो सूचकांक संकेतन में दिया गया है
:<math>\bar D_\dot\alpha = -\bar\partial_\dot\alpha - i\theta^\alpha \sigma^\mu_{\alpha\dot\alpha}\partial_\mu.</math>
:<math>\bar D_\dot\alpha = -\bar\partial_\dot\alpha - i\theta^\alpha \sigma^\mu_{\alpha\dot\alpha}\partial_\mu.</math>
एक चिरल सुपरफ़ील्ड <math>\Phi(x, \theta, \bar\theta)</math> फिर इस प्रकार विस्तारित किया जा सकता है
एक चिरल सुपरफ़ील्ड <math>\Phi(x, \theta, \bar\theta)</math> फिर इस प्रकार विस्तारित किया जा सकता है


:<math> \Phi (y , \theta ) = \phi(y) + \sqrt{2} \theta \psi (y) + \theta^2 F(y),</math>
:<math> \Phi (y , \theta ) = \phi(y) + \sqrt{2} \theta \psi (y) + \theta^2 F(y),</math>
कहाँ <math> y^\mu = x^\mu + i \theta \sigma^\mu \bar{\theta} </math>. सुपरफ़ील्ड 'संयुग्मित स्पिन निर्देशांक' से स्वतंत्र है <math>\bar\theta</math> इस अर्थ में कि यह निर्भर करता है <math>\bar\theta</math> केवल भीतर से <math>y^\mu</math>. इसकी जांच की जा सकती है <math>\bar D_\dot\alpha y^\mu = 0.</math>
जहाँ <math> y^\mu = x^\mu + i \theta \sigma^\mu \bar{\theta} </math>. सुपरफ़ील्ड 'संयुग्मित स्पिन निर्देशांक' <math>\bar\theta</math> से इस अर्थ में स्वतंत्र है कि यह केवल <math>\bar\theta</math> से लेकर <math>y^\mu</math> तक निर्भर करता है। इसकी जांच की जा सकती है कि <math>\bar D_\dot\alpha y^\mu = 0.</math>
विस्तार की व्याख्या यह है कि <math>\phi</math> एक जटिल अदिश क्षेत्र है, <math>\psi</math> एक वेइल स्पिनर है। सहायक जटिल अदिश क्षेत्र भी है <math>F</math>, नामित <math>F</math> परंपरा के अनुसार: यह [[एफ-टर्म]] है जो कुछ सिद्धांतों में महत्वपूर्ण भूमिका निभाता है।
 
विस्तार की व्याख्या है कि <math>\phi</math> एक सम्मिश्र अदिश क्षेत्र है,<math>\psi</math> एक वेइल स्पिनर है। सहायक सम्मिश्र अदिश क्षेत्र <math>F</math> भी है, जिसे परंपरा के अनुसार <math>F</math> नाम दिया गया है: यह F-शब्द है जो कुछ सिद्धांतों में महत्वपूर्ण भूमिका निभाता है।


फिर फ़ील्ड को मूल निर्देशांक के संदर्भ में व्यक्त किया जा सकता है <math>(x,\theta, \bar \theta)</math> के लिए अभिव्यक्ति को प्रतिस्थापित करके <math>y</math>:
फिर क्षेत्र को <math>y</math> के लिए अभिव्यक्ति को प्रतिस्थापित करके मूल निर्देशांक <math>(x,\theta, \bar \theta)</math>के संदर्भ में व्यक्त किया जा सकता है।
:<math>\Phi(x, \theta, \bar\theta) = \phi(x) + \sqrt{2} \theta \psi (x) + \theta^2 F(x) + i\theta\sigma^\mu\bar\theta\partial_\mu\phi(x) - \frac{i}{\sqrt{2}}\theta^2\partial_\mu\psi(x)\sigma^\mu\bar\theta - \frac{1}{4}\theta^2\bar\theta^2\square\phi(x).</math>
:<math>\Phi(x, \theta, \bar\theta) = \phi(x) + \sqrt{2} \theta \psi (x) + \theta^2 F(x) + i\theta\sigma^\mu\bar\theta\partial_\mu\phi(x) - \frac{i}{\sqrt{2}}\theta^2\partial_\mu\psi(x)\sigma^\mu\bar\theta - \frac{1}{4}\theta^2\bar\theta^2\square\phi(x).</math>


Line 45: Line 49:
==== एंटीचिरल सुपरफ़ील्ड ====
==== एंटीचिरल सुपरफ़ील्ड ====


इसी तरह, एंटीचिरल सुपरस्पेस भी है, जो कि चिरल सुपरस्पेस और एंटीचिरल सुपरफील्ड्स का जटिल संयुग्म है।
इसी तरह, एंटीचिर'''ल सुपरस्पेस भी है, जो कि चिरल सुपरस्पेस और''' एंटीचिरल सुपरफील्ड्स का सम्मिश्र संयुग्म है।


एक एंटीचिरल सुपरफ़ील्ड <math>\Phi^\dagger</math> संतुष्ट <math>D \Phi^\dagger = 0,</math> कहाँ
एक एंटीचिरल सुपरफ़ील्ड <math>\Phi^\dagger</math> संतुष्ट <math>D \Phi^\dagger = 0,</math> कहाँ
:<math>D_\alpha = \partial_\alpha + i\sigma^\mu_{\alpha\dot\alpha}\bar\theta^\dot\alpha\partial_\mu.</math>
:<math>D_\alpha = \partial_\alpha + i\sigma^\mu_{\alpha\dot\alpha}\bar\theta^\dot\alpha\partial_\mu.</math>
एक एंटीचिरल सुपरफील्ड का निर्माण चिरल सुपरफील्ड के जटिल संयुग्म के रूप में किया जा सकता है।
एक एंटीचिरल सुपरफील्ड का निर्माण चिरल सुपरफील्ड के सम्मिश्र संयुग्म के रूप में किया जा सकता है।


==== चिरल सुपरफ़ील्ड से क्रियाएँ ====
==== चिरल सुपरफ़ील्ड से क्रियाएँ ====
एक क्रिया के लिए जिसे एकल चिरल सुपरफ़ील्ड से परिभाषित किया जा सकता है, वेस-ज़ुमिनो मॉडल देखें।
एक क्रिया के लिए जिसे एकल चिरल सुपरफ़ील्ड से परिभाषित किया जा सकता है, वेस-ज़ुमिनो मॉडल देखें।


=== वेक्टर सुपरफ़ील्ड ===
=== सदिश सुपरफ़ील्ड ===
वेक्टर सुपरफील्ड का एक सुपरमल्टीप्लेट है <math>\mathcal{N} = 1</math> अतिसममिति.
सदिश सुपरफील्ड का एक सुपरमल्टीप्लेट है <math>\mathcal{N} = 1</math> अतिसममिति.


एक वेक्टर सुपरफ़ील्ड (जिसे वास्तविक सुपरफ़ील्ड भी कहा जाता है) एक फ़ंक्शन है <math>V(x,\theta,\bar\theta)</math> जो वास्तविकता की स्थिति को पूरा करता है <math>V = V^\dagger</math>. ऐसा क्षेत्र विस्तार को स्वीकार करता है
एक सदिश सुपरफ़ील्ड (जिसे वास्तविक सुपरफ़ील्ड भी कहा जाता है) एक फ़ंक्शन है <math>V(x,\theta,\bar\theta)</math> जो वास्तविकता की स्थिति को पूरा करता है <math>V = V^\dagger</math>. ऐसा क्षेत्र विस्तार को स्वीकार करता है


:<math>V = C + i\theta\chi - i \overline{\theta}\overline{\chi} + \tfrac{i}{2}\theta^2(M+iN)-\tfrac{i}{2}\overline{\theta^2}(M-iN) - \theta \sigma^\mu \overline{\theta} A_\mu +i\theta^2 \overline{\theta} \left( \overline{\lambda} + \tfrac{i}{2}\overline{\sigma}^\mu \partial_\mu \chi \right) -i\overline{\theta}^2 \theta \left(\lambda + \tfrac{i}{2}\sigma^\mu \partial_\mu \overline{\chi} \right) + \tfrac{1}{2}\theta^2 \overline{\theta}^2 \left(D + \tfrac{1}{2}\Box C\right).</math>
:<math>V = C + i\theta\chi - i \overline{\theta}\overline{\chi} + \tfrac{i}{2}\theta^2(M+iN)-\tfrac{i}{2}\overline{\theta^2}(M-iN) - \theta \sigma^\mu \overline{\theta} A_\mu +i\theta^2 \overline{\theta} \left( \overline{\lambda} + \tfrac{i}{2}\overline{\sigma}^\mu \partial_\mu \chi \right) -i\overline{\theta}^2 \theta \left(\lambda + \tfrac{i}{2}\sigma^\mu \partial_\mu \overline{\chi} \right) + \tfrac{1}{2}\theta^2 \overline{\theta}^2 \left(D + \tfrac{1}{2}\Box C\right).</math>
घटक क्षेत्र हैं
घटक क्षेत्र हैं
* दो वास्तविक अदिश क्षेत्र <math>C</math> और <math>D</math>
* दो वास्तविक अदिश क्षेत्र <math>C</math> और <math>D</math>
* एक जटिल अदिश क्षेत्र <math>M + iN</math>
* एक सम्मिश्र अदिश क्षेत्र <math>M + iN</math>
* दो वेइल स्पिनर फ़ील्ड <math>\chi_\alpha</math> और <math>\lambda^\alpha</math>
* दो वेइल स्पिनर क्षेत्र <math>\chi_\alpha</math> और <math>\lambda^\alpha</math>
* एक वास्तविक वेक्टर फ़ील्ड ([[गेज क्षेत्र]]) <math>A_\mu</math>
* एक वास्तविक सदिश क्षेत्र ([[गेज क्षेत्र]]) <math>A_\mu</math>
[[सुपरसिमेट्रिक गेज सिद्धांत]] में उनके परिवर्तन गुणों और उपयोगों पर आगे चर्चा की गई है।
[[सुपरसिमेट्रिक गेज सिद्धांत]] में उनके परिवर्तन गुणों और उपयोगों पर आगे चर्चा की गई है।


गेज परिवर्तन का उपयोग करते हुए, फ़ील्ड <math>C, \chi</math> और <math>M + iN</math> शून्य पर सेट किया जा सकता है. इसे [[वेस-ज़ुमिनो गेज]] के नाम से जाना जाता है। इस गेज में, विस्तार बहुत सरल रूप धारण कर लेता है
गेज परिवर्तन का उपयोग करते हुए, क्षेत्र <math>C, \chi</math> और <math>M + iN</math> शून्य पर सेट किया जा सकता है. इसे [[वेस-ज़ुमिनो गेज]] के नाम से जाना जाता है। इस गेज में, विस्तार बहुत सरल रूप धारण कर लेता है
:<math> V_{\text{WZ}} = \theta\sigma^\mu\bar\theta A_\mu + \theta^2 \bar\theta \bar\lambda + \bar\theta^2 \theta \lambda + \frac{1}{2}\theta^2\bar\theta^2 D. </math>
:<math> V_{\text{WZ}} = \theta\sigma^\mu\bar\theta A_\mu + \theta^2 \bar\theta \bar\lambda + \bar\theta^2 \theta \lambda + \frac{1}{2}\theta^2\bar\theta^2 D. </math>
तब <math>\lambda</math> का सुपरपार्टनर है <math>A_\mu</math>, जबकि <math>D</math> एक सहायक अदिश क्षेत्र है. इसे परंपरागत रूप से कहा जाता है <math>D</math>, और इसे [[डी-टर्म]] के रूप में जाना जाता है।
तब <math>\lambda</math> का सुपरपार्टनर है <math>A_\mu</math>, जबकि <math>D</math> एक सहायक अदिश क्षेत्र है. इसे परंपरागत रूप से कहा जाता है <math>D</math>, और इसे [[डी-टर्म]] के रूप में जाना जाता है।


==स्केलर==
==स्केलर==
एक अदिश राशि कभी भी सुपरफ़ील्ड का उच्चतम घटक नहीं होती है; यह किसी सुपरफ़ील्ड में दिखाई देता है या नहीं, यह स्पेसटाइम के आयाम पर निर्भर करता है। उदाहरण के लिए, 10-आयामी एन = 1 सिद्धांत में वेक्टर मल्टीप्लेट में केवल एक वेक्टर और एक मेजराना-वेइल स्पिनर होता है, जबकि डी-डायमेंशनल [[ टोरस्र्स ]] पर इसकी आयामी कमी एक वेक्टर मल्टीप्लेट होती है जिसमें डी वास्तविक स्केलर होते हैं। इसी प्रकार, 11-आयामी सिद्धांत में सीमित संख्या में फ़ील्ड, गुरुत्वाकर्षण गुणक के साथ केवल एक सुपरमल्टीप्लेट होता है, और इसमें कोई स्केलर नहीं होता है। हालाँकि, फिर से डी-टोरस पर अधिकतम गुरुत्वाकर्षण गुणक में इसकी आयामी कमी में स्केलर शामिल होते हैं।
एक अदिश राशि कभी भी सुपरफ़ील्ड का उच्चतम घटक नहीं होती है; यह किसी सुपरफ़ील्ड में दिखाई देता है या नहीं, यह स्पेसटाइम के आयाम पर निर्भर करता है। उदाहरण के लिए, 10-आयामी एन = 1 सिद्धांत में सदिश मल्टीप्लेट में केवल एक सदिश और एक मेजराना-वेइल स्पिनर होता है, जबकि डी-डायमेंशनल [[ टोरस्र्स ]] पर इसकी आयामी कमी एक सदिश मल्टीप्लेट होती है जिसमें डी वास्तविक स्केलर होते हैं। इसी प्रकार, 11-आयामी सिद्धांत में सीमित संख्या में फ़ील्ड, गुरुत्वाकर्षण गुणक के साथ केवल एक सुपरमल्टीप्लेट होता है, और इसमें कोई स्केलर नहीं होता है। हालाँकि, फिर से डी-टोरस पर अधिकतम गुरुत्वाकर्षण गुणक में इसकी आयामी कमी में स्केलर सम्मिलित होते हैं।


==हाइपरमल्टीप्लेट==
==हाइपरमल्टीप्लेट==


हाइपरमल्टीप्लेट एक विस्तारित सुपरसिमेट्री बीजगणित का एक प्रकार का प्रतिनिधित्व है, विशेष रूप से मैटर मल्टीप्लेट का <math>\mathcal{N} = 2</math> 4 आयामों में सुपरसिममेट्री, जिसमें दो जटिल [[अदिश क्षेत्र]] ए शामिल हैं<sub>''i''</sub>, एक डिराक [[स्पिनर फ़ील्ड]] ψ, और दो अतिरिक्त सहायक फ़ील्ड कॉम्प्लेक्स स्केलर F<sub>''i''</sub>.
हाइपरमल्टीप्लेट एक विस्तारित सुपरसिमेट्री बीजगणित का एक प्रकार का प्रतिनिधित्व है, विशेष रूप से मैटर मल्टीप्लेट का <math>\mathcal{N} = 2</math> 4 आयामों में सुपरसिममेट्री, जिसमें दो सम्मिश्र [[अदिश क्षेत्र]] ए सम्मिलित हैं<sub>''i''</sub>, एक डिराक [[स्पिनर फ़ील्ड|स्पिनर]] क्षेत्र ψ, और दो अतिरिक्त सहायक क्षेत्र कॉम्प्लेक्स स्केलर F<sub>''i''</sub>.


हाइपरमल्टीप्लेट नाम N=2 सुपरसिमेट्री के लिए प्रयुक्त पुराने शब्द हाइपरसिमेट्री से आया है {{harvtxt|Fayet|1976}}; इस शब्द को छोड़ दिया गया है, लेकिन इसके कुछ अभ्यावेदन के लिए हाइपरमल्टीप्लेट नाम अभी भी उपयोग किया जाता है।
हाइपरमल्टीप्लेट नाम N=2 सुपरसिमेट्री के लिए प्रयुक्त पुराने शब्द हाइपरसिमेट्री से आया है {{harvtxt|Fayet|1976}}; इस शब्द को छोड़ दिया गया है, लेकिन इसके कुछ अभ्यावेदन के लिए हाइपरमल्टीप्लेट नाम अभी भी उपयोग किया जाता है।


== विस्तारित सुपरसिममेट्री (एन > 1) ==
== विस्तारित सुपरसिममेट्री (एन > 1) ==
यह खंड विस्तारित सुपरसिमेट्री में आमतौर पर उपयोग किए जाने वाले कुछ इरेड्यूसेबल सुपरमल्टीप्लेट्स को रिकॉर्ड करता है <math>d = 4</math> मामला। इनका निर्माण [[उच्चतम-वजन प्रतिनिधित्व]] निर्माण द्वारा इस अर्थ में किया गया है कि सुपरचार्ज द्वारा नष्ट किया गया एक वैक्यूम वेक्टर है <math>Q^A, A = 1, \cdots, \mathcal{N}</math>. इरेप्स का आयाम है <math>2^\mathcal{N}</math>. द्रव्यमान रहित कणों का प्रतिनिधित्व करने वाले सुपरमल्टीप्लेट्स के लिए, भौतिक आधार पर अधिकतम अनुमत है <math>\mathcal{N}</math> है <math>\mathcal{N} = 8</math>, जबकि [[पुनर्सामान्यीकरण]] के लिए, अधिकतम अनुमति है <math>\mathcal{N}</math> है <math>\mathcal{N} = 4</math>.<ref name="kqs">{{cite arXiv |last1=Krippendorf |first1=Sven |last2=Quevedo |first2=Fernando |last3=Schlotterer |first3=Oliver |title=सुपरसिमेट्री और अतिरिक्त आयामों पर कैम्ब्रिज व्याख्यान|date=5 November 2010|class=hep-th |eprint=1011.1491 }}</ref>
यह खंड विस्तारित सुपरसिमेट्री में आमतौर पर उपयोग किए जाने वाले कुछ इरेड्यूसेबल सुपरमल्टीप्लेट्स को रिकॉर्ड करता है <math>d = 4</math> मामला। इनका निर्माण [[उच्चतम-वजन प्रतिनिधित्व]] निर्माण द्वारा इस अर्थ में किया गया है कि सुपरचार्ज द्वारा नष्ट किया गया एक वैक्यूम सदिश है <math>Q^A, A = 1, \cdots, \mathcal{N}</math>. इरेप्स का आयाम है <math>2^\mathcal{N}</math>. द्रव्यमान रहित कणों का प्रतिनिधित्व करने वाले सुपरमल्टीप्लेट्स के लिए, भौतिक आधार पर अधिकतम अनुमत है <math>\mathcal{N}</math> है <math>\mathcal{N} = 8</math>, जबकि [[पुनर्सामान्यीकरण]] के लिए, अधिकतम अनुमति है <math>\mathcal{N}</math> है <math>\mathcal{N} = 4</math>.<ref name="kqs">{{cite arXiv |last1=Krippendorf |first1=Sven |last2=Quevedo |first2=Fernando |last3=Schlotterer |first3=Oliver |title=सुपरसिमेट्री और अतिरिक्त आयामों पर कैम्ब्रिज व्याख्यान|date=5 November 2010|class=hep-th |eprint=1011.1491 }}</ref>




=== एन = 2 === <math>\mathcal{N} = 2</math> h> वेक्टर या चिरल मल्टीप्लेट <math>\Psi</math> एक गेज फ़ील्ड शामिल है <math>A_\mu</math>, दो [[वेइल फर्मियन]] <math>\lambda, \psi</math>, और एक अदिश राशि <math>\phi</math> (जो एक [[गेज समूह]] के आसन्न प्रतिनिधित्व में भी रूपांतरित होता है)। इन्हें एक जोड़ी में भी व्यवस्थित किया जा सकता है <math>\mathcal{N} = 1</math> मल्टीप्लेट्स, ए <math>\mathcal{N} = 1</math> वेक्टर मल्टीप्लेट <math>W = (A_\mu, \lambda)</math> और चिरल मल्टीप्लेट <math>\Phi = (\phi, \psi)</math>. इस तरह के मल्टीप्लेट का उपयोग सीबर्ग-विटन सिद्धांत को संक्षिप्त रूप से परिभाषित करने के लिए किया जा सकता है। <math>\mathcal{N} = 2</math> h> हाइपरमल्टीप्लेट या स्केलर मल्टीप्लेट में दो वेइल फ़र्मियन और दो जटिल स्केलर, या दो होते हैं <math>\mathcal{N} = 1</math> चिरल मल्टीप्लेट्स।
<nowiki>=== एन = 2 ===</nowiki> <math>\mathcal{N} = 2</math> h> सदिश या चिरल मल्टीप्लेट <math>\Psi</math> एक गेज क्षेत्र सम्मिलित है <math>A_\mu</math>, दो [[वेइल फर्मियन]] <math>\lambda, \psi</math>, और एक अदिश राशि <math>\phi</math> (जो एक [[गेज समूह]] के आसन्न प्रतिनिधित्व में भी रूपांतरित होता है)। इन्हें एक जोड़ी में भी व्यवस्थित किया जा सकता है <math>\mathcal{N} = 1</math> मल्टीप्लेट्स, ए <math>\mathcal{N} = 1</math> सदिश मल्टीप्लेट <math>W = (A_\mu, \lambda)</math> और चिरल मल्टीप्लेट <math>\Phi = (\phi, \psi)</math>. इस तरह के मल्टीप्लेट का उपयोग सीबर्ग-विटन सिद्धांत को संक्षिप्त रूप से परिभाषित करने के लिए किया जा सकता है। <math>\mathcal{N} = 2</math> h> हाइपरमल्टीप्लेट या स्केलर मल्टीप्लेट में दो वेइल फ़र्मियन और दो सम्मिश्र स्केलर, या दो होते हैं <math>\mathcal{N} = 1</math> चिरल मल्टीप्लेट्स।


=== एन = 4 === <math>\mathcal{N} = 4</math> h> वेक्टर मल्टीप्लेट में एक गेज फ़ील्ड, चार वेइल फ़र्मियन, छह स्केलर और [[सीपीटी समरूपता]] संयुग्म शामिल हैं। यह एन = 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत में दिखाई देता है।
<nowiki>=== एन = 4 ===</nowiki> <math>\mathcal{N} = 4</math> h> सदिश मल्टीप्लेट में एक गेज फ़ील्ड, चार वेइल फ़र्मियन, छह स्केलर और [[सीपीटी समरूपता]] संयुग्म सम्मिलित हैं। यह एन = 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत में दिखाई देता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 08:51, 1 December 2023


सैद्धांतिक भौतिकी में, एक सुपरमल्टीप्लेट संभवतः विस्तारित सुपरसिमेट्री के साथ एक सुपरसिममेट्री बीजगणित का प्रतिनिधित्व है।

फिर एक सुपरफ़ील्ड सुपरस्पेस पर एक क्षेत्र है जिसे इस तरह के प्रतिनिधित्व में महत्व दिया जाता है। नेवली, या समतल सुपरस्पेस पर विचार करते समय, एक सुपरफ़ील्ड को केवल सुपरस्पेस पर एक फ़ंक्शन के रूप में देखा जा सकता है। जो कि औपचारिक रूप से, यह संबंधित सदिश बंडल का एक खंड (फाइबर बंडल) है।


घटनात्मक रूप से, कण का वर्णन करने के लिए सुपरफ़ील्ड का उपयोग किया जाता है। यह सुपरसिमेट्रिक क्षेत्र सिद्धांतों की एक विशेषता है कि कण जोड़े बनाते हैं, जिन्हें सुपरपार्टनर कहा जाता है, जहां बोसॉन को फरमिओन्स के साथ जोड़ा जाता है।

इन सुपरसिमेट्रिक क्षेत्र का उपयोग सुपरसिमेट्रिक क्वांटम क्षेत्र सिद्धांतों के निर्माण के लिए किया जाता है, जहां क्षेत्र को हर्मिटियन ऑपरेटर के लिए बढ़ावा दिया जाता है।

इतिहास

सुपरफील्ड्स की प्रारंभ 1974 के एक लेख में नमस्ते अब्दुस और जे. ए. स्ट्रैथडी द्वारा की गई थी।[1] कुछ महीनों पश्चात् सर्जियो फेरारा, जूलियस वेस और ब्रूनो ज़ुमिनो द्वारा सुपरफ़ील्ड पर संचालन और आंशिक वर्गीकरण प्रस्तुत किया गया। [2]</nowiki></ref>

नामकरण और वर्गीकरण

सबसे अधिक उपयोग किए जाने वाले सुपरमल्टीप्लेट्स सदिश मल्टीप्लेट्स, चिरल मल्टीप्लेट्स (उदाहरण के लिए सुपरसिमेट्री में), हाइपरमल्टीप्लेट्स (उदाहरण के लिए सुपरसिमेट्री में), टेंसर मल्टीप्लेट्स और ग्रेविटी मल्टीप्लेट्स हैं। सदिश मल्टीप्लेट का उच्चतम घटक एक गेज बोसॉन है, चिरल या हाइपरमल्टीप्लेट का उच्चतम घटक एक स्पिनर है, गुरुत्वाकर्षण मल्टीप्लेट का उच्चतम घटक एक ग्रेविटॉन है। नामों को इस प्रकार परिभाषित किया गया है कि वे आयामी कमी के अनुसार अपरिवर्तनीय रहें, चूँकि लोरेंत्ज़ समूह के प्रतिनिधित्व के रूप में क्षेत्रों का संगठन बदल जाता है।

अलग-अलग मल्टीप्लेट्स के लिए इन नामों का उपयोग साहित्य में भिन्न-भिन्न हो सकता है। एक चिरल मल्टीप्लेट (जिसका उच्चतम घटक एक स्पिनर है) को कभी-कभी स्केलर मल्टीप्लेट के रूप में संदर्भित किया जा सकता है, और SUSY, एक सदिश मल्टीप्लेट (जिसका उच्चतम घटक एक सदिश है) को कभी-कभी चिरल मल्टीप्लेट के रूप में संदर्भित किया जा सकता है।

d = 4, N = 1 सुपरसिममेट्री में सुपरफ़ील्ड

इस खंड में कन्वेंशन फिगुएरोआ-ओ'फैरिल (2001) के नोट्स का पालन करते हैं।

एक सामान्य सम्मिश्र सुपरफ़ील्ड में सुपरसिमेट्री का विस्तार इस प्रकार किया जा सकता है

,

जहाँ विभिन्न सम्मिश्र क्षेत्र हैं. यह एक अपरिवर्तनीय प्रतिनिधित्व सुपरमल्टीप्लेट नहीं है, और इसलिए अपरिवर्तनीय प्रतिनिधित्व को अलग करने के लिए विभिन्न बाधाओं की आवश्यकता होती है।

चिरल सुपरफ़ील्ड

एक (एंटी-)चिरल सुपरफ़ील्ड सुपरसिममेट्री का एक सुपरमल्टीप्लेट है।

चार आयामों में, सुपरस्पेस की धारणा का उपयोग करके न्यूनतम सुपरसिमेट्री लिखी जा सकती है। सुपरस्पेस में सामान्य स्पेस-टाइम निर्देशांक , और चार अतिरिक्त फर्मिओनिक निर्देशांक के साथ सम्मिलित हैं, जो दो-घटक (वेइल) स्पिनर और उसके संयुग्म के रूप में परिवर्तित होते हैं।


सुपरसिमेट्री में, एक चिरल सुपरफ़ील्ड, चिरल सुपरस्पेस पर एक फ़ंक्शन है। (पूर्ण) सुपरस्पेस से चिरल सुपरस्पेस तक एक प्रक्षेपण उपस्थित है। तो, चिरल सुपरस्पेस पर एक फ़ंक्शन को पूर्ण सुपरस्पेस पर वापस खींचा जा सकता है। ऐसा फ़ंक्शन सहसंयोजक बाधा को संतुष्ट करता है, जहां सहसंयोजक व्युत्पन्न है, जो सूचकांक संकेतन में दिया गया है

एक चिरल सुपरफ़ील्ड फिर इस प्रकार विस्तारित किया जा सकता है

जहाँ . सुपरफ़ील्ड 'संयुग्मित स्पिन निर्देशांक' से इस अर्थ में स्वतंत्र है कि यह केवल से लेकर तक निर्भर करता है। इसकी जांच की जा सकती है कि

विस्तार की व्याख्या है कि एक सम्मिश्र अदिश क्षेत्र है, एक वेइल स्पिनर है। सहायक सम्मिश्र अदिश क्षेत्र भी है, जिसे परंपरा के अनुसार नाम दिया गया है: यह F-शब्द है जो कुछ सिद्धांतों में महत्वपूर्ण भूमिका निभाता है।

फिर क्षेत्र को के लिए अभिव्यक्ति को प्रतिस्थापित करके मूल निर्देशांक के संदर्भ में व्यक्त किया जा सकता है।


एंटीचिरल सुपरफ़ील्ड

इसी तरह, एंटीचिरल सुपरस्पेस भी है, जो कि चिरल सुपरस्पेस और एंटीचिरल सुपरफील्ड्स का सम्मिश्र संयुग्म है।

एक एंटीचिरल सुपरफ़ील्ड संतुष्ट कहाँ

एक एंटीचिरल सुपरफील्ड का निर्माण चिरल सुपरफील्ड के सम्मिश्र संयुग्म के रूप में किया जा सकता है।

चिरल सुपरफ़ील्ड से क्रियाएँ

एक क्रिया के लिए जिसे एकल चिरल सुपरफ़ील्ड से परिभाषित किया जा सकता है, वेस-ज़ुमिनो मॉडल देखें।

सदिश सुपरफ़ील्ड

सदिश सुपरफील्ड का एक सुपरमल्टीप्लेट है अतिसममिति.

एक सदिश सुपरफ़ील्ड (जिसे वास्तविक सुपरफ़ील्ड भी कहा जाता है) एक फ़ंक्शन है जो वास्तविकता की स्थिति को पूरा करता है . ऐसा क्षेत्र विस्तार को स्वीकार करता है

घटक क्षेत्र हैं

  • दो वास्तविक अदिश क्षेत्र और
  • एक सम्मिश्र अदिश क्षेत्र
  • दो वेइल स्पिनर क्षेत्र और
  • एक वास्तविक सदिश क्षेत्र (गेज क्षेत्र)

सुपरसिमेट्रिक गेज सिद्धांत में उनके परिवर्तन गुणों और उपयोगों पर आगे चर्चा की गई है।

गेज परिवर्तन का उपयोग करते हुए, क्षेत्र और शून्य पर सेट किया जा सकता है. इसे वेस-ज़ुमिनो गेज के नाम से जाना जाता है। इस गेज में, विस्तार बहुत सरल रूप धारण कर लेता है

तब का सुपरपार्टनर है , जबकि एक सहायक अदिश क्षेत्र है. इसे परंपरागत रूप से कहा जाता है , और इसे डी-टर्म के रूप में जाना जाता है।

स्केलर

एक अदिश राशि कभी भी सुपरफ़ील्ड का उच्चतम घटक नहीं होती है; यह किसी सुपरफ़ील्ड में दिखाई देता है या नहीं, यह स्पेसटाइम के आयाम पर निर्भर करता है। उदाहरण के लिए, 10-आयामी एन = 1 सिद्धांत में सदिश मल्टीप्लेट में केवल एक सदिश और एक मेजराना-वेइल स्पिनर होता है, जबकि डी-डायमेंशनल टोरस्र्स पर इसकी आयामी कमी एक सदिश मल्टीप्लेट होती है जिसमें डी वास्तविक स्केलर होते हैं। इसी प्रकार, 11-आयामी सिद्धांत में सीमित संख्या में फ़ील्ड, गुरुत्वाकर्षण गुणक के साथ केवल एक सुपरमल्टीप्लेट होता है, और इसमें कोई स्केलर नहीं होता है। हालाँकि, फिर से डी-टोरस पर अधिकतम गुरुत्वाकर्षण गुणक में इसकी आयामी कमी में स्केलर सम्मिलित होते हैं।

हाइपरमल्टीप्लेट

हाइपरमल्टीप्लेट एक विस्तारित सुपरसिमेट्री बीजगणित का एक प्रकार का प्रतिनिधित्व है, विशेष रूप से मैटर मल्टीप्लेट का 4 आयामों में सुपरसिममेट्री, जिसमें दो सम्मिश्र अदिश क्षेत्र ए सम्मिलित हैंi, एक डिराक स्पिनर क्षेत्र ψ, और दो अतिरिक्त सहायक क्षेत्र कॉम्प्लेक्स स्केलर Fi.

हाइपरमल्टीप्लेट नाम N=2 सुपरसिमेट्री के लिए प्रयुक्त पुराने शब्द हाइपरसिमेट्री से आया है Fayet (1976); इस शब्द को छोड़ दिया गया है, लेकिन इसके कुछ अभ्यावेदन के लिए हाइपरमल्टीप्लेट नाम अभी भी उपयोग किया जाता है।

विस्तारित सुपरसिममेट्री (एन > 1)

यह खंड विस्तारित सुपरसिमेट्री में आमतौर पर उपयोग किए जाने वाले कुछ इरेड्यूसेबल सुपरमल्टीप्लेट्स को रिकॉर्ड करता है मामला। इनका निर्माण उच्चतम-वजन प्रतिनिधित्व निर्माण द्वारा इस अर्थ में किया गया है कि सुपरचार्ज द्वारा नष्ट किया गया एक वैक्यूम सदिश है . इरेप्स का आयाम है . द्रव्यमान रहित कणों का प्रतिनिधित्व करने वाले सुपरमल्टीप्लेट्स के लिए, भौतिक आधार पर अधिकतम अनुमत है है , जबकि पुनर्सामान्यीकरण के लिए, अधिकतम अनुमति है है .[3]


=== एन = 2 === h> सदिश या चिरल मल्टीप्लेट एक गेज क्षेत्र सम्मिलित है , दो वेइल फर्मियन , और एक अदिश राशि (जो एक गेज समूह के आसन्न प्रतिनिधित्व में भी रूपांतरित होता है)। इन्हें एक जोड़ी में भी व्यवस्थित किया जा सकता है मल्टीप्लेट्स, ए सदिश मल्टीप्लेट और चिरल मल्टीप्लेट . इस तरह के मल्टीप्लेट का उपयोग सीबर्ग-विटन सिद्धांत को संक्षिप्त रूप से परिभाषित करने के लिए किया जा सकता है। h> हाइपरमल्टीप्लेट या स्केलर मल्टीप्लेट में दो वेइल फ़र्मियन और दो सम्मिश्र स्केलर, या दो होते हैं चिरल मल्टीप्लेट्स।

=== एन = 4 === h> सदिश मल्टीप्लेट में एक गेज फ़ील्ड, चार वेइल फ़र्मियन, छह स्केलर और सीपीटी समरूपता संयुग्म सम्मिलित हैं। यह एन = 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत में दिखाई देता है।

यह भी देखें

  • सुपरसिमेट्रिक गेज सिद्धांत
  • डी-टर्म
  • एफ-टर्म

संदर्भ

  1. Salam, Abdus; Strathdee, J. (May 1994). सुपर-गेज परिवर्तन. pp. 404–409. Bibcode:1994spas.book..404S. doi:10.1142/9789812795915_0047. ISBN 978-981-02-1662-7. Retrieved 3 April 2023. {{cite book}}: |journal= ignored (help)
  2. रेफरी नाम = fwz >Ferrara, Sergio; Wess, Julius; Zumino, Bruno (1974). "सुपरगेज मल्टीप्लेट्स और सुपरफील्ड्स". Phys. Lett. B. 51 (3): 239–241. Bibcode:1974PhLB...51..239F. doi:10.1016/0370-2693(74)90283-4. Retrieved 3 April 2023.<nowiki>
  3. Krippendorf, Sven; Quevedo, Fernando; Schlotterer, Oliver (5 November 2010). "सुपरसिमेट्री और अतिरिक्त आयामों पर कैम्ब्रिज व्याख्यान". arXiv:1011.1491 [hep-th].