विद्युत स्थितिज ऊर्जा: Difference between revisions

From Vigyanwiki
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Potential energy that results from conservative Coulomb forces}}
{{Short description|Potential energy that results from conservative Coulomb forces}}


'''विद्युत स्थितिज ऊर्जा''' जूल में मापा जाने वाला संभावित ऊर्जा है, जो [[रूढ़िवादी बल|कंजरवेटिव]] [[कूलम्ब बल|कूलम्ब]] [[बलों]] के परिणाम स्वरूप होता है और परिभाषित [[भौतिक प्रणाली]] के अंदर विशिष्ट बिंदु प्रभारों के समाकृति से संबद्ध होता है। किसी वस्तु को उसके स्वयं के विद्युत आवेश या अन्य विद्युत आवेशित वस्तुओं के सापेक्ष स्थिति के आधार पर विद्युत स्थितिज ऊर्जा कहा जा सकता है।


 
विद्युत स्थितिज ऊर्जा शब्द का उपयोग [[समय-परिवर्तन प्रणाली|टाइम वैरिएंट प्रणाली]] के रूप में होता है, टाइम वैरिएंट [[विद्युत क्षेत्र|विद्युत क्षेत्रों]] वाले प्रणाली में [[संभावित ऊर्जा]] का वर्णन करने के लिए किया जाता है, जबकि स्थिर वैद्युत संभावित ऊर्जा शब्द का उपयोग [[समय-अपरिवर्तनीय प्रणाली|टाइम वैरिएंट प्रणाली]] के रूप में होता है, इस प्रकार टाइम वैरिएंट विद्युत क्षेत्रों वाली प्रणाली में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है।
विद्युत स्थितिज ऊर्जा  जूल में मापा जाने वाला संभावित ऊर्जा है, जो [[रूढ़िवादी बल|कंजरवेटिव]]  [[कूलम्ब बल|कूलम्ब]] [[बलों]] के परिणाम स्वरूप होता है और परिभाषित [[भौतिक प्रणाली]] के अंदर विशिष्ट बिंदु प्रभारों के कॉन्फ़िगरेशन से संबद्ध होता है। किसी वस्तु को उसके स्वयं के विद्युत आवेश या अन्य विद्युत आवेशित वस्तुओं के सापेक्ष स्थिति के आधार पर विद्युत स्थितिज ऊर्जा कहा जा सकता है।
 
विद्युत स्थितिज ऊर्जा शब्द का उपयोग [[समय-परिवर्तन प्रणाली|टाइम वैरिएंट प्रणाली]] के रूप में होता है, टाइम वैरिएंट [[विद्युत क्षेत्र|विद्युत क्षेत्रों]] वाले प्रणाली में [[संभावित ऊर्जा]] का वर्णन करने के लिए किया जाता है, जबकि स्थिर वैद्युत संभावित ऊर्जा शब्द का उपयोग [[समय-अपरिवर्तनीय प्रणाली|टाइम वैरिएंट प्रणाली]] के रूप में होता है, इस प्रकार टाइम वैरिएंट विद्युत क्षेत्रों वाली प्रणाली में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है।


=='''परिभाषा'''==
=='''परिभाषा'''==
बिंदु आवेश विद्युत स्थितिज ऊर्जा की इस प्रणाली को सम्म्लित करने के लिए आवश्यक [[कार्य (भौतिकी)|कार्य भौतिकी]] के रूप में परिभाषित किया जाता है, जैसा कि प्रणाली में अनंत दूरी से होता है, इस प्रकार वैकल्पिक रूप से किसी दिए गए आवेश या आवेश प्रणाली की विद्युत स्थितिज ऊर्जा को बिना किसी त्वरण के आवेश या आवेश प्रणाली को अनंत से वर्तमान कॉन्फ़िगरेशन तक लाने में बाहरी एजेंट द्वारा किया गया कुल कार्य कहा जाता है।
बिंदु आवेश विद्युत स्थितिज ऊर्जा की इस प्रणाली को सम्म्लित करने के लिए आवश्यक [[कार्य (भौतिकी)|कार्य भौतिकी]] के रूप में परिभाषित किया जाता है, जैसा कि प्रणाली में अनंत दूरी से होता है, इस प्रकार वैकल्पिक रूप से किसी दिए गए आवेश या आवेश प्रणाली की विद्युत स्थितिज ऊर्जा को बिना किसी त्वरण के आवेश या आवेश प्रणाली को अनंत से वर्तमान समाकृति तक लाने में बाहरी एजेंट द्वारा किया गया कुल कार्य कहा जाता है।




Line 35: Line 33:
विद्युत स्थितिज ऊर्जा की SI इकाई जूल है, जिसका नाम अंग्रेजी भौतिक विज्ञानी [[जेम्स प्रेस्कॉट जूल]] के नाम पर रखा गया है[[ और | और]] सीजीएस प्रणाली में एर्ग ऊर्जा की इकाई है जो 10−7 जूल के बराबर है। इसके अतिरिक्त [[इलेक्ट्रॉनवोल्ट|इलेक्ट्रॉन वोल्ट]] का उपयोग किया जा सकता है और एक 1 eV = 1.602×10<sup>−19</sup>जूल के बराबर होता है।  
विद्युत स्थितिज ऊर्जा की SI इकाई जूल है, जिसका नाम अंग्रेजी भौतिक विज्ञानी [[जेम्स प्रेस्कॉट जूल]] के नाम पर रखा गया है[[ और | और]] सीजीएस प्रणाली में एर्ग ऊर्जा की इकाई है जो 10−7 जूल के बराबर है। इसके अतिरिक्त [[इलेक्ट्रॉनवोल्ट|इलेक्ट्रॉन वोल्ट]] का उपयोग किया जा सकता है और एक 1 eV = 1.602×10<sup>−19</sup>जूल के बराबर होता है।  


=='''एक बिंदु आवेश की स्थिरवैद्युत स्थितिज ऊर्जा'''==
==एक बिंदु आवेश की स्थिरवैद्युत स्थितिज ऊर्जा==


===एक बिंदु आवेश q दूसरे बिंदु आवेश की उपस्थिति में Q===
===एक बिंदु आवेश q दूसरे बिंदु आवेश की उपस्थिति में Q===
Line 49: Line 47:
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}


जहाँ, <math>k_\text{e} = \frac{1}{4\pi\varepsilon_0}</math> [[कूलम्ब स्थिरांक]] है, r बिंदु आवेश q और Q के बीच की दूरी है और q और Q आवेश हैं, आवेशों का निरपेक्ष मान नहीं अर्थात, सूत्र में रखे जाने पर एक [[इलेक्ट्रॉन]] का आवेश ऋणात्मक मान के रूप में होता है प्रमाण की निम्नलिखित रूपरेखा विद्युत स्थितिज ऊर्जा की परिभाषा और कूलम्ब के नियम से इस सूत्र की व्युत्पत्ति बताती है   
जहाँ, <math>k_\text{e} = \frac{1}{4\pi\varepsilon_0}</math> [[कूलम्ब स्थिरांक]] है, r बिंदु आवेश q और Q के बीच की दूरी है और q और Q आवेश हैं, आवेशों का निरपेक्ष मान नहीं अर्थात, सूत्र में रखे जाने पर एक [[इलेक्ट्रॉन]] का आवेश ऋणात्मक मान के रूप में होता है प्रमाण की निम्नलिखित रूपरेखा विद्युत स्थितिज ऊर्जा की परिभाषा और कूलम्ब के नियम से इस सूत्र की व्युत्पत्ति बताती है   


{{math proof
{{math proof
Line 78: Line 76:
<nowiki>{\displaystyle |\mathbf {E} |=E={\frac {1}{4\pi \varepsilon _{0}}}{\frac {Q}{s^{2}}}}</nowiki>
<nowiki>{\displaystyle |\mathbf {E} |=E={\frac {1}{4\pi \varepsilon _{0}}}{\frac {Q}{s^{2}}}}</nowiki>


और अभिन्न का मूल्यांकन आसानी से किया जा सकता है:
और अभिन्न का मूल्यांकन आसानी से किया जा सकता है




Line 85: Line 83:
}}
}}


==='''n बिंदु आवेश Q की उपस्थिति में एक बिंदु आवेश q<sub>i</sub>'''===
===n बिंदु आवेश Q की उपस्थिति में एक बिंदु आवेश q<sub>i</sub>===
[[File:Electric potential energy 3 charge.gif|thumb|Q के कारण q की स्थिरवैद्युत स्थितिज ऊर्जा<sub>1</sub> और प्र<sub>2</sub> चार्ज प्रणाली:<math>U_E = q\frac{1}{4 \pi \varepsilon_0} \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} \right) </math>]]स्थिरवैद्युत स्थितिज ऊर्जा, U<sub>E</sub>, एक बिंदु आवेश q का n बिंदु आवेश Q<sub>i</sub> की उपस्थिति में संदर्भ स्थिति के रूप में आवेशों के बीच अनंत पृथक्करण को लेते हुए, इस प्रकार दर्शाया गया है  
[[File:Electric potential energy 3 charge.gif|thumb|Q के कारण q की स्थिरवैद्युत स्थितिज ऊर्जा<sub>1</sub> और प्र<sub>2</sub> चार्ज प्रणाली:<math>U_E = q\frac{1}{4 \pi \varepsilon_0} \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} \right) </math>]]स्थिरवैद्युत स्थितिज ऊर्जा, U<sub>E</sub>, एक बिंदु आवेश q का n बिंदु आवेश Q<sub>i</sub> की उपस्थिति में संदर्भ स्थिति के रूप में आवेशों के बीच अनंत पृथक्करण को लेते हुए, इस प्रकार दर्शाया गया है  


Line 98: Line 96:
जहाँ <math>k_\text{e} = \frac{1}{4\pi\varepsilon_0}</math> कूलम्ब स्थिरांक है, r<sub>i</sub> बिंदु आवेश q और Q<sub>i</sub> के बीच की दूरी है और q और Q<sub>i</sub> आवेशों के निर्दिष्ट मान हैं।
जहाँ <math>k_\text{e} = \frac{1}{4\pi\varepsilon_0}</math> कूलम्ब स्थिरांक है, r<sub>i</sub> बिंदु आवेश q और Q<sub>i</sub> के बीच की दूरी है और q और Q<sub>i</sub> आवेशों के निर्दिष्ट मान हैं।


=='''बिंदु आवेशों की प्रणाली में संग्रहित स्थिर वैद्युत स्थितिज ऊर्जा'''==
==बिंदु आवेशों की प्रणाली में संग्रहित स्थिर वैद्युत स्थितिज ऊर्जा==
N चार्ज q1, q2, …, qN की प्रणाली में क्रमशः r1, r2, …, rN स्थिति में संग्रहीत स्थिरवैद्युत स्थितिज ऊर्जा U<sub>E</sub> है
N चार्ज q1, q2, …, qN की प्रणाली में क्रमशः r1, r2, …, rN स्थिति में संग्रहीत स्थिरवैद्युत स्थितिज ऊर्जा U<sub>E</sub> है
{{NumBlk||
{{NumBlk||
Line 128: Line 126:
<math display="block">U_E = \frac{1}{2}\left[q_2 \Phi_1(\mathbf r_2) + q_1 \Phi_2(\mathbf r_1)\right]</math>
<math display="block">U_E = \frac{1}{2}\left[q_2 \Phi_1(\mathbf r_2) + q_1 \Phi_2(\mathbf r_1)\right]</math>


इसे यह कहकर सामान्यीकृत किया जा सकता है कि स्थिर वैद्युत संभावित ऊर्जा''U''<sub>E</sub> की एक प्रणाली में संग्रहित है ''N क्रमशः r1, r2, …, rN स्थिति पर q1, q2, …, qN को चार्ज करता है
इसे यह कहकर सामान्यीकृत किया जा सकता है कि स्थिर वैद्युत संभावित ऊर्जा ''U''<sub>E</sub> की एक प्रणाली में संग्रहित है ''N क्रमशः r1, r2, …, rN स्थिति पर q1, q2, …, qN को चार्ज करता है


<math display="block">U_\mathrm{E} = \frac{1}{2}\sum_{i=1}^N q_i \Phi(\mathbf{r}_i).</math>
<math display="block">U_\mathrm{E} = \frac{1}{2}\sum_{i=1}^N q_i \Phi(\mathbf{r}_i).</math>
}}
}}


==='''एक बिंदु आवेश की प्रणाली में संग्रहीत ऊर्जा'''===
===एक बिंदु आवेश की प्रणाली में संग्रहीत ऊर्जा===


मात्र एक बिंदु आवेश वाले प्रणाली की स्थिर वैद्युत संभावित ऊर्जा शून्य है, क्योंकि स्थिर वैद्युत बल का कोई अन्य स्रोत नहीं है जिसके विरुद्ध किसी बाहरी एजेंट को बिंदु आवेश को अनंत से उसके अंतिम समष्टि तक ले जाने के लिए काम करना होता है।
मात्र एक बिंदु आवेश वाले प्रणाली की स्थिर वैद्युत संभावित ऊर्जा शून्य है, क्योंकि स्थिर वैद्युत बल का कोई अन्य स्रोत नहीं है जिसके विरुद्ध किसी बाहरी एजेंट को बिंदु आवेश को अनंत से उसके अंतिम समष्टि तक ले जाने के लिए काम करना होता है।


एक बिंदु आवेश की अपनी स्थिर वैद्युत क्षमता के साथ परस्पर क्रिया के संबंध में एक सामान्य प्रश्न उठता है। चूँकि यह अंतःक्रिया स्वयं बिंदु आवेश को समष्टि करने का कार्य नहीं करती है, इसलिए यह प्रणाली की संग्रहीत ऊर्जा में योगदान नहीं करती है।
एक बिंदु आवेश की अपनी स्थिर वैद्युत क्षमता के साथ परस्पर क्रिया के संबंध में एक सामान्य प्रश्न उठता है। चूँकि यह अंतःक्रिया स्वयं बिंदु आवेश को समष्टि करने का कार्य नहीं करती है, इसलिए यह प्रणाली की संग्रहीत ऊर्जा में योगदान नहीं करती है।


==='''दो बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा'''===
===दो बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा===
एक बिंदु आवेश, q को एक बिंदु आवेश Q<sub>1</sub> के निकट उसकी अंतिम स्थिति में लाने पर विचार करते है, ''Q<sub>1</sub>'' के कारण विद्युत क्षमता Φ(r) है
एक बिंदु आवेश, q को एक बिंदु आवेश Q<sub>1</sub> के निकट उसकी अंतिम स्थिति में लाने पर विचार करते है, ''Q<sub>1</sub>'' के कारण विद्युत क्षमता Φ(r) है
<math display="block"> \Phi(r) = k_e \frac{Q_1}{r} </math>
<math display="block"> \Phi(r) = k_e \frac{Q_1}{r} </math>
Line 183: Line 181:
}}
}}


== '''निर्वात में स्थिर वैद्युत क्षेत्र वितरण में संग्रहीत ऊर्जा''' ==
== निर्वात में स्थिर वैद्युत क्षेत्र वितरण में संग्रहीत ऊर्जा ==


ऊर्जा घनत्व या प्रति इकाई आयतन ऊर्जा, <math display="inline">\frac{dU}{dV}</math>, एक सतत चार्ज वितरण के [[इलेक्ट्रोस्टैटिक क्षेत्र|स्थिर वैद्युत क्षेत्र]] का है
ऊर्जा घनत्व या प्रति इकाई आयतन ऊर्जा, <math display="inline">\frac{dU}{dV}</math>, एक सतत चार्ज वितरण के [[इलेक्ट्रोस्टैटिक क्षेत्र|स्थिर वैद्युत क्षेत्र]] का है
Line 228: Line 226:
}}
}}


=='''इलेक्ट्रॉनिक तत्वों में संग्रहित ऊर्जा'''==
==इलेक्ट्रॉनिक तत्वों में संग्रहित ऊर्जा==
[[File:Electronic component electrolytic capacitors.jpg|right|thumb|150x150px यू है<sub>E</sub>={{sfrac|1|2}} सीवी<sup>2</sup>]]सर्किट में कुछ तत्व ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित कर सकते हैं। उदाहरण के लिए, एक अवरोधक विद्युत ऊर्जा को ऊष्मा में परिवर्तित करता है। इसे जूल का प्रथम नियम कहा जाता है। एक संधारित्र इसे अपने विद्युत क्षेत्र में संग्रहीत करता है। एक संधारित्र में संग्रहीत कुल स्थिर वैद्युत संभावित ऊर्जा द्वारा दी गई है
[[File:Electronic component electrolytic capacitors.jpg|right|thumb|150x150px यू है<sub>E</sub>={{sfrac|1|2}} सीवी<sup>2</sup>]]सर्किट में कुछ तत्व ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित कर सकते हैं। उदाहरण के लिए, एक अवरोधक विद्युत ऊर्जा को ऊष्मा में परिवर्तित करता है। इसे जूल का प्रथम नियम कहा जाता है। एक संधारित्र इसे अपने विद्युत क्षेत्र में संग्रहीत करता है। एक संधारित्र में संग्रहीत कुल स्थिर वैद्युत संभावित ऊर्जा द्वारा दी गई है
<math display="block"> U_E = \frac{1}{2}QV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}</math>
<math display="block"> U_E = \frac{1}{2}QV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}</math>
जहां C धारिता है, V विद्युत विभवांतर है, और Q संधारित्र में संग्रहीत विद्युत आवेश है।
जहां C धारिता है, V विद्युत विभवांतर है और Q संधारित्र में संग्रहीत विद्युत आवेश है।


{{math proof
{{math proof
Line 242: Line 240:
0
0
{\displaystyle dq\to 0}
{\displaystyle dq\to 0}
  ताकि प्रत्येक वेतन वृद्धि को उसके अंतिम स्थान पर इकट्ठा करने के लिए किए गए कार्य की मात्रा को इस प्रकार व्यक्त किया जा सके
  इसलिये, प्रत्येक वेतन वृद्धि को उसके अंतिम स्थान पर इकट्ठा करने के लिए किए गए कार्य की मात्रा को इस प्रकार व्यक्त किया जा सके
<math display="block"> W_q = V \, dq = \frac{q}{C}dq.</math>
<math display="block"> W_q = V \, dq = \frac{q}{C}dq.</math>


Line 248: Line 246:
<math display="block"> W = \int dW = \int_0^Q V \, dq = \frac{1}{C} \int_0^Q q \, dq = \frac{Q^2}{2C}.</math>
<math display="block"> W = \int dW = \int_0^Q V \, dq = \frac{1}{C} \int_0^Q q \, dq = \frac{Q^2}{2C}.</math>
जहाँ   
जहाँ   
Q संधारित्र पर कुल आवेश है। यह कार्य इलेक्ट्रोस्टैटिक संभावित ऊर्जा के रूप में संग्रहीत होता है, इसलिए,
Q संधारित्र पर कुल आवेश है। यह कार्य स्थिरवैद्युत संभावित ऊर्जा के रूप में संग्रहीत होता है, इसलिए,
<math display="block"> W = U_E = \frac{Q^2}{2C}.</math>
<math display="block"> W = U_E = \frac{Q^2}{2C}.</math>
विशेष रूप से, यह अभिव्यक्ति केवल तभी मान्य है यदि
विशेष रूप से, यह अभिव्यक्ति केवल तभी मान्य है यदि
{डिस्प्लेस्टाइल dqto 0}, जो धातु इलेक्ट्रोड वाले बड़े कैपेसिटर जैसे कई-चार्ज सिस्टम के लिए है। कुछ-आवेश प्रणालियों के लिए आवेश की पृथक प्रकृति महत्वपूर्ण है। कुछ-चार्ज संधारित्र में संग्रहीत कुल ऊर्जा है
{डिस्प्लेस्टाइल dqto 0}, जो धातु इलेक्ट्रोड वाले बड़े संधारित्र जैसे कई-चार्ज सिस्टम के लिए है। कुछ-आवेश प्रणालियों के लिए आवेश की पृथक प्रकृति महत्वपूर्ण है। कुछ-चार्ज संधारित्र में संग्रहीत कुल ऊर्जा है
<math display="block"> U_E = \frac{Q^2}{C}</math>
<math display="block"> U_E = \frac{Q^2}{C}</math>
जो कि न्यूनतम भौतिक चार्ज वृद्धि का उपयोग करके चार्ज असेंबली की एक विधि द्वारा प्राप्त किया जाता है
जो कि न्यूनतम भौतिक चार्ज वृद्धि का उपयोग करके चार्ज असेंबली की एक विधि द्वारा प्राप्त किया जाता है
Δ
Δ
{डिस्प्लेस्टाइल डेल्टा क्यू=} कहां
{डिस्प्लेस्टाइल डेल्टा q=e} जहाँ
e आवेश की प्राथमिक इकाई है और
e आवेश की प्राथमिक इकाई है और
क्यू=ने कहाँ
Q=Ne जहाँ
N संधारित्र में आवेशों की कुल संख्या है।
N संधारित्र में आवेशों की कुल संख्या है।
}}
}}
Line 263: Line 261:
कुल स्थिरवैद्युत स्थितिज ऊर्जा को विद्युत क्षेत्र के रूप में भी व्यक्त किया जा सकता है
कुल स्थिरवैद्युत स्थितिज ऊर्जा को विद्युत क्षेत्र के रूप में भी व्यक्त किया जा सकता है
<math display="block">U_E = \frac{1}{2} \int_V \mathrm{E} \cdot \mathrm{D} \, dV</math>
<math display="block">U_E = \frac{1}{2} \int_V \mathrm{E} \cdot \mathrm{D} \, dV</math>
जहाँ <math>\mathrm{D}</math> एक ढांकता हुआ सामग्री के भीतर [[विद्युत विस्थापन क्षेत्र]] है और एकीकरण ढांकता हुआ की पूरी मात्रा पर होता है।
जहाँ <math>\mathrm{D}</math> एक विस्थापन हुआ सामग्री के भीतर [[विद्युत विस्थापन क्षेत्र]] है और एकीकरण विस्थापन की पूरी मात्रा पर होता है।


(संधारित्र प्लेटों के बीच ऊर्जा हस्तांतरण पर आधारित एक आभासी प्रयोग से पता चलता है कि जब स्थिर वैद्युत ऊर्जा को विद्युत क्षेत्र और विस्थापन सदिश के संदर्भ में व्यक्त किया जाता है तो एक अतिरिक्त शब्द को ध्यान में रखा जाना चाहिए <ref>{{Cite journal |last=Sallese |date=2016-06-01 |title=अर्धचालकों में स्थिरवैद्युत ऊर्जा का एक नया घटक|url=https://doi.org/10.1140/epjb/e2016-60865-4 |journal=The European Physical Journal B |language=en |volume=89 |issue=6 |pages=136 |doi=10.1140/epjb/e2016-60865-4 |s2cid=120731496 |issn=1434-6036|doi-access=free }}</ref>.
(संधारित्र प्लेटों के बीच ऊर्जा हस्तांतरण पर आधारित एक आभासी प्रयोग से पता चलता है कि जब स्थिर वैद्युत ऊर्जा को विद्युत क्षेत्र और विस्थापन सदिश के संदर्भ में व्यक्त किया जाता है तो एक अतिरिक्त शब्द को ध्यान में रखा जाना चाहिए <ref>{{Cite journal |last=Sallese |date=2016-06-01 |title=अर्धचालकों में स्थिरवैद्युत ऊर्जा का एक नया घटक|url=https://doi.org/10.1140/epjb/e2016-60865-4 |journal=The European Physical Journal B |language=en |volume=89 |issue=6 |pages=136 |doi=10.1140/epjb/e2016-60865-4 |s2cid=120731496 |issn=1434-6036|doi-access=free }}</ref>.


जबकि यह अतिरिक्त ऊर्जा इंसुलेटर के साथ काम करते समय रद्द हो जाती है, सामान्यतः इसे नजरअंदाज नहीं किया जा सकता है, उदाहरण के लिए अर्धचालक के साथ।)
जबकि यह अतिरिक्त ऊर्जा इंसुलेटर के साथ काम करते समय नष्ट हो जाती है, सामान्यतः इसे अर्धचालकों के स्थिति में नजरअंदाज नहीं किया जा सकता है।


किसी आवेशित ढांकता हुआ के भीतर संग्रहित कुल स्थिरवैद्युत स्थितिज ऊर्जा को निरंतर आयतन आवेश के रूप में भी व्यक्त किया जा सकता है, <math>\rho</math>,
किसी आवेशित विस्थापन के भीतर संग्रहित कुल स्थिरवैद्युत स्थितिज ऊर्जा को निरंतर आयतन आवेश के रूप में भी व्यक्त किया जा सकता है, <math>\rho</math>,
<math display="block">U_E = \frac{1}{2} \int_V \rho \Phi \, dV</math>
<math display="block">U_E = \frac{1}{2} \int_V \rho \Phi \, dV</math>
जहां ढांकता हुआ की संपूर्ण मात्रा पर एकीकरण होता है।
जहां विस्थापन की संपूर्ण मात्रा पर एकीकरण होता है।


ये पश्चात वाली दो अभिव्यक्तियाँ मात्र उन स्थितियों के लिए मान्य हैं जब चार्ज की सबसे छोटी वृद्धि शून्य है (<math>dq \to 0</math>) जैसे धात्विक इलेक्ट्रोडों की उपस्थिति में ढांकता हुआ या कई आवेशों वाले ढांकता हुआ।
ये बाद वाले दो एक्सप्रेशन मात्र उन स्थितियों के लिए मान्य हैं जब चार्ज की सबसे छोटी वृद्धि शून्य है (<math>dq \to 0</math>) जैसे धात्विक इलेक्ट्रोडों की उपस्थिति में विस्थापन या कई आवेशों वाले विस्थापन होते है।


=='''टिप्पणियाँ'''==
=='''टिप्पणियाँ'''==
Line 293: Line 291:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 15/08/2023]]
[[Category:Created On 15/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:33, 2 February 2024

विद्युत स्थितिज ऊर्जा जूल में मापा जाने वाला संभावित ऊर्जा है, जो कंजरवेटिव कूलम्ब बलों के परिणाम स्वरूप होता है और परिभाषित भौतिक प्रणाली के अंदर विशिष्ट बिंदु प्रभारों के समाकृति से संबद्ध होता है। किसी वस्तु को उसके स्वयं के विद्युत आवेश या अन्य विद्युत आवेशित वस्तुओं के सापेक्ष स्थिति के आधार पर विद्युत स्थितिज ऊर्जा कहा जा सकता है।

विद्युत स्थितिज ऊर्जा शब्द का उपयोग टाइम वैरिएंट प्रणाली के रूप में होता है, टाइम वैरिएंट विद्युत क्षेत्रों वाले प्रणाली में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है, जबकि स्थिर वैद्युत संभावित ऊर्जा शब्द का उपयोग टाइम वैरिएंट प्रणाली के रूप में होता है, इस प्रकार टाइम वैरिएंट विद्युत क्षेत्रों वाली प्रणाली में संभावित ऊर्जा का वर्णन करने के लिए किया जाता है।

परिभाषा

बिंदु आवेश विद्युत स्थितिज ऊर्जा की इस प्रणाली को सम्म्लित करने के लिए आवश्यक कार्य भौतिकी के रूप में परिभाषित किया जाता है, जैसा कि प्रणाली में अनंत दूरी से होता है, इस प्रकार वैकल्पिक रूप से किसी दिए गए आवेश या आवेश प्रणाली की विद्युत स्थितिज ऊर्जा को बिना किसी त्वरण के आवेश या आवेश प्रणाली को अनंत से वर्तमान समाकृति तक लाने में बाहरी एजेंट द्वारा किया गया कुल कार्य कहा जाता है।


विद्युत क्षेत्र E की उपस्थिति में स्थिति r पर एक बिंदु आवेश q की स्थिर वैद्युत संभावित ऊर्जा को संदर्भ स्थिति में लाने के लिए स्थिर वैद्युत बल द्वारा किए गए कार्य W के नकारात्मक के रूप में परिभाषित किया गया है। वह स्थिति r §25-1 इस प्रकार है

जहां E स्थिर वैद्युत क्षेत्र है और dr संदर्भ स्थिति से अंतिम स्थिति r तक वक्र में विस्थापन सदिश है।

स्थिर वैद्युत संभावित ऊर्जा को विद्युत क्षमता से निम्नानुसार परिभाषित किया जा सकता है:

विद्युत क्षमता की उपस्थिति में स्थिति r पर एक बिंदु आवेश q की स्थिर वैद्युत संभावित ऊर्जा UE इस प्रकार Φ को आवेश और विद्युत क्षमता के उत्पाद के रूप में परिभाषित किया गया है।

,

जहाँ

Φ आवेशों द्वारा उत्पन्न विद्युत क्षमता है, जो स्थिति r का एक फलन है।

इकाइयाँ

विद्युत स्थितिज ऊर्जा की SI इकाई जूल है, जिसका नाम अंग्रेजी भौतिक विज्ञानी जेम्स प्रेस्कॉट जूल के नाम पर रखा गया है और सीजीएस प्रणाली में एर्ग ऊर्जा की इकाई है जो 10−7 जूल के बराबर है। इसके अतिरिक्त इलेक्ट्रॉन वोल्ट का उपयोग किया जा सकता है और एक 1 eV = 1.602×10−19जूल के बराबर होता है।

एक बिंदु आवेश की स्थिरवैद्युत स्थितिज ऊर्जा

एक बिंदु आवेश q दूसरे बिंदु आवेश की उपस्थिति में Q

एक बिंदु आवेश q दूसरे आवेश के विद्युत क्षेत्र में Q.

स्थिर वैद्युत स्थितिज ऊर्जा UE एक बिंदु आवेश Q की उपस्थिति में स्थिति 'r' पर एक बिंदु आवेश q का आवेशों के बीच एक अनंत पृथक्करण को संदर्भ स्थिति के रूप में लेते है,

जहाँ, कूलम्ब स्थिरांक है, r बिंदु आवेश q और Q के बीच की दूरी है और q और Q आवेश हैं, आवेशों का निरपेक्ष मान नहीं अर्थात, सूत्र में रखे जाने पर एक इलेक्ट्रॉन का आवेश ऋणात्मक मान के रूप में होता है प्रमाण की निम्नलिखित रूपरेखा विद्युत स्थितिज ऊर्जा की परिभाषा और कूलम्ब के नियम से इस सूत्र की व्युत्पत्ति बताती है

Outline of proof

किसी आवेश q पर कार्य करने वाले स्थिर वैद्युत बल F को विद्युत क्षेत्र E के संदर्भ में इस प्रकार लिखा जा सकता है

परिभाषा के अनुसार एक बिंदु आवेश q की इलेक्ट्रोस्टैटिक संभावित ऊर्जा UE में परिवर्तन, जो एक विद्युत क्षेत्र E की उपस्थिति में संदर्भ स्थिति rref से स्थिति r तक चला गया है, इसे संदर्भ से लाने के लिए स्थिर वैद्युत बल द्वारा किए गए कार्य का नकारात्मक है। स्थिति rref उस स्थिति r के लिए।

जहाँ

* r = आवेश q के 3डी स्थान में स्थिति, कार्तीय निर्देशांक r = (x, y, z) का उपयोग करते हुए, r = (0,0,0) पर Q आवेश की स्थिति लेते हुए, अदिश r = |r| स्थिति वेक्टर का आदर्श है,
*ds = rref से r तक जाने वाले पथ C के साथ अंतर विस्थापन सदिश के रूप में है
  • mm स्थिर वैद्युत बल द्वारा चार्ज को संदर्भ स्थिति rref से r तक लाने के लिए किया गया कार्य है,

सामान्यतः जब rref अनंत होता है तो UE को शून्य पर सेट किया जाता है:

so

जब कर्ल ∇ × E शून्य होता है, तो ऊपर दी गई रेखा इंटीग्रल चुने गए विशिष्ट पथ C पर निर्भर नहीं करती है, बल्कि केवल उसके अंतिम बिंदुओं पर निर्भर करती है। यह समय-अपरिवर्तनीय विद्युत क्षेत्रों में होता है। जब स्थिर वैद्युत संभावित ऊर्जा के बारे में बात की जाती है, तो समय-अपरिवर्तनीय विद्युत क्षेत्रों को हमेशा माना जाता है, इस मामले में, विद्युत क्षेत्र कंज़र्ववेटिव है और कूलम्ब के नियम का उपयोग किया जा सकता है।

कूलम्ब के नियम का उपयोग करते हुए, यह ज्ञात है कि एक असतत बिंदु आवेश Q द्वारा निर्मित स्थिर वैद्युत बल F और विद्युत क्षेत्र E, रेडियल रूप से Q से निर्देशित होते हैं। स्थिति वेक्टर r और विस्थापन सदिश s की परिभाषा से, यह इस प्रकार है कि r और s Q से भी रेडियल रूप से निर्देशित हैं। इसलिए, E और ds समानांतर होने चाहिए:

कूलम्ब के नियम का उपयोग करके, विद्युत क्षेत्र दिया जाता है

{\displaystyle |\mathbf {E} |=E={\frac {1}{4\pi \varepsilon _{0}}}{\frac {Q}{s^{2}}}}

और अभिन्न का मूल्यांकन आसानी से किया जा सकता है


n बिंदु आवेश Q की उपस्थिति में एक बिंदु आवेश qi

Q के कारण q की स्थिरवैद्युत स्थितिज ऊर्जा1 और प्र2 चार्ज प्रणाली:

स्थिरवैद्युत स्थितिज ऊर्जा, UE, एक बिंदु आवेश q का n बिंदु आवेश Qi की उपस्थिति में संदर्भ स्थिति के रूप में आवेशों के बीच अनंत पृथक्करण को लेते हुए, इस प्रकार दर्शाया गया है

जहाँ कूलम्ब स्थिरांक है, ri बिंदु आवेश q और Qi के बीच की दूरी है और q और Qi आवेशों के निर्दिष्ट मान हैं।

बिंदु आवेशों की प्रणाली में संग्रहित स्थिर वैद्युत स्थितिज ऊर्जा

N चार्ज q1, q2, …, qN की प्रणाली में क्रमशः r1, r2, …, rN स्थिति में संग्रहीत स्थिरवैद्युत स्थितिज ऊर्जा UE है

 

 

 

 

(1)

जहां, प्रत्येक i मान के लिए, Φ('r'i) ri, पर स्थित आवेश को छोड़कर सभी बिंदु आवेशों के कारण स्थिरवैद्युत विभव और इसके समतुल्य है,

जहां rij qi और qj के बीच की दूरी है।

Outline of proof

दो आवेशों की प्रणाली में संग्रहीत स्थिर वैद्युत संभावित ऊर्जा UE द्वारा उत्पन्न स्थिर वैद्युत क्षमता में एक चार्ज की स्थिर वैद्युत संभावित ऊर्जा के बराबर है। कहने का तात्पर्य यह है कि यदि आवेश q1 एक स्थिर वैद्युत क्षमता Φ1 उत्पन्न करता है, जो स्थिति r का एक फलन है, तो

अन्य आवेश के संबंध में भी यही गणना करने पर हमें प्राप्त होता है

स्थिर वैद्युत संभावित ऊर्जा परस्पर साझा की जाती है and ,तो कुल संग्रहीत ऊर्जा है

इसे यह कहकर सामान्यीकृत किया जा सकता है कि स्थिर वैद्युत संभावित ऊर्जा UE की एक प्रणाली में संग्रहित है N क्रमशः r1, r2, …, rN स्थिति पर q1, q2, …, qN को चार्ज करता है

एक बिंदु आवेश की प्रणाली में संग्रहीत ऊर्जा

मात्र एक बिंदु आवेश वाले प्रणाली की स्थिर वैद्युत संभावित ऊर्जा शून्य है, क्योंकि स्थिर वैद्युत बल का कोई अन्य स्रोत नहीं है जिसके विरुद्ध किसी बाहरी एजेंट को बिंदु आवेश को अनंत से उसके अंतिम समष्टि तक ले जाने के लिए काम करना होता है।

एक बिंदु आवेश की अपनी स्थिर वैद्युत क्षमता के साथ परस्पर क्रिया के संबंध में एक सामान्य प्रश्न उठता है। चूँकि यह अंतःक्रिया स्वयं बिंदु आवेश को समष्टि करने का कार्य नहीं करती है, इसलिए यह प्रणाली की संग्रहीत ऊर्जा में योगदान नहीं करती है।

दो बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा

एक बिंदु आवेश, q को एक बिंदु आवेश Q1 के निकट उसकी अंतिम स्थिति में लाने पर विचार करते है, Q1 के कारण विद्युत क्षमता Φ(r) है

इसलिए हम Q1 की क्षमता में q की स्थिरवैद्युत स्थितिज ऊर्जा प्राप्त करते हैं जैसा दर्शाया गया है
जहां r1 दो बिंदु आवेशों के बीच पृथक्करण है।

तीन बिंदु आवेशों की प्रणाली में संग्रहीत ऊर्जा

तीन आवेशों की प्रणाली की स्थिर वैद्युत संभावित ऊर्जा को दो आवेशों Q2 और Q3 के कारण Q1 की स्थिर वैद्युत संभावित ऊर्जा के साथ कन्फ्यूज्ड नहीं किया जाना चाहिए, क्योंकि बाद वाले में दो आवेशों Q2 और Q3 की प्रणाली की स्थिर वैद्युत संभावित ऊर्जा के रूप में सम्मिलित नहीं है।

तीन आवेशों की प्रणाली में संग्रहीत स्थिर वैद्युत संभावित ऊर्जा इस प्रकार है:

Outline of proof

(1) में दिए गए सूत्र का उपयोग करके तीन आवेशों की प्रणाली की स्थिर वैद्युत स्थितिज ऊर्जा होती है

जहाँ Φ (

1 ) \Phi ({\mathbf {r}}_{1}) आवेश Q2 और Q3 द्वारा निर्मित r1 में विद्युत क्षमता है,

जहाँ rij आवेश Qi और Qj के बीच की दूरी है।

यदि हम सब कुछ जोड़ दें:

अंत में हम पाते हैं कि स्थिर वैद्युत संभावित ऊर्जा तीन आवेशों की प्रणाली में संग्रहीत होती है

निर्वात में स्थिर वैद्युत क्षेत्र वितरण में संग्रहीत ऊर्जा

ऊर्जा घनत्व या प्रति इकाई आयतन ऊर्जा, , एक सतत चार्ज वितरण के स्थिर वैद्युत क्षेत्र का है

Outline of proof

कोई निरंतर चार्ज वितरण की इलेक्ट्रोस्टैटिक संभावित ऊर्जा के लिए समीकरण ले सकता है और इसे इलेक्ट्रोस्टैटिक क्षेत्र के संदर्भ में रख सकता है।

चूँकि विभेदक रूप में स्थिरवैद्युत क्षेत्र के लिए गॉस का नियम बताता है

जहाँ

  • \mathbf{E} विद्युत क्षेत्र सदिश है
  • \rho किसी सामग्री में बंधे द्विध्रुवीय आवेशों सहित कुल आवेश घनत्व हैl
  • \varepsilon _{0} मुक्त स्थान की परमिटिटिविटी है,

जब

तो, अब निम्नलिखित विचलन वेक्टर पहचान का उपयोग कर रहे हैं

हमारे पास है

विचलन प्रमेय का उपयोग करना और क्षेत्र को अनंत पर लेना

तो, ऊर्जा घनत्व, या प्रति इकाई आयतन ऊर्जा

  इलेक्ट्रोस्टैटिक क्षेत्र का है

इलेक्ट्रॉनिक तत्वों में संग्रहित ऊर्जा

150x150px यू हैE=1/2 सीवी2

सर्किट में कुछ तत्व ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित कर सकते हैं। उदाहरण के लिए, एक अवरोधक विद्युत ऊर्जा को ऊष्मा में परिवर्तित करता है। इसे जूल का प्रथम नियम कहा जाता है। एक संधारित्र इसे अपने विद्युत क्षेत्र में संग्रहीत करता है। एक संधारित्र में संग्रहीत कुल स्थिर वैद्युत संभावित ऊर्जा द्वारा दी गई है

जहां C धारिता है, V विद्युत विभवांतर है और Q संधारित्र में संग्रहीत विद्युत आवेश है।

Outline of proof

कोई संधारित्र पर अनंत लघु वृद्धि में आवेश एकत्रित कर सकता है, � � → 0 {\displaystyle dq\to 0}

इसलिये, प्रत्येक वेतन वृद्धि को उसके अंतिम स्थान पर इकट्ठा करने के लिए किए गए कार्य की मात्रा को इस प्रकार व्यक्त किया जा सके

इस प्रकार संधारित्र को पूरी तरह से चार्ज करने के लिए किया गया कुल कार्य तब होता है

जहाँ Q संधारित्र पर कुल आवेश है। यह कार्य स्थिरवैद्युत संभावित ऊर्जा के रूप में संग्रहीत होता है, इसलिए,
विशेष रूप से, यह अभिव्यक्ति केवल तभी मान्य है यदि {डिस्प्लेस्टाइल dqto 0}, जो धातु इलेक्ट्रोड वाले बड़े संधारित्र जैसे कई-चार्ज सिस्टम के लिए है। कुछ-आवेश प्रणालियों के लिए आवेश की पृथक प्रकृति महत्वपूर्ण है। कुछ-चार्ज संधारित्र में संग्रहीत कुल ऊर्जा है
जो कि न्यूनतम भौतिक चार्ज वृद्धि का उपयोग करके चार्ज असेंबली की एक विधि द्वारा प्राप्त किया जाता है Δ {डिस्प्लेस्टाइल डेल्टा q=e} जहाँ e आवेश की प्राथमिक इकाई है और Q=Ne जहाँ N संधारित्र में आवेशों की कुल संख्या है।

कुल स्थिरवैद्युत स्थितिज ऊर्जा को विद्युत क्षेत्र के रूप में भी व्यक्त किया जा सकता है

जहाँ एक विस्थापन हुआ सामग्री के भीतर विद्युत विस्थापन क्षेत्र है और एकीकरण विस्थापन की पूरी मात्रा पर होता है।

(संधारित्र प्लेटों के बीच ऊर्जा हस्तांतरण पर आधारित एक आभासी प्रयोग से पता चलता है कि जब स्थिर वैद्युत ऊर्जा को विद्युत क्षेत्र और विस्थापन सदिश के संदर्भ में व्यक्त किया जाता है तो एक अतिरिक्त शब्द को ध्यान में रखा जाना चाहिए [1].

जबकि यह अतिरिक्त ऊर्जा इंसुलेटर के साथ काम करते समय नष्ट हो जाती है, सामान्यतः इसे अर्धचालकों के स्थिति में नजरअंदाज नहीं किया जा सकता है।

किसी आवेशित विस्थापन के भीतर संग्रहित कुल स्थिरवैद्युत स्थितिज ऊर्जा को निरंतर आयतन आवेश के रूप में भी व्यक्त किया जा सकता है, ,

जहां विस्थापन की संपूर्ण मात्रा पर एकीकरण होता है।

ये बाद वाले दो एक्सप्रेशन मात्र उन स्थितियों के लिए मान्य हैं जब चार्ज की सबसे छोटी वृद्धि शून्य है () जैसे धात्विक इलेक्ट्रोडों की उपस्थिति में विस्थापन या कई आवेशों वाले विस्थापन होते है।

टिप्पणियाँ


संदर्भ

  1. Sallese (2016-06-01). "अर्धचालकों में स्थिरवैद्युत ऊर्जा का एक नया घटक". The European Physical Journal B (in English). 89 (6): 136. doi:10.1140/epjb/e2016-60865-4. ISSN 1434-6036. S2CID 120731496.


बाहरी संबंध