बहुपद वलय: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Algebraic structure}} {{More citations needed|date=February 2008}} {{Ring theory sidebar|Commutative}} गणित में, विशेष रूप...")
 
No edit summary
Line 1: Line 1:
{{Short description|Algebraic structure}}
{{Short description|Algebraic structure}}{{Ring theory sidebar|Commutative}}
{{More citations needed|date=February 2008}}
 
{{Ring theory sidebar|Commutative}}


गणित में, विशेष रूप से [[बीजगणित]] के क्षेत्र में, एक [[बहुपद]] वलय या बहुपद बीजगणित एक वलय (गणित) है (जो एक [[क्रमविनिमेय बीजगणित]] (संरचना) भी है) जो एक या अधिक [[अनिश्चित (चर)]] में बहुपदों के [[सेट (गणित)]] से बनता है। s (पारंपरिक रूप से इसे वेरिएबल (गणित) भी कहा जाता है) एक अन्य रिंग (गणित) में गुणांक के साथ, अक्सर एक [[फ़ील्ड (गणित)]]।
गणित में, विशेष रूप से [[बीजगणित]] के क्षेत्र में, एक [[बहुपद]] वलय या बहुपद बीजगणित एक वलय (गणित) है (जो एक [[क्रमविनिमेय बीजगणित]] (संरचना) भी है) जो एक या अधिक [[अनिश्चित (चर)]] में बहुपदों के [[सेट (गणित)]] से बनता है। s (पारंपरिक रूप से इसे वेरिएबल (गणित) भी कहा जाता है) एक अन्य रिंग (गणित) में गुणांक के साथ, अक्सर एक [[फ़ील्ड (गणित)]]।


अक्सर, बहुपद वलय शब्द का तात्पर्य एक क्षेत्र में एक अनिश्चित बहुपद वलय के विशेष मामले से है। ऐसे बहुपद छल्लों का महत्व उन गुणों की उच्च संख्या पर निर्भर करता है जो पूर्णांक#बीजगणितीय_गुणों के वलय के साथ समान होते हैं।
अक्सर, बहुपद वलय शब्द का तात्पर्य एक क्षेत्र में एक अनिश्चित बहुपद वलय के विशेष मामले से है। ऐसे बहुपद छल्लों का महत्व उन गुणों की उच्च संख्या पर निर्भर करता है जो पूर्णांकया बीजगणितीय_गुणों के वलय के साथ समान होते हैं।


बहुपद वलय होते हैं और अक्सर गणित के कई हिस्सों जैसे [[संख्या सिद्धांत]], क्रमविनिमेय बीजगणित और [[बीजगणितीय ज्यामिति]] में मौलिक होते हैं। [[वलय सिद्धांत]] में, बहुपद वलय के कुछ गुणों को सामान्य बनाने के लिए छल्लों के कई वर्ग, जैसे अद्वितीय गुणनखंड डोमेन, नियमित वलय, समूह वलय, [[औपचारिक शक्ति श्रृंखला]], [[अयस्क बहुपद]], श्रेणीबद्ध वलय, पेश किए गए हैं।
बहुपद वलय होते हैं और अक्सर गणित के कई हिस्सों जैसे [[संख्या सिद्धांत]], क्रमविनिमेय बीजगणित और [[बीजगणितीय ज्यामिति]] में मौलिक होते हैं। [[वलय सिद्धांत]] में, बहुपद वलय के कुछ गुणों को सामान्य बनाने के लिए छल्लों के कई वर्ग, जैसे अद्वितीय गुणनखंड डोमेन, नियमित वलय, समूह वलय, [[औपचारिक शक्ति श्रृंखला]], [[अयस्क बहुपद]], श्रेणीबद्ध वलय, पेश किए गए हैं।
Line 73: Line 70:


=== बहुपद मूल्यांकन ===
=== बहुपद मूल्यांकन ===
{{further|Polynomial evaluation}}
होने देना {{mvar|K}} एक फ़ील्ड हो या, अधिक सामान्यतः, एक क्रमविनिमेय वलय, और {{mvar|R}} एक अंगूठी युक्त {{mvar|K}}. किसी भी बहुपद के लिए {{mvar|P}} में {{math|''K''[''X'']}} और कोई भी तत्व {{mvar|a}} में {{mvar|R}}, का प्रतिस्थापन {{mvar|X}} साथ {{mvar|a}} में {{mvar|P}} के एक तत्व को परिभाषित करता है {{math|''R''}}, जो [[बहुपद संकेतन]] है {{math|''P''(''a'')}}. यह तत्व अंदर ले जाने से प्राप्त होता है {{mvar|R}} प्रतिस्थापन के बाद बहुपद की अभिव्यक्ति द्वारा संकेतित संक्रियाएँ। इस गणना को मूल्यांकन कहा जाता है {{math|''P''}} पर {{math|''a''}}. उदाहरण के लिए, यदि हमारे पास है
होने देना {{mvar|K}} एक फ़ील्ड हो या, अधिक सामान्यतः, एक क्रमविनिमेय वलय, और {{mvar|R}} एक अंगूठी युक्त {{mvar|K}}. किसी भी बहुपद के लिए {{mvar|P}} में {{math|''K''[''X'']}} और कोई भी तत्व {{mvar|a}} में {{mvar|R}}, का प्रतिस्थापन {{mvar|X}} साथ {{mvar|a}} में {{mvar|P}} के एक तत्व को परिभाषित करता है {{math|''R''}}, जो [[बहुपद संकेतन]] है {{math|''P''(''a'')}}. यह तत्व अंदर ले जाने से प्राप्त होता है {{mvar|R}} प्रतिस्थापन के बाद बहुपद की अभिव्यक्ति द्वारा संकेतित संक्रियाएँ। इस गणना को मूल्यांकन कहा जाता है {{math|''P''}} पर {{math|''a''}}. उदाहरण के लिए, यदि हमारे पास है
:<math>P = X^2 - 1,</math>
:<math>P = X^2 - 1,</math>
Line 113: Line 109:


===व्युत्पत्ति===
===व्युत्पत्ति===
{{cleanup|section|reason=the subsections reduced to a wikilink require a summary of the linked article|date=June 2023}}
{{main|Formal derivative|Derivation (differential algebra)}}
बहुपद का [[औपचारिक व्युत्पन्न]]|(औपचारिक) व्युत्पन्न
बहुपद का [[औपचारिक व्युत्पन्न]]|(औपचारिक) व्युत्पन्न
:<math>a_0+a_1X+a_2X^2+\cdots+a_nX^n</math>
:<math>a_0+a_1X+a_2X^2+\cdots+a_nX^n</math>
Line 124: Line 118:


====वर्ग-मुक्त गुणनखंडन====
====वर्ग-मुक्त गुणनखंडन====
{{main|Square-free polynomial}}
====लैग्रेंज इंटरपोलेशन====
====लैग्रेंज इंटरपोलेशन====
{{main|Lagrange polynomial#Barycentric form}}
====बहुपद अपघटन====
====बहुपद अपघटन====
{{main|Polynomial decomposition}}
=== गुणनखंडीकरण ===
=== गुणनखंडीकरण ===
{{main|Polynomial factorization}}
गुणनखंडन को छोड़कर, के सभी पिछले गुण {{math|''K''[''X'']}} [[प्रभावी प्रमाण]] हैं, क्योंकि उनके प्रमाण, जैसा कि ऊपर दर्शाया गया है, संपत्ति के परीक्षण और उन बहुपदों की गणना के लिए [[कलन विधि]] से जुड़े हैं जिनके अस्तित्व पर जोर दिया गया है। इसके अलावा ये एल्गोरिदम कुशल हैं, क्योंकि उनकी कम्प्यूटेशनल जटिलता इनपुट आकार का एक [[द्विघात समय]] फ़ंक्शन है।
गुणनखंडन को छोड़कर, के सभी पिछले गुण {{math|''K''[''X'']}} [[प्रभावी प्रमाण]] हैं, क्योंकि उनके प्रमाण, जैसा कि ऊपर दर्शाया गया है, संपत्ति के परीक्षण और उन बहुपदों की गणना के लिए [[कलन विधि]] से जुड़े हैं जिनके अस्तित्व पर जोर दिया गया है। इसके अलावा ये एल्गोरिदम कुशल हैं, क्योंकि उनकी कम्प्यूटेशनल जटिलता इनपुट आकार का एक [[द्विघात समय]] फ़ंक्शन है।


Line 147: Line 133:


===न्यूनतम बहुपद===
===न्यूनतम बहुपद===
{{main|Minimal polynomial (field theory)}}
अगर {{math|''θ''}} साहचर्य बीजगणित का एक तत्व है|सहयोगी {{mvar|K}}-बीजगणित {{math|''L''}}, या बहुपद मूल्यांकन पर {{math|''θ''}} अद्वितीय बीजगणित समरूपता है {{math|''φ''}} से {{math|''K''[''X'']}} में {{math|''L''}} वह मानचित्र {{math|''X''}} को {{math|''θ''}} और के तत्वों को प्रभावित नहीं करता {{math|''K''}} स्वयं (यह पहचान फ़ंक्शन है {{math|''K''}}). इसमें प्रतिस्थापन शामिल है {{math|''X''}} साथ {{math|''θ''}} प्रत्येक बहुपद में। वह है,
 
अगर {{math|''θ''}} साहचर्य बीजगणित का एक तत्व है|सहयोगी {{mvar|K}}-बीजगणित {{math|''L''}}, #बहुपद मूल्यांकन पर {{math|''θ''}} अद्वितीय बीजगणित समरूपता है {{math|''φ''}} से {{math|''K''[''X'']}} में {{math|''L''}} वह मानचित्र {{math|''X''}} को {{math|''θ''}} और के तत्वों को प्रभावित नहीं करता {{math|''K''}} स्वयं (यह पहचान फ़ंक्शन है {{math|''K''}}). इसमें प्रतिस्थापन शामिल है {{math|''X''}} साथ {{math|''θ''}} प्रत्येक बहुपद में। वह है,
: <math>
: <math>
   \varphi\left(a_m X^m + a_{m - 1} X^{m - 1} + \cdots + a_1 X + a_0\right) =  
   \varphi\left(a_m X^m + a_{m - 1} X^{m - 1} + \cdots + a_1 X + a_0\right) =  
Line 157: Line 141:
अगर {{math|''φ''}} इंजेक्शन है, द्वारा उत्पन्न उपबीजगणित {{mvar|θ}} समरूपी है {{math|''K''[''X'']}}. इस मामले में, इस उपबीजगणित को अक्सर द्वारा निरूपित किया जाता है {{math|''K''[''θ'']}}. समरूपता के कारण संकेतन अस्पष्टता आम तौर पर हानिरहित होती है।
अगर {{math|''φ''}} इंजेक्शन है, द्वारा उत्पन्न उपबीजगणित {{mvar|θ}} समरूपी है {{math|''K''[''X'']}}. इस मामले में, इस उपबीजगणित को अक्सर द्वारा निरूपित किया जाता है {{math|''K''[''θ'']}}. समरूपता के कारण संकेतन अस्पष्टता आम तौर पर हानिरहित होती है।


{{anchor|minimal polynomial}}
यदि मूल्यांकन समरूपता इंजेक्शन नहीं है, तो इसका मतलब है कि इसका [[कर्नेल (बीजगणित)]] एक गैर-शून्य [[आदर्श (रिंग सिद्धांत)]] है, जिसमें सभी बहुपद शामिल हैं जो शून्य हो जाते हैं {{mvar|X}} के साथ प्रतिस्थापित किया गया है {{mvar|θ}}. इस आदर्श में कुछ अद्वैत बहुपद के सभी गुणज शामिल होते हैं, जिसे न्यूनतम बहुपद कहा जाता है {{mvar|θ}}. न्यूनतम शब्द इस तथ्य से प्रेरित है कि इसकी डिग्री आदर्श के तत्वों की डिग्री के बीच न्यूनतम है।
यदि मूल्यांकन समरूपता इंजेक्शन नहीं है, तो इसका मतलब है कि इसका [[कर्नेल (बीजगणित)]] एक गैर-शून्य [[आदर्श (रिंग सिद्धांत)]] है, जिसमें सभी बहुपद शामिल हैं जो शून्य हो जाते हैं {{mvar|X}} के साथ प्रतिस्थापित किया गया है {{mvar|θ}}. इस आदर्श में कुछ अद्वैत बहुपद के सभी गुणज शामिल होते हैं, जिसे न्यूनतम बहुपद कहा जाता है {{mvar|θ}}. न्यूनतम शब्द इस तथ्य से प्रेरित है कि इसकी डिग्री आदर्श के तत्वों की डिग्री के बीच न्यूनतम है।


Line 183: Line 166:


==परिभाषा (बहुभिन्नरूपी मामला)==
==परिभाषा (बहुभिन्नरूपी मामला)==
{{Anchor|multivariable}}
दिया गया {{mvar|n}} प्रतीक <math>X_1, \dots, X_n,</math> अनिश्चित (चर) कहा जाता है, [[एकपद]]ी (शक्ति उत्पाद भी कहा जाता है)
दिया गया {{mvar|n}} प्रतीक <math>X_1, \dots, X_n,</math> अनिश्चित (चर) कहा जाता है, [[एकपद]]ी (शक्ति उत्पाद भी कहा जाता है)
:<math>X_1^{\alpha_1}\cdots X_n^{\alpha_n}</math>
:<math>X_1^{\alpha_1}\cdots X_n^{\alpha_n}</math>
Line 219: Line 201:
===बहुपद व्यंजक===
===बहुपद व्यंजक===
{{main|Algebraic expression}}
{{main|Algebraic expression}}
{{Unreferenced section|date=January 2021}}
बहुपद अभिव्यक्ति एक [[अभिव्यक्ति (गणित)]] है जो अदिशों (के तत्वों) से निर्मित होती है {{mvar|K}}), अनिश्चित, और गैर-नकारात्मक पूर्णांक शक्तियों के अलावा, गुणा और घातांक के संचालक।
बहुपद अभिव्यक्ति एक [[अभिव्यक्ति (गणित)]] है जो अदिशों (के तत्वों) से निर्मित होती है {{mvar|K}}), अनिश्चित, और गैर-नकारात्मक पूर्णांक शक्तियों के अलावा, गुणा और घातांक के संचालक।


Line 228: Line 209:


=== श्रेणीबद्ध लक्षण वर्णन ===
=== श्रेणीबद्ध लक्षण वर्णन ===
{{anchor|free commutative algebra|free commutative ring}}
अगर {{mvar|K}} एक क्रमविनिमेय वलय है, बहुपद वलय {{math|''K''[''X''<sub>1</sub>, …, ''X''<sub>''n''</sub>]}} में निम्नलिखित सार्वभौमिक संपत्ति है: प्रत्येक क्रमविनिमेय बीजगणित (संरचना) के लिए|अनुविनिमेय {{mvar|K}}-बीजगणित {{mvar|A}}, और हर {{mvar|n}}-ट्यूपल {{math|(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} के तत्वों का {{mvar|A}}, से एक अद्वितीय बीजगणित समरूपता है {{math|''K''[''X''<sub>1</sub>, …, ''X''<sub>''n''</sub>]}} को {{mvar|A}} जो प्रत्येक को मैप करता है <math>X_i</math> संबंधित को <math>x_i.</math> यह समरूपता मूल्यांकन समरूपता है जिसमें प्रतिस्थापन शामिल है <math>X_i</math> साथ <math>x_i</math> प्रत्येक बहुपद में.
अगर {{mvar|K}} एक क्रमविनिमेय वलय है, बहुपद वलय {{math|''K''[''X''<sub>1</sub>, …, ''X''<sub>''n''</sub>]}} में निम्नलिखित सार्वभौमिक संपत्ति है: प्रत्येक क्रमविनिमेय बीजगणित (संरचना) के लिए|अनुविनिमेय {{mvar|K}}-बीजगणित {{mvar|A}}, और हर {{mvar|n}}-ट्यूपल {{math|(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} के तत्वों का {{mvar|A}}, से एक अद्वितीय बीजगणित समरूपता है {{math|''K''[''X''<sub>1</sub>, …, ''X''<sub>''n''</sub>]}} को {{mvar|A}} जो प्रत्येक को मैप करता है <math>X_i</math> संबंधित को <math>x_i.</math> यह समरूपता मूल्यांकन समरूपता है जिसमें प्रतिस्थापन शामिल है <math>X_i</math> साथ <math>x_i</math> प्रत्येक बहुपद में.


Line 240: Line 220:


==श्रेणीबद्ध संरचना==
==श्रेणीबद्ध संरचना==
{{empty section|date=April 2022}}
== एक रिंग पर यूनीवेरिएट बनाम मल्टीवेरिएट ==
== एक रिंग पर यूनीवेरिएट बनाम मल्टीवेरिएट ==
में एक बहुपद <math>K[X_1, \ldots, X_n]</math> अनिश्चित में एक अविभाज्य बहुपद के रूप में माना जा सकता है <math>X_n</math> रिंग के ऊपर <math>K[X_1, \ldots, X_{n-1}],</math> उन शब्दों को पुनः समूहित करके जिनमें समान शक्ति होती है <math>X_n,</math> अर्थात्, पहचान का उपयोग करके
में एक बहुपद <math>K[X_1, \ldots, X_n]</math> अनिश्चित में एक अविभाज्य बहुपद के रूप में माना जा सकता है <math>X_n</math> रिंग के ऊपर <math>K[X_1, \ldots, X_{n-1}],</math> उन शब्दों को पुनः समूहित करके जिनमें समान शक्ति होती है <math>X_n,</math> अर्थात्, पहचान का उपयोग करके
Line 275: Line 253:


=== हिल्बर्ट का मूल प्रमेय ===
=== हिल्बर्ट का मूल प्रमेय ===
{{Main|Hilbert's Nullstellensatz}}
Nullstellensatz (शून्य-लोकस प्रमेय के लिए जर्मन) एक प्रमेय है, जिसे सबसे पहले [[डेविड हिल्बर्ट]] ने सिद्ध किया था, जो बीजगणित के मौलिक प्रमेय के कुछ पहलुओं को बहुभिन्नरूपी मामले तक विस्तारित करता है। यह बीजगणितीय ज्यामिति के लिए मूलभूत है, क्योंकि यह बीजगणितीय गुणों के बीच एक मजबूत संबंध स्थापित करता है <math>K[X_1, \ldots, X_n]</math> और बीजगणितीय किस्मों के ज्यामितीय गुण, जो (मोटे तौर पर कहें तो) अंतर्[[निहित समीकरण]] द्वारा परिभाषित बिंदुओं का समूह हैं।
Nullstellensatz (शून्य-लोकस प्रमेय के लिए जर्मन) एक प्रमेय है, जिसे सबसे पहले [[डेविड हिल्बर्ट]] ने सिद्ध किया था, जो बीजगणित के मौलिक प्रमेय के कुछ पहलुओं को बहुभिन्नरूपी मामले तक विस्तारित करता है। यह बीजगणितीय ज्यामिति के लिए मूलभूत है, क्योंकि यह बीजगणितीय गुणों के बीच एक मजबूत संबंध स्थापित करता है <math>K[X_1, \ldots, X_n]</math> और बीजगणितीय किस्मों के ज्यामितीय गुण, जो (मोटे तौर पर कहें तो) अंतर्[[निहित समीकरण]] द्वारा परिभाषित बिंदुओं का समूह हैं।


Line 286: Line 263:


===बेज़ौट का प्रमेय===
===बेज़ौट का प्रमेय===
{{main|Bézout's theorem}}
बेज़ाउट के प्रमेय को बीजगणित के मौलिक प्रमेय के संस्करण के बहुभिन्नरूपी सामान्यीकरण के रूप में देखा जा सकता है जो दावा करता है कि डिग्री का एक अविभाज्य बहुपद {{mvar|n}} है {{mvar|n}} जटिल जड़ें, यदि उन्हें उनकी बहुलताओं के साथ गिना जाए।
बेज़ाउट के प्रमेय को बीजगणित के मौलिक प्रमेय के संस्करण के बहुभिन्नरूपी सामान्यीकरण के रूप में देखा जा सकता है जो दावा करता है कि डिग्री का एक अविभाज्य बहुपद {{mvar|n}} है {{mvar|n}} जटिल जड़ें, यदि उन्हें उनकी बहुलताओं के साथ गिना जाए।


Line 293: Line 269:
सामान्य मामले को बताने के लिए, और अनंत पर शून्य को विशेष शून्य नहीं मानने के लिए, [[सजातीय बहुपद]]ों के साथ काम करना और [[प्रक्षेप्य स्थान]] में शून्य पर विचार करना सुविधाजनक है। इस संदर्भ में, एक सजातीय बहुपद का प्रक्षेप्य शून्य <math>P(X_0, \ldots, X_n)</math> है, एक स्केलिंग तक, ए {{math|(''n'' + 1)}}-ट्यूपल <math>(x_0, \ldots, x_n)</math> के तत्वों का {{mvar|K}} वह अलग है {{math|(0, …, 0)}}, और ऐसा कि <math>P(x_0, \ldots, x_n) = 0 </math>. यहाँ, स्केलिंग तक का मतलब है <math>(x_0, \ldots, x_n)</math> और <math>(\lambda x_0, \ldots, \lambda x_n)</math> किसी भी अशून्य के लिए समान शून्य माना जाता है <math>\lambda\in K.</math> दूसरे शब्दों में, शून्य आयाम के प्रक्षेप्य स्थान में एक बिंदु के [[सजातीय निर्देशांक]] का एक सेट है {{mvar|n}}.
सामान्य मामले को बताने के लिए, और अनंत पर शून्य को विशेष शून्य नहीं मानने के लिए, [[सजातीय बहुपद]]ों के साथ काम करना और [[प्रक्षेप्य स्थान]] में शून्य पर विचार करना सुविधाजनक है। इस संदर्भ में, एक सजातीय बहुपद का प्रक्षेप्य शून्य <math>P(X_0, \ldots, X_n)</math> है, एक स्केलिंग तक, ए {{math|(''n'' + 1)}}-ट्यूपल <math>(x_0, \ldots, x_n)</math> के तत्वों का {{mvar|K}} वह अलग है {{math|(0, …, 0)}}, और ऐसा कि <math>P(x_0, \ldots, x_n) = 0 </math>. यहाँ, स्केलिंग तक का मतलब है <math>(x_0, \ldots, x_n)</math> और <math>(\lambda x_0, \ldots, \lambda x_n)</math> किसी भी अशून्य के लिए समान शून्य माना जाता है <math>\lambda\in K.</math> दूसरे शब्दों में, शून्य आयाम के प्रक्षेप्य स्थान में एक बिंदु के [[सजातीय निर्देशांक]] का एक सेट है {{mvar|n}}.


फिर, बेज़ाउट का प्रमेय कहता है: दिया गया {{mvar|n}}डिग्रियों के सजातीय बहुपद <math>d_1, \ldots, d_n</math> में {{math|''n'' + 1}} अनिश्चित, जिसमें [[बीजगणितीय रूप से बंद विस्तार]] में सामान्य प्रक्षेप्य शून्य की केवल एक सीमित संख्या होती है {{mvar|K}}, इन शून्यों की बहुलता (गणित)#अंतच्छेदन बहुलता का योग गुणनफल है <math>d_1 \cdots d_n.</math>
फिर, बेज़ाउट का प्रमेय कहता है: दिया गया {{mvar|n}}डिग्रियों के सजातीय बहुपद <math>d_1, \ldots, d_n</math> में {{math|''n'' + 1}} अनिश्चित, जिसमें [[बीजगणितीय रूप से बंद विस्तार]] में सामान्य प्रक्षेप्य शून्य की केवल एक सीमित संख्या होती है {{mvar|K}}, इन शून्यों की बहुलता (गणित)या अंतच्छेदन बहुलता का योग गुणनफल है <math>d_1 \cdots d_n.</math>




===जैकोबियन अनुमान===
===जैकोबियन अनुमान===
{{main|Jacobian conjecture}}
{{expand section|date=June 2020}}
==सामान्यीकरण==
==सामान्यीकरण==


Line 307: Line 280:
बहुपद वलय का एक छोटा सा सामान्यीकरण अपरिमित रूप से अनेक अनिश्चितों की अनुमति देना है। प्रत्येक एकपदी में अभी भी केवल अनिश्चित संख्याओं की एक सीमित संख्या शामिल होती है (ताकि इसकी डिग्री सीमित रहे), और प्रत्येक बहुपद अभी भी एकपदी का एक (सीमित) रैखिक संयोजन है। इस प्रकार, किसी भी व्यक्तिगत बहुपद में केवल सीमित रूप से कई अनिश्चितताएं शामिल होती हैं, और बहुपदों को शामिल करने वाली कोई भी परिमित गणना सीमित रूप से कई अनिश्चितताओं में बहुपदों के कुछ उपसमूह के अंदर रहती है। इस सामान्यीकरण में सामान्य बहुपद वलय का, [[मुक्त क्रमविनिमेय बीजगणित]] जैसा ही गुण है, अंतर केवल इतना है कि यह एक अनंत सेट पर एक स्वतंत्र वस्तु है।
बहुपद वलय का एक छोटा सा सामान्यीकरण अपरिमित रूप से अनेक अनिश्चितों की अनुमति देना है। प्रत्येक एकपदी में अभी भी केवल अनिश्चित संख्याओं की एक सीमित संख्या शामिल होती है (ताकि इसकी डिग्री सीमित रहे), और प्रत्येक बहुपद अभी भी एकपदी का एक (सीमित) रैखिक संयोजन है। इस प्रकार, किसी भी व्यक्तिगत बहुपद में केवल सीमित रूप से कई अनिश्चितताएं शामिल होती हैं, और बहुपदों को शामिल करने वाली कोई भी परिमित गणना सीमित रूप से कई अनिश्चितताओं में बहुपदों के कुछ उपसमूह के अंदर रहती है। इस सामान्यीकरण में सामान्य बहुपद वलय का, [[मुक्त क्रमविनिमेय बीजगणित]] जैसा ही गुण है, अंतर केवल इतना है कि यह एक अनंत सेट पर एक स्वतंत्र वस्तु है।


एक सामान्यीकृत बहुपद के रूप में एक परिबद्ध डिग्री के साथ एकपदी के अनंत (या परिमित) औपचारिक योग को परिभाषित करके, एक सख्ती से बड़ी अंगूठी पर भी विचार किया जा सकता है। यह वलय सामान्य बहुपद वलय से बड़ा है, क्योंकि इसमें चरों का अनंत योग शामिल है। हालाँकि, यह कई वेरिएबल्स में पावर सीरीज़ रिंग#पावर सीरीज़ से छोटा है। ऐसी अंगूठी का उपयोग अनंत सेट पर [[सममित कार्यों की अंगूठी]] के निर्माण के लिए किया जाता है।
एक सामान्यीकृत बहुपद के रूप में एक परिबद्ध डिग्री के साथ एकपदी के अनंत (या परिमित) औपचारिक योग को परिभाषित करके, एक सख्ती से बड़ी अंगूठी पर भी विचार किया जा सकता है। यह वलय सामान्य बहुपद वलय से बड़ा है, क्योंकि इसमें चरों का अनंत योग शामिल है। हालाँकि, यह कई वेरिएबल्स में पावर सीरीज़ रिंगया पावर सीरीज़ से छोटा है। ऐसी अंगूठी का उपयोग अनंत सेट पर [[सममित कार्यों की अंगूठी]] के निर्माण के लिए किया जाता है।


===सामान्यीकृत घातांक===
===सामान्यीकृत घातांक===
{{Main|Monoid ring}}
एक साधारण सामान्यीकरण केवल उस सेट को बदलता है जिससे चर पर घातांक निकाले जाते हैं। जोड़ और गुणा के सूत्र तभी तक सार्थक हैं जब तक कोई घातांक जोड़ सके: {{nowrap|1=''X''{{i sup|''i''}} ⋅ ''X''{{i sup|''j''}} = ''X''{{i sup|''i''+''j''}}}}. एक सेट जिसके लिए जोड़ समझ में आता है (बंद और सहयोगी है) को मोनॉयड कहा जाता है। एक मोनॉयड एन से एक रिंग आर तक कार्यों का सेट जो केवल सीमित रूप से कई स्थानों पर गैर-शून्य है, उसे आर [एन] के रूप में ज्ञात एक रिंग की संरचना दी जा सकती है, आर में गुणांक के साथ एन की '[[मोनोइड]] रिंग'। जोड़ है घटक-वार परिभाषित, ताकि यदि {{nowrap|1=''c'' = ''a'' + ''b''}}, तब {{nowrap|1=''c''<sub>''n''</sub> = ''a''<sub>''n''</sub> + ''b''<sub>''n''</sub>}} एन में प्रत्येक एन के लिए। गुणन को कॉची उत्पाद के रूप में परिभाषित किया गया है, ताकि यदि {{nowrap|1=''c'' = ''a'' ⋅ ''b''}}, फिर एन, सी में प्रत्येक एन के लिए<sub>''n''</sub> सभी का योग है a<sub>''i''</sub>b<sub>''j''</sub> जहां i, j का दायरा N के तत्वों के सभी युग्मों पर होता है जिनका योग n होता है।
एक साधारण सामान्यीकरण केवल उस सेट को बदलता है जिससे चर पर घातांक निकाले जाते हैं। जोड़ और गुणा के सूत्र तभी तक सार्थक हैं जब तक कोई घातांक जोड़ सके: {{nowrap|1=''X''{{i sup|''i''}} ⋅ ''X''{{i sup|''j''}} = ''X''{{i sup|''i''+''j''}}}}. एक सेट जिसके लिए जोड़ समझ में आता है (बंद और सहयोगी है) को मोनॉयड कहा जाता है। एक मोनॉयड एन से एक रिंग आर तक कार्यों का सेट जो केवल सीमित रूप से कई स्थानों पर गैर-शून्य है, उसे आर [एन] के रूप में ज्ञात एक रिंग की संरचना दी जा सकती है, आर में गुणांक के साथ एन की '[[मोनोइड]] रिंग'। जोड़ है घटक-वार परिभाषित, ताकि यदि {{nowrap|1=''c'' = ''a'' + ''b''}}, तब {{nowrap|1=''c''<sub>''n''</sub> = ''a''<sub>''n''</sub> + ''b''<sub>''n''</sub>}} एन में प्रत्येक एन के लिए। गुणन को कॉची उत्पाद के रूप में परिभाषित किया गया है, ताकि यदि {{nowrap|1=''c'' = ''a'' ⋅ ''b''}}, फिर एन, सी में प्रत्येक एन के लिए<sub>''n''</sub> सभी का योग है a<sub>''i''</sub>b<sub>''j''</sub> जहां i, j का दायरा N के तत्वों के सभी युग्मों पर होता है जिनका योग n होता है।


Line 325: Line 297:


===शक्ति श्रृंखला===
===शक्ति श्रृंखला===
{{Main|Formal power series}}
पावर श्रृंखला अनंत रूप से कई गैर-शून्य शब्दों की अनुमति देकर घातांक की पसंद को एक अलग दिशा में सामान्यीकृत करती है। इसके लिए घातांक के लिए उपयोग किए जाने वाले मोनॉइड एन पर विभिन्न परिकल्पनाओं की आवश्यकता होती है, ताकि यह सुनिश्चित किया जा सके कि कॉची उत्पाद में योग सीमित योग हैं। वैकल्पिक रूप से, एक टोपोलॉजी को रिंग पर रखा जा सकता है, और फिर एक टोपोलॉजी को अभिसरण अनंत रकम तक सीमित कर दिया जाता है। एन की मानक पसंद के लिए, गैर-नकारात्मक पूर्णांक, कोई परेशानी नहीं है, और औपचारिक शक्ति श्रृंखला की अंगूठी को घटक-वार जोड़ के साथ एन से रिंग आर तक कार्यों के सेट के रूप में परिभाषित किया गया है, और कॉची द्वारा दिया गया गुणन है। उत्पाद। घात श्रृंखला के वलय को उत्पन्न आदर्श के संबंध में बहुपद वलय के वलय के समापन के रूप में भी देखा जा सकता है {{mvar|x}}.
पावर श्रृंखला अनंत रूप से कई गैर-शून्य शब्दों की अनुमति देकर घातांक की पसंद को एक अलग दिशा में सामान्यीकृत करती है। इसके लिए घातांक के लिए उपयोग किए जाने वाले मोनॉइड एन पर विभिन्न परिकल्पनाओं की आवश्यकता होती है, ताकि यह सुनिश्चित किया जा सके कि कॉची उत्पाद में योग सीमित योग हैं। वैकल्पिक रूप से, एक टोपोलॉजी को रिंग पर रखा जा सकता है, और फिर एक टोपोलॉजी को अभिसरण अनंत रकम तक सीमित कर दिया जाता है। एन की मानक पसंद के लिए, गैर-नकारात्मक पूर्णांक, कोई परेशानी नहीं है, और औपचारिक शक्ति श्रृंखला की अंगूठी को घटक-वार जोड़ के साथ एन से रिंग आर तक कार्यों के सेट के रूप में परिभाषित किया गया है, और कॉची द्वारा दिया गया गुणन है। उत्पाद। घात श्रृंखला के वलय को उत्पन्न आदर्श के संबंध में बहुपद वलय के वलय के समापन के रूप में भी देखा जा सकता है {{mvar|x}}.


===गैर क्रमविनिमेय बहुपद वलय===
===गैर क्रमविनिमेय बहुपद वलय===
{{Main|Free algebra}}
एक से अधिक चर वाले बहुपद वलय के लिए, उत्पाद X⋅Y और Y⋅X को बस बराबर के रूप में परिभाषित किया गया है। बहुपद वलय की अधिक सामान्य धारणा तब प्राप्त होती है जब इन दो औपचारिक उत्पादों के बीच अंतर बनाए रखा जाता है। औपचारिक रूप से, रिंग आर में गुणांक के साथ एन नॉनकम्यूटिंग वेरिएबल्स में बहुपद रिंग [[मोनोइड रिंग]] आर [एन] है, जहां मोनॉइड एन एन अक्षरों पर मुक्त मोनोइड है, जिसे एन प्रतीकों के वर्णमाला पर सभी स्ट्रिंग्स के सेट के रूप में भी जाना जाता है। , संयोजन द्वारा दिए गए गुणन के साथ। न तो गुणांकों और न ही चरों को आपस में परिवर्तन की आवश्यकता होती है, बल्कि गुणांक और चर एक दूसरे के साथ परिवर्तनशील होते हैं।
एक से अधिक चर वाले बहुपद वलय के लिए, उत्पाद X⋅Y और Y⋅X को बस बराबर के रूप में परिभाषित किया गया है। बहुपद वलय की अधिक सामान्य धारणा तब प्राप्त होती है जब इन दो औपचारिक उत्पादों के बीच अंतर बनाए रखा जाता है। औपचारिक रूप से, रिंग आर में गुणांक के साथ एन नॉनकम्यूटिंग वेरिएबल्स में बहुपद रिंग [[मोनोइड रिंग]] आर [एन] है, जहां मोनॉइड एन एन अक्षरों पर मुक्त मोनोइड है, जिसे एन प्रतीकों के वर्णमाला पर सभी स्ट्रिंग्स के सेट के रूप में भी जाना जाता है। , संयोजन द्वारा दिए गए गुणन के साथ। न तो गुणांकों और न ही चरों को आपस में परिवर्तन की आवश्यकता होती है, बल्कि गुणांक और चर एक दूसरे के साथ परिवर्तनशील होते हैं।


Line 337: Line 305:


===विभेदक और तिरछा-बहुपद वलय===
===विभेदक और तिरछा-बहुपद वलय===
{{Main|Ore extension}}
बहुपदों के अन्य सामान्यीकरण विभेदक और तिरछे-बहुपद वलय हैं।
बहुपदों के अन्य सामान्यीकरण विभेदक और तिरछे-बहुपद वलय हैं।


Line 351: Line 317:


=== बहुपद रिग ===
=== बहुपद रिग ===
{{See also|Formal power series#On a semiring}}
एक बहुपद रिंग की परिभाषा को इस आवश्यकता को शिथिल करके सामान्यीकृत किया जा सकता है कि बीजगणितीय संरचना आर एक फ़ील्ड (गणित) या एक रिंग (गणित) है, इस आवश्यकता के लिए कि आर केवल एक अर्धफ़ील्ड या रिग (गणित) है; परिणामी बहुपद संरचना/विस्तार R[X] एक 'बहुपद रिग' है। उदाहरण के लिए, [[प्राकृतिक संख्या]] गुणांक वाले सभी बहुभिन्नरूपी बहुपदों का समुच्चय एक बहुपद रिग है।
एक बहुपद रिंग की परिभाषा को इस आवश्यकता को शिथिल करके सामान्यीकृत किया जा सकता है कि बीजगणितीय संरचना आर एक फ़ील्ड (गणित) या एक रिंग (गणित) है, इस आवश्यकता के लिए कि आर केवल एक अर्धफ़ील्ड या रिग (गणित) है; परिणामी बहुपद संरचना/विस्तार R[X] एक 'बहुपद रिग' है। उदाहरण के लिए, [[प्राकृतिक संख्या]] गुणांक वाले सभी बहुभिन्नरूपी बहुपदों का समुच्चय एक बहुपद रिग है।



Revision as of 20:17, 7 July 2023

गणित में, विशेष रूप से बीजगणित के क्षेत्र में, एक बहुपद वलय या बहुपद बीजगणित एक वलय (गणित) है (जो एक क्रमविनिमेय बीजगणित (संरचना) भी है) जो एक या अधिक अनिश्चित (चर) में बहुपदों के सेट (गणित) से बनता है। s (पारंपरिक रूप से इसे वेरिएबल (गणित) भी कहा जाता है) एक अन्य रिंग (गणित) में गुणांक के साथ, अक्सर एक फ़ील्ड (गणित)

अक्सर, बहुपद वलय शब्द का तात्पर्य एक क्षेत्र में एक अनिश्चित बहुपद वलय के विशेष मामले से है। ऐसे बहुपद छल्लों का महत्व उन गुणों की उच्च संख्या पर निर्भर करता है जो पूर्णांकया बीजगणितीय_गुणों के वलय के साथ समान होते हैं।

बहुपद वलय होते हैं और अक्सर गणित के कई हिस्सों जैसे संख्या सिद्धांत, क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति में मौलिक होते हैं। वलय सिद्धांत में, बहुपद वलय के कुछ गुणों को सामान्य बनाने के लिए छल्लों के कई वर्ग, जैसे अद्वितीय गुणनखंड डोमेन, नियमित वलय, समूह वलय, औपचारिक शक्ति श्रृंखला, अयस्क बहुपद, श्रेणीबद्ध वलय, पेश किए गए हैं।

एक निकट संबंधी धारणा एक सदिश समष्टि पर बहुपद फलनों के वलय की है, और, अधिक सामान्यतः, एक बीजगणितीय विविधता पर नियमित फलनों के वलय की है।

परिभाषा (एकविभिन्न मामला)

बहुपद वलय, K[X], में X एक क्षेत्र के ऊपर (गणित) (या, अधिक सामान्यतः, एक क्रमविनिमेय वलय) K को कई समान तरीकों से परिभाषित किया जा सकता है। उनमें से एक है परिभाषित करना K[X] व्यंजकों के समुच्चय के रूप में, जिसे बहुपद कहा जाता है X, रूप का[1]

कहाँ p0, p1, …, pm, के गुणांक p, के तत्व हैं K, pm ≠ 0 अगर m > 0, और X, X2, …, प्रतीक हैं, जिन्हें शक्तियों के रूप में माना जाता है X, और घातांक के सामान्य नियमों का पालन करें: X0 = 1, X1 = X, और किसी भी गैर-ऋणात्मक पूर्णांक के लिए k और l. प्रतीक X को अनिश्चित कहा जाता है[2] या परिवर्तनशील.[3] (चर का पद बहुपद फलनों की शब्दावली से आता है। हालाँकि, यहाँ, X का कोई मूल्य नहीं है (स्वयं के अलावा), और बहुपद वलय में एक स्थिरांक होने के कारण भिन्न नहीं हो सकता है।)

दो बहुपद बराबर होते हैं जब प्रत्येक के संगत गुणांक होते हैं Xk बराबर हैं।

कोई अंगूठी के बारे में सोच सकता है K[X] से उत्पन्न होने के रूप में K एक नया तत्व जोड़कर X जो कि बाहरी है K, के सभी तत्वों के साथ आवागमन करता है K, और इसमें कोई अन्य विशिष्ट गुण नहीं हैं। इसका उपयोग बहुपद वलय की समतुल्य परिभाषा के लिए किया जा सकता है।

में बहुपद वलय X ऊपर K एक जोड़, एक गुणन और एक अदिश गुणन से सुसज्जित है जो इसे एक क्रमविनिमेय बीजगणित (संरचना) बनाता है। इन संक्रियाओं को बीजीय व्यंजकों में हेरफेर करने के सामान्य नियमों के अनुसार परिभाषित किया गया है। विशेष रूप से, यदि

और

तब

और

कहाँ k = max(m, n), l = m + n,

और

इन सूत्रों में, बहुपद p और q को शून्य गुणांक वाले डमी पदों को जोड़कर बढ़ाया जाता है, ताकि सभी pi और qi जो सूत्रों में दिखाई देते हैं उन्हें परिभाषित किया गया है। विशेष रूप से, यदि m < n, तब pi = 0 के लिए m < in.

अदिश गुणन, गुणन का विशेष मामला है p = p0 को इसके स्थिर पद (वह पद जो इससे स्वतंत्र है) तक घटा दिया गया है X); वह है

यह सत्यापित करना सीधा है कि ये तीन ऑपरेशन क्रमविनिमेय बीजगणित के सिद्धांतों को संतुष्ट करते हैं K. इसलिए, बहुपद वलय को बहुपद बीजगणित भी कहा जाता है।

एक अन्य समकक्ष परिभाषा को अक्सर पसंद किया जाता है, हालांकि कम सहज ज्ञान युक्त, क्योंकि इसे पूरी तरह से कठोर बनाना आसान होता है, जिसमें एक बहुपद को अनंत अनुक्रम के रूप में परिभाषित करना शामिल है (p0, p1, p2, …) के तत्वों का K, यह गुण रखते हुए कि केवल तत्वों की एक सीमित संख्या शून्येतर होती है, या समकक्ष, एक अनुक्रम जिसके लिए कुछ होता है m ताकि pn = 0 के लिए n > m. इस मामले में, p0 और X को वैकल्पिक संकेतन के रूप में माना जाता है क्रम (p0, 0, 0, …) और (0, 1, 0, 0, …), क्रमश। ऑपरेशन नियमों का सीधा उपयोग यह दर्शाता है कि अभिव्यक्ति

फिर अनुक्रम के लिए एक वैकल्पिक संकेतन है

(p0, p1, p2, …, pm, 0, 0, …).

शब्दावली

होने देना

के साथ एक शून्येतर बहुपद बनें का स्थिर पद p है शून्य बहुपद के मामले में यह शून्य है।

की डिग्री p, लिखा हुआ deg(p) है सबसे वृहद k ऐसा कि का गुणांक Xk शून्य नहीं है.[4] का अग्रणी गुणांक p है [5] शून्य बहुपद के विशेष मामले में, जिसके सभी गुणांक शून्य हैं, अग्रणी गुणांक अपरिभाषित है, और डिग्री को विभिन्न प्रकार से अपरिभाषित छोड़ दिया गया है,[6] होने के लिए परिभाषित किया गया है −1,[7] या एक के रूप में परिभाषित किया गया है −∞.[8] एक अचर बहुपद या तो शून्य बहुपद होता है, या शून्य घात वाला बहुपद होता है।

एक शून्येतर बहुपद एकात्मक बहुपद है यदि इसका अग्रणी गुणांक है दो बहुपद दिए गए हैं p और q, किसी के पास

और, एक क्षेत्र (गणित), या अधिक सामान्यतः एक अभिन्न डोमेन पर,[9]

यह तुरंत अनुसरण करता है कि, यदि K एक अभिन्न डोमेन है, तो ऐसा ही है K[X].[10] इससे यह भी पता चलता है कि, यदि K एक अभिन्न डोमेन है, एक बहुपद एक इकाई है (रिंग सिद्धांत) (अर्थात्, इसका एक गुणात्मक व्युत्क्रम है) यदि और केवल यदि यह स्थिर है और एक इकाई है K.

दो बहुपद संबद्ध तत्व हैं यदि उनमें से एक एक इकाई द्वारा दूसरे का गुणनफल है।

एक क्षेत्र में, प्रत्येक गैर-शून्य बहुपद एक अद्वितीय मोनिक बहुपद से जुड़ा होता है।

दो बहुपद दिए गए हैं, p और q, ऐसा कोई कहता है p बांटता है q, p का भाजक है q, या q का गुणज है p, यदि कोई बहुपद है r ऐसा है कि q = pr.

एक बहुपद अघुलनशील बहुपद है यदि यह दो गैर-स्थिर बहुपदों का उत्पाद नहीं है, या समकक्ष, यदि इसके विभाजक या तो निरंतर बहुपद हैं या उनकी डिग्री समान है।

बहुपद मूल्यांकन

होने देना K एक फ़ील्ड हो या, अधिक सामान्यतः, एक क्रमविनिमेय वलय, और R एक अंगूठी युक्त K. किसी भी बहुपद के लिए P में K[X] और कोई भी तत्व a में R, का प्रतिस्थापन X साथ a में P के एक तत्व को परिभाषित करता है R, जो बहुपद संकेतन है P(a). यह तत्व अंदर ले जाने से प्राप्त होता है R प्रतिस्थापन के बाद बहुपद की अभिव्यक्ति द्वारा संकेतित संक्रियाएँ। इस गणना को मूल्यांकन कहा जाता है P पर a. उदाहरण के लिए, यदि हमारे पास है

अपने पास

(पहले उदाहरण में R = K, और दूसरे में R = K[X]). स्थानापन्न Xस्वयं के लिए परिणाम में

यह समझाते हुए कि वाक्य क्यों चलते हैं P एक बहुपद बनें और मान लीजिए P(X) एक बहुपद समतुल्य है।

बहुपद द्वारा परिभाषित बहुपद फलन P से फ़ंक्शन है K में K द्वारा परिभाषित किया गया है अगर K एक अनंत क्षेत्र है, दो अलग-अलग बहुपद अलग-अलग बहुपद कार्यों को परिभाषित करते हैं, लेकिन यह गुण परिमित क्षेत्रों के लिए गलत है। उदाहरण के लिए, यदि K के साथ एक फ़ील्ड है q तत्व, फिर बहुपद 0 और XqX दोनों शून्य फ़ंक्शन को परिभाषित करते हैं।

हरएक के लिए a में R, मूल्यांकन पर a, अर्थात मानचित्र से एक बीजगणित समरूपता को परिभाषित करता है K[X] को R, जो कि अद्वितीय समरूपता है K[X] को R जो ठीक करता है K, और मानचित्र X को a. दूसरे शब्दों में, K[X] में निम्नलिखित सार्वभौमिक संपत्ति है:

प्रत्येक अंगूठी के लिए R युक्त K, और प्रत्येक तत्व a का R, से एक अद्वितीय बीजगणित समरूपता है K[X] को R जो ठीक करता है K, और मानचित्र X को a.

मानचित्र की छवि (गणित), अर्थात्, का उपसमुच्चय Rप्रतिस्थापन द्वारा प्राप्त किया गया a के लिए X के तत्वों में K[X], दर्शाया गया है K[a].[11] उदाहरण के लिए, , कहाँ .

जहाँ तक सभी सार्वभौमिक गुणों की बात है, यह युग्म को परिभाषित करता है (K[X], X) एक अद्वितीय समरूपता तक, और इसलिए इसे एक परिभाषा के रूप में लिया जा सकता है K[X].

एक क्षेत्र पर एकविभिन्न बहुपद

अगर K एक क्षेत्र (गणित), बहुपद वलय है K[X] में कई गुण हैं जो पूर्णांकों के वलय (गणित) के समान हैं इनमें से अधिकांश समानताएँ दीर्घ विभाजन और बहुपद दीर्घ विभाजन के बीच समानता से उत्पन्न होती हैं।

की अधिकांश संपत्तियां K[X] जो इस अनुभाग में सूचीबद्ध हैं वे सत्य नहीं हैं यदि K कोई फ़ील्ड नहीं है, या यदि कोई कई अनिश्चितों में बहुपदों पर विचार करता है।

पूर्णांकों की तरह, बहुपदों के यूक्लिडियन विभाजन में विशिष्टता का गुण होता है। अर्थात्, दो बहुपद दिए गए हैं a और b ≠ 0 में K[X], एक अनोखी जोड़ी है (q, r) ऐसे बहुपदों का a = bq + r, और या तो r = 0 या deg(r) < deg(b). यह बनाता है K[X] एक यूक्लिडियन डोमेन। हालाँकि, अधिकांश अन्य यूक्लिडियन डोमेन (पूर्णांकों को छोड़कर) में विभाजन के लिए विशिष्टता की कोई संपत्ति नहीं है और न ही यूक्लिडियन विभाजन की गणना के लिए कोई आसान एल्गोरिदम (जैसे लंबा विभाजन) है।

यूक्लिडियन विभाजन बहुपदों के लिए यूक्लिडियन एल्गोरिदम का आधार है जो दो बहुपदों के बहुपद सबसे बड़े सामान्य विभाजक की गणना करता है। यहां, महानतम का अर्थ अधिकतम डिग्री होना या, समकक्ष, डिग्री द्वारा परिभाषित पूर्व आदेश के लिए अधिकतम होना है। दो बहुपदों के एक सबसे बड़े सामान्य भाजक को देखते हुए, अन्य सबसे बड़े सामान्य भाजक को एक गैर-शून्य स्थिरांक से गुणा करके प्राप्त किया जाता है (अर्थात, सभी सबसे बड़े सामान्य भाजक a और b जुड़े रहे हैं)। विशेष रूप से, दो बहुपद जो दोनों शून्य नहीं हैं, उनमें एक अद्वितीय सबसे बड़ा सामान्य भाजक होता है जो मोनिक (अग्रणी गुणांक के बराबर होता है) 1).

विस्तारित यूक्लिडियन एल्गोरिदम बेज़आउट की पहचान की गणना (और साबित करने) की अनुमति देता है। के मामले में K[X], इसे इस प्रकार कहा जा सकता है। दो बहुपद दिए गए हैं p और qसंबंधित डिग्री के m और n, यदि उनका मोनिक सबसे बड़ा सामान्य भाजक है g की डिग्री है d, तो एक अद्वितीय जोड़ी है (a, b) ऐसे बहुपदों का

और

(सीमित मामले में इसे सच बनाने के लिए जहां m = d या n = d, किसी को शून्य बहुपद की घात को ऋणात्मक के रूप में परिभाषित करना होगा। इसके अलावा, समानता तभी घटित हो सकता है जब p और q संबद्ध हैं।) विशिष्टता संपत्ति बल्कि विशिष्ट है K[X]. पूर्णांकों के मामले में वही गुण सत्य है, यदि डिग्री को निरपेक्ष मानों द्वारा प्रतिस्थापित किया जाता है, लेकिन, विशिष्टता होने के लिए, किसी को इसकी आवश्यकता होनी चाहिए a > 0.

यूक्लिड की प्रमेयिका लागू होती है K[X]. अर्थात यदि a बांटता है bc, और सहअभाज्य है b, तब a बांटता है c. यहां, सहअभाज्य का अर्थ है कि मोनिक सबसे बड़ा सामान्य भाजक है 1. प्रमाण: परिकल्पना और बेज़ाउट की पहचान के अनुसार, हैं e, p, और q ऐसा है कि ae = bc और 1 = ap + bq. इसलिए


अद्वितीय गुणनखंडन गुण यूक्लिड के लेम्मा से उत्पन्न होता है। पूर्णांकों के मामले में, यह अंकगणित का मौलिक प्रमेय है। के मामले में K[X], इसे इस प्रकार कहा जा सकता है: प्रत्येक गैर-अस्थिर बहुपद को एक अनूठे तरीके से एक स्थिरांक के उत्पाद के रूप में व्यक्त किया जा सकता है, और एक या कई अघुलनशील मोनिक बहुपद; यह अपघटन कारकों के क्रम तक अद्वितीय है। दूसरे शब्दों में K[X] एक अद्वितीय गुणनखंडन डोमेन है। अगर K जटिल संख्याओं का क्षेत्र है, बीजगणित का मौलिक प्रमेय दावा करता है कि एक अविभाज्य बहुपद अपरिवर्तनीय है यदि और केवल यदि इसकी डिग्री एक है। इस मामले में अद्वितीय गुणनखंडन संपत्ति को इस प्रकार दोहराया जा सकता है: जटिल संख्याओं पर प्रत्येक गैर-स्थिर अविभाज्य बहुपद को एक स्थिरांक के उत्पाद के रूप में एक अद्वितीय तरीके से व्यक्त किया जा सकता है, और फॉर्म के एक या कई बहुपद Xr; यह अपघटन कारकों के क्रम तक अद्वितीय है। प्रत्येक कारक के लिए, r बहुपद के एक फलन का मूल है, और एक गुणनखंड की घटनाओं की संख्या संबंधित मूल की बहुलता (गणित) है।

व्युत्पत्ति

बहुपद का औपचारिक व्युत्पन्न|(औपचारिक) व्युत्पन्न

बहुपद है

वास्तविक संख्या या सम्मिश्र संख्या गुणांक वाले बहुपदों के मामले में, यह मानक व्युत्पन्न है। उपरोक्त सूत्र एक बहुपद के व्युत्पन्न को परिभाषित करता है, भले ही गुणांक एक रिंग से संबंधित हो, जिस पर सीमा (गणित) की कोई धारणा परिभाषित नहीं है। व्युत्पन्न बहुपद वलय को एक विभेदक बीजगणित बनाता है।

व्युत्पन्न का अस्तित्व एक बहुपद वलय के मुख्य गुणों में से एक है जो पूर्णांकों के साथ साझा नहीं किया जाता है, और पूर्णांकों की तुलना में बहुपद वलय पर कुछ गणनाओं को आसान बनाता है।

वर्ग-मुक्त गुणनखंडन

लैग्रेंज इंटरपोलेशन

बहुपद अपघटन

गुणनखंडीकरण

गुणनखंडन को छोड़कर, के सभी पिछले गुण K[X] प्रभावी प्रमाण हैं, क्योंकि उनके प्रमाण, जैसा कि ऊपर दर्शाया गया है, संपत्ति के परीक्षण और उन बहुपदों की गणना के लिए कलन विधि से जुड़े हैं जिनके अस्तित्व पर जोर दिया गया है। इसके अलावा ये एल्गोरिदम कुशल हैं, क्योंकि उनकी कम्प्यूटेशनल जटिलता इनपुट आकार का एक द्विघात समय फ़ंक्शन है।

गुणनखंडन के लिए स्थिति पूरी तरह से अलग है: अद्वितीय गुणनखंडन का प्रमाण गुणनखंडन की विधि के लिए कोई संकेत नहीं देता है। पहले से ही पूर्णांकों के लिए, उन्हें बहुपद समय में गुणनखंडित करने के लिए शास्त्रीय कंप्यूटर पर कोई ज्ञात एल्गोरिदम नहीं चल रहा है। यह आरएसए क्रिप्टोसिस्टम का आधार है, जिसका व्यापक रूप से सुरक्षित इंटरनेट संचार के लिए उपयोग किया जाता है।

के मामले में K[X], कारक और उनकी गणना करने की विधियाँ दृढ़ता से निर्भर करती हैं K. सम्मिश्र संख्याओं के ऊपर, अप्रासंगिक गुणनखंड (जिन्हें आगे गुणनखंडित नहीं किया जा सकता) सभी घात एक के होते हैं, जबकि, वास्तविक संख्याओं के ऊपर, घात 2 के अप्रासंगिक बहुपद होते हैं, और, तर्कसंगत संख्याओं के ऊपर, किसी के भी अप्रासंगिक बहुपद होते हैं डिग्री। उदाहरण के लिए, बहुपद तर्कसंगत संख्याओं पर अप्रासंगिक है, के रूप में गुणनखंडित किया जाता है वास्तविक संख्या से अधिक और, और जैसा सम्मिश्र संख्याओं पर.

गुणनखंडन एल्गोरिथ्म का अस्तित्व जमीनी क्षेत्र पर भी निर्भर करता है। वास्तविक या जटिल संख्याओं के मामले में, एबेल-रफिनी प्रमेय से पता चलता है कि कुछ बहुपदों की जड़ें, और इस प्रकार अपरिवर्तनीय कारकों की सटीक गणना नहीं की जा सकती है। इसलिए, एक गुणनखंडन एल्गोरिथ्म केवल कारकों के अनुमान की गणना कर सकता है। ऐसे सन्निकटनों की गणना के लिए विभिन्न एल्गोरिदम डिज़ाइन किए गए हैं, बहुपदों की मूल खोज देखें।

एक फ़ील्ड का उदाहरण है K जैसे कि अंकगणितीय परिचालनों के लिए सटीक एल्गोरिदम मौजूद हैं K, लेकिन यह तय करने के लिए कोई एल्गोरिदम मौजूद नहीं हो सकता है कि बहुपद रूप का है या नहीं अघुलनशील बहुपद है या निम्न डिग्री के बहुपदों का गुणनफल है।[12] दूसरी ओर, तर्कसंगत संख्याओं और परिमित क्षेत्रों पर, स्थिति पूर्णांक गुणनखंडन की तुलना में बेहतर है, क्योंकि ऐसे बहुपदों के गुणनखंडन होते हैं जिनमें बहुपद जटिलता होती है। वे अधिकांश सामान्य प्रयोजन कंप्यूटर बीजगणित प्रणालियों में कार्यान्वित किए जाते हैं।

न्यूनतम बहुपद

अगर θ साहचर्य बीजगणित का एक तत्व है|सहयोगी K-बीजगणित L, या बहुपद मूल्यांकन पर θ अद्वितीय बीजगणित समरूपता है φ से K[X] में L वह मानचित्र X को θ और के तत्वों को प्रभावित नहीं करता K स्वयं (यह पहचान फ़ंक्शन है K). इसमें प्रतिस्थापन शामिल है X साथ θ प्रत्येक बहुपद में। वह है,

इस मूल्यांकन समरूपता की छवि द्वारा उत्पन्न उपबीजगणित है θ, जो आवश्यक रूप से क्रमविनिमेय है। अगर φ इंजेक्शन है, द्वारा उत्पन्न उपबीजगणित θ समरूपी है K[X]. इस मामले में, इस उपबीजगणित को अक्सर द्वारा निरूपित किया जाता है K[θ]. समरूपता के कारण संकेतन अस्पष्टता आम तौर पर हानिरहित होती है।

यदि मूल्यांकन समरूपता इंजेक्शन नहीं है, तो इसका मतलब है कि इसका कर्नेल (बीजगणित) एक गैर-शून्य आदर्श (रिंग सिद्धांत) है, जिसमें सभी बहुपद शामिल हैं जो शून्य हो जाते हैं X के साथ प्रतिस्थापित किया गया है θ. इस आदर्श में कुछ अद्वैत बहुपद के सभी गुणज शामिल होते हैं, जिसे न्यूनतम बहुपद कहा जाता है θ. न्यूनतम शब्द इस तथ्य से प्रेरित है कि इसकी डिग्री आदर्श के तत्वों की डिग्री के बीच न्यूनतम है।

ऐसे दो मुख्य मामले हैं जहां न्यूनतम बहुपदों पर विचार किया जाता है।

क्षेत्र सिद्धांत (गणित) और संख्या सिद्धांत में, एक तत्व θ एक विस्तार फ़ील्ड का L का K बीजगणितीय तत्व है K यदि यह गुणांक वाले किसी बहुपद का मूल है K. न्यूनतम बहुपद (क्षेत्र सिद्धांत) खत्म K का θ इस प्रकार न्यूनतम डिग्री का मोनिक बहुपद है θ जड़ के रूप में. क्योंकि L एक क्षेत्र है, यह न्यूनतम बहुपद आवश्यक रूप से अघुलनशील बहुपद है K. उदाहरण के लिए, सम्मिश्र संख्या का न्यूनतम बहुपद (वास्तविक के साथ-साथ परिमेय पर भी)। i है . साइक्लोटोमिक बहुपद एकता की जड़ों के न्यूनतम बहुपद हैं।

रैखिक बीजगणित में, n×n वर्ग मैट्रिक्स खत्म K साहचर्य बीजगणित बनाएं|सहयोगी K-परिमित आयाम का बीजगणित (एक सदिश समष्टि के रूप में)। इसलिए मूल्यांकन समरूपता इंजेक्शनात्मक नहीं हो सकती है, और प्रत्येक मैट्रिक्स में एक न्यूनतम बहुपद (रैखिक बीजगणित) होता है (जरूरी नहीं कि अपरिवर्तनीय)। केली-हैमिल्टन प्रमेय द्वारा, मूल्यांकन समरूपता एक मैट्रिक्स के विशिष्ट बहुपद को शून्य करने के लिए मैप करती है। इससे यह निष्कर्ष निकलता है कि न्यूनतम बहुपद विशिष्ट बहुपद को विभाजित करता है, और इसलिए न्यूनतम बहुपद की डिग्री अधिकतम होती है n.

भागफल वलय

के मामले में K[X], एक आदर्श द्वारा भागफल वलय का निर्माण, सामान्य स्थिति में, तुल्यता वर्गों के एक सेट के रूप में किया जा सकता है। हालाँकि, चूंकि प्रत्येक तुल्यता वर्ग में न्यूनतम डिग्री का बिल्कुल एक बहुपद होता है, इसलिए दूसरा निर्माण अक्सर अधिक सुविधाजनक होता है।

एक बहुपद दिया गया है p डिग्री का d, का भागफल वलय K[X] द्वारा उत्पन्न आदर्श (रिंग सिद्धांत) द्वारा p से कम डिग्री वाले बहुपदों के सदिश समष्टि से पहचाना जा सकता है d, गुणन मापांक के साथ p गुणन के रूप में, गुणन मापांक p द्वारा विभाजन के अंतर्गत शेष शामिल है p बहुपदों के (सामान्य) गुणनफल का। इस भागफल वलय को विभिन्न प्रकार से दर्शाया जाता है या केवल अंगूठी एक फ़ील्ड है यदि और केवल यदि p एक अघुलनशील बहुपद है। वास्तव में, यदि p अपरिवर्तनीय है, प्रत्येक अशून्य बहुपद q निम्न डिग्री का सहअभाज्य है p, और बेज़ाउट की पहचान कंप्यूटिंग की अनुमति देती है r और s ऐसा है कि sp + qr = 1; इसलिए, r का गुणनात्मक व्युत्क्रम है q मापांक p. इसके विपरीत, यदि p न्यूनीकरणीय है, तो बहुपद मौजूद हैं a, b डिग्री से कम deg(p) ऐसा है कि ab = p ; इसलिए a, b अशून्य शून्य विभाजक मॉड्यूलो हैं p, और उलटा नहीं हो सकता.

उदाहरण के लिए, सम्मिश्र संख्याओं के क्षेत्र की मानक परिभाषा को यह कहकर संक्षेपित किया जा सकता है कि यह भागफल वलय है

और वह की छवि X में द्वारा निरूपित किया जाता है i. वास्तव में, उपरोक्त विवरण के अनुसार, इस भागफल में घात एक के सभी बहुपद शामिल हैं i, जिसका स्वरूप है a + bi, साथ a और b में भागफल वलय के दो तत्वों को गुणा करने के लिए आवश्यक यूक्लिडियन विभाजन का शेष भाग प्रतिस्थापित करके प्राप्त किया जाता है i2 द्वारा −1 उनके गुणनफल में बहुपद के रूप में (यह सम्मिश्र संख्याओं के गुणनफल की बिल्कुल सामान्य परिभाषा है)।

होने देना θ a में एक बीजगणितीय तत्व बनें K-बीजगणित A. बीजगणित से एक का तात्पर्य वह है θ का एक न्यूनतम बहुपद है p. प्रथम रिंग समरूपता प्रमेय का दावा है कि प्रतिस्थापन समरूपता एक समरूपता को प्रेरित करती है छवि पर K[θ] प्रतिस्थापन समरूपता का। विशेषकर, यदि A का एक सरल विस्तार है K द्वारा उत्पन्न θ, यह पहचानने की अनुमति देता है A और बीजगणितीय संख्या सिद्धांत में इस पहचान का व्यापक रूप से उपयोग किया जाता है।

मॉड्यूल

एक प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय लागू होता है K[X], जब K एक फ़ील्ड है। इसका मतलब यह है कि K[X] पर प्रत्येक अंतिम रूप से उत्पन्न मॉड्यूल को एक मुक्त मॉड्यूल के प्रत्यक्ष योग और फॉर्म के कई मॉड्यूल में विघटित किया जा सकता है , जहां P, K के ऊपर एक अप्रासंगिक बहुपद है और k एक धनात्मक पूर्णांक है।

परिभाषा (बहुभिन्नरूपी मामला)

दिया गया n प्रतीक अनिश्चित (चर) कहा जाता है, एकपदी (शक्ति उत्पाद भी कहा जाता है)

इन अनिश्चितताओं का एक औपचारिक उत्पाद है, संभवतः एक गैर-नकारात्मक शक्ति तक बढ़ा दिया गया है। हमेशा की तरह, एक के बराबर घातांक और शून्य घातांक वाले गुणनखंडों को छोड़ा जा सकता है। विशेष रूप से, घातांकों का समूह α = (α1, …, αn) को एकपदी का मल्टीडिग्री या घातांक सदिश कहा जाता है। कम बोझिल संकेतन के लिए, संक्षिप्तीकरण

अक्सर प्रयोग किया जाता है. एकपदी की डिग्री Xα, अक्सर निरूपित किया जाता है deg α या |α|, इसके घातांकों का योग है:

इनमें से एक बहुपद एक क्षेत्र में गुणांक के साथ अनिश्चित होता है K, या अधिक सामान्यतः एक वलय (गणित), एकपदी का एक परिमित रैखिक संयोजन है

में गुणांक के साथ K. एक शून्येतर बहुपद की घात उसके अशून्य गुणांक वाले एकपदी की घातों की अधिकतम होती है।

में बहुपदों का समुच्चय लक्षित इस प्रकार एक सदिश समष्टि (या एक मुक्त मॉड्यूल, यदि है K एक वलय है) जिसका आधार एकपदी है।

स्वाभाविक रूप से एक गुणन से सुसज्जित है (नीचे देखें) जो एक वलय (गणित) बनाता है, और एक साहचर्य बीजगणित बनाता है K, जिसे बहुपद वलय कहा जाता है n अनिश्चित समाप्त हो गया K (निश्चित लेख यह दर्शाता है कि यह अनिश्चित रूप से नाम और अनिश्चित के क्रम तक परिभाषित है। यदि अंगूठी K क्रमविनिमेय वलय है, यह भी एक क्रमविनिमेय वलय है।

संचालन में K[X1, ..., Xn]

बहुपदों का जोड़ और अदिश गुणन एक सदिश स्थान या एक विशिष्ट आधार (यहां एकपदी का आधार) से सुसज्जित मुक्त मॉड्यूल के होते हैं। स्पष्ट रूप से, चलो कहाँ I और J घातांक सदिशों के परिमित समुच्चय हैं।

का अदिश गुणन p और एक अदिश राशि है

का संस्करण p और q है

कहाँ अगर और अगर इसके अलावा, यदि किसी के पास है कुछ के लिए परिणाम से संगत शून्य पद हटा दिया जाता है।

गुणा है

कहाँ में एक घातांक सदिश के योग का समुच्चय है I और एक अन्य में J (वैक्टर का सामान्य योग)। विशेष रूप से, दो एकपदी का गुणनफल एक एकपदी होता है जिसका घातांक सदिश गुणनखंडों के घातांक सदिशों का योग होता है।

साहचर्य बीजगणित के स्वयंसिद्धों का सत्यापन सीधा है।

बहुपद व्यंजक

बहुपद अभिव्यक्ति एक अभिव्यक्ति (गणित) है जो अदिशों (के तत्वों) से निर्मित होती है K), अनिश्चित, और गैर-नकारात्मक पूर्णांक शक्तियों के अलावा, गुणा और घातांक के संचालक।

जैसा कि इन सभी ऑपरेशनों को परिभाषित किया गया है एक बहुपद अभिव्यक्ति एक बहुपद का प्रतिनिधित्व करती है, जो कि एक तत्व है एकपदी के रैखिक संयोजन के रूप में बहुपद की परिभाषा एक विशेष बहुपद अभिव्यक्ति है, जिसे अक्सर बहुपद का विहित रूप, सामान्य रूप या विस्तारित रूप कहा जाता है। एक बहुपद अभिव्यक्ति को देखते हुए, कोई व्यक्ति अपने कारकों के बीच योग वाले सभी उत्पादों को वितरण कानून के साथ विस्तारित करके प्रतिनिधित्व बहुपद के विस्तारित रूप की गणना कर सकता है, और फिर परिवर्तनशीलता (दो स्केलर के उत्पाद को छोड़कर) और परिवर्तन के लिए सहयोगीता का उपयोग कर सकता है एक अदिश और एकपदी के उत्पादों में परिणामी योग की शर्तें; फिर समान पदों को पुनः समूहित करके विहित रूप प्राप्त किया जाता है।

एक बहुपद अभिव्यक्ति और जिस बहुपद का प्रतिनिधित्व करता है उसके बीच अंतर अपेक्षाकृत हाल ही में हुआ है, और मुख्य रूप से कंप्यूटर बीजगणित के उदय से प्रेरित है, जहां, उदाहरण के लिए, यह परीक्षण कि क्या दो बहुपद अभिव्यक्ति एक ही बहुपद का प्रतिनिधित्व करते हैं, एक गैर-तुच्छ गणना हो सकती है।

श्रेणीबद्ध लक्षण वर्णन

अगर K एक क्रमविनिमेय वलय है, बहुपद वलय K[X1, …, Xn] में निम्नलिखित सार्वभौमिक संपत्ति है: प्रत्येक क्रमविनिमेय बीजगणित (संरचना) के लिए|अनुविनिमेय K-बीजगणित A, और हर n-ट्यूपल (x1, …, xn) के तत्वों का A, से एक अद्वितीय बीजगणित समरूपता है K[X1, …, Xn] को A जो प्रत्येक को मैप करता है संबंधित को यह समरूपता मूल्यांकन समरूपता है जिसमें प्रतिस्थापन शामिल है साथ प्रत्येक बहुपद में.

जैसा कि प्रत्येक सार्वभौमिक संपत्ति के मामले में होता है, यह जोड़ी की विशेषता है एक अद्वितीय समरूपता तक।

इसकी व्याख्या सहायक फ़ंक्शनलर्स के संदर्भ में भी की जा सकती है। अधिक सटीक रूप से, चलो SET और ALG क्रमशः सेट और क्रमविनिमेय की श्रेणी (गणित) बनें K-बीजगणित (यहाँ, और निम्नलिखित में, रूपवाद को तुच्छ रूप से परिभाषित किया गया है)। एक भुलक्कड़ फ़नकार है जो बीजगणित को उनके अंतर्निहित सेटों पर मैप करता है। दूसरी ओर, मानचित्र आप एक फ़ंक्शन परिभाषित करते हैं दूसरी दिशा में. (अगर X अनंत है, K[X] तत्वों की एक सीमित संख्या में सभी बहुपदों का समुच्चय है X.)

बहुपद वलय के सार्वभौमिक गुण का अर्थ है कि F और POL सहायक कारक हैं। यानी आपत्ति है

इसे यह कहकर भी व्यक्त किया जा सकता है कि बहुपद वलय स्वतंत्र क्रमविनिमेय बीजगणित हैं, क्योंकि वे क्रमविनिमेय बीजगणित की श्रेणी में स्वतंत्र वस्तुएँ हैं। इसी प्रकार, पूर्णांक गुणांकों वाला एक बहुपद वलय इसके चरों के सेट पर मुक्त क्रमविनिमेय वलय है, क्योंकि पूर्णांकों पर क्रमविनिमेय वलय और क्रमविनिमेय बीजगणित एक ही चीज़ हैं।

श्रेणीबद्ध संरचना

एक रिंग पर यूनीवेरिएट बनाम मल्टीवेरिएट

में एक बहुपद अनिश्चित में एक अविभाज्य बहुपद के रूप में माना जा सकता है रिंग के ऊपर उन शब्दों को पुनः समूहित करके जिनमें समान शक्ति होती है अर्थात्, पहचान का उपयोग करके

जो रिंग ऑपरेशंस की वितरणशीलता और साहचर्यता के परिणामस्वरूप होता है।

इसका मतलब यह है कि किसी के पास बीजगणित समरूपता है

जो प्रत्येक को अपने लिए अनिश्चित मानचित्रित करता है। (इस समरूपता को अक्सर एक समानता के रूप में लिखा जाता है, जो इस तथ्य से उचित है कि बहुपद वलय एक अद्वितीय समरूपता तक परिभाषित होते हैं।)

दूसरे शब्दों में, एक बहुभिन्नरूपी बहुपद वलय को एक छोटे बहुपद वलय के ऊपर एक अविभाज्य बहुपद माना जा सकता है। इसका उपयोग आमतौर पर अनिश्चितों की संख्या पर गणितीय प्रेरण द्वारा बहुभिन्नरूपी बहुपद रिंगों के गुणों को साबित करने के लिए किया जाता है।

ऐसी मुख्य संपत्तियाँ नीचे सूचीबद्ध हैं।

गुण जो से गुजरते हैं R को R[X]

इस खंड में, R एक क्रमविनिमेय वलय है, K एक फ़ील्ड है, X एक एकल अनिश्चित को दर्शाता है, और, हमेशा की तरह, पूर्णांकों का वलय है. यहां मुख्य रिंग गुणों की सूची दी गई है जो गुजरने पर सत्य बने रहते हैं R को R[X].

  • अगर R एक अभिन्न डोमेन है तो वही बात लागू होती है R[X] (चूंकि बहुपदों के उत्पाद का अग्रणी गुणांक, यदि शून्य नहीं है, तो कारकों के अग्रणी गुणांक का उत्पाद है)।
    • विशेष रूप से, और अभिन्न डोमेन हैं.
  • अगर R एक अद्वितीय गुणनखंडन डोमेन है तो वही बात लागू होती है R[X]. यह गॉस की लेम्मा (बहुपद)| गॉस की लेम्मा और अद्वितीय गुणनखंड गुण का परिणाम है कहाँ L के भिन्नों का क्षेत्र है R.
    • विशेष रूप से, और अद्वितीय गुणनखंडन डोमेन हैं।
  • अगर R एक नोथेरियन अंगूठी है, तो वही बात लागू होती है R[X].
    • विशेष रूप से, और नोथेरियन रिंग हैं; यह हिल्बर्ट का आधार प्रमेय है।
  • अगर R तो फिर, एक नोथेरियन रिंग है कहाँक्रुल आयाम को दर्शाता है।
    • विशेष रूप से, और
  • अगर R एक नियमित रिंग है, तो वही बात लागू होती है R[X]; इस मामले में, किसी के पास है
    कहाँवैश्विक आयाम को दर्शाता है.
    • विशेष रूप से, और नियमित छल्ले हैं, और बाद वाली समानता हिल्बर्ट की सहजीवन प्रमेय है।

एक फ़ील्ड पर कई अनिश्चितताएँ

एक क्षेत्र में कई चरों में बहुपद वलय अपरिवर्तनीय सिद्धांत और बीजगणितीय ज्यामिति में मौलिक हैं। उनके कुछ गुण, जैसे कि ऊपर वर्णित हैं, को एकल अनिश्चित के मामले में कम किया जा सकता है, लेकिन यह हमेशा मामला नहीं होता है। विशेष रूप से, ज्यामितीय अनुप्रयोगों के कारण, कई दिलचस्प गुण एफ़िन परिवर्तन या अनिश्चित के प्रक्षेप्य परिवर्तन ट्रांसफ़ॉर्मेशन के तहत अपरिवर्तनीय होने चाहिए। इसका अर्थ अक्सर यह होता है कि कोई अनिश्चित पर पुनरावृत्ति के लिए अनिश्चित में से किसी एक का चयन नहीं कर सकता है।

बेज़ाउट का प्रमेय, हिल्बर्ट का नलस्टेलेंसत्ज़ और जैकोबियन अनुमान सबसे प्रसिद्ध गुणों में से हैं जो एक क्षेत्र में बहुभिन्नरूपी बहुपदों के लिए विशिष्ट हैं।

हिल्बर्ट का मूल प्रमेय

Nullstellensatz (शून्य-लोकस प्रमेय के लिए जर्मन) एक प्रमेय है, जिसे सबसे पहले डेविड हिल्बर्ट ने सिद्ध किया था, जो बीजगणित के मौलिक प्रमेय के कुछ पहलुओं को बहुभिन्नरूपी मामले तक विस्तारित करता है। यह बीजगणितीय ज्यामिति के लिए मूलभूत है, क्योंकि यह बीजगणितीय गुणों के बीच एक मजबूत संबंध स्थापित करता है और बीजगणितीय किस्मों के ज्यामितीय गुण, जो (मोटे तौर पर कहें तो) अंतर्निहित समीकरण द्वारा परिभाषित बिंदुओं का समूह हैं।

Nullstellensatz के तीन मुख्य संस्करण हैं, जिनमें से प्रत्येक किसी अन्य का परिणाम है। इनमें से दो संस्करण नीचे दिए गए हैं। तीसरे संस्करण के लिए, पाठक को Nullstellensatz पर मुख्य लेख का संदर्भ दिया जाता है।

पहला संस्करण इस तथ्य को सामान्यीकृत करता है कि एक गैर-शून्य अविभाज्य बहुपद में एक जटिल संख्या शून्य होती है यदि और केवल यदि यह एक स्थिरांक नहीं है। कथन है: बहुपदों का एक सेट S में बीजगणितीय रूप से बंद फ़ील्ड में एक सामान्य शून्य होता है K, अगर और केवल अगर 1 द्वारा उत्पन्न आदर्श (रिंग सिद्धांत) से संबंधित नहीं है S, अर्थात्, यदि 1 के तत्वों का एक रैखिक संयोजन नहीं है S बहुपद गुणांकों के साथ।

दूसरा संस्करण इस तथ्य को सामान्यीकृत करता है कि जटिल संख्याओं पर अप्रासंगिक बहुपद रूप के बहुपद के सहयोगी तत्व हैं कथन है: यदि K बीजगणितीय रूप से बंद है, तो का अधिकतम आदर्श रूप है


बेज़ौट का प्रमेय

बेज़ाउट के प्रमेय को बीजगणित के मौलिक प्रमेय के संस्करण के बहुभिन्नरूपी सामान्यीकरण के रूप में देखा जा सकता है जो दावा करता है कि डिग्री का एक अविभाज्य बहुपद n है n जटिल जड़ें, यदि उन्हें उनकी बहुलताओं के साथ गिना जाए।

द्विचर बहुपद के मामले में, यह कहा गया है कि डिग्री के दो बहुपद d और e दो चर में, जिनमें सकारात्मक डिग्री का कोई सामान्य कारक नहीं है, बिल्कुल है de बीजगणितीय रूप से बंद फ़ील्ड में सामान्य शून्य जिसमें गुणांक होते हैं, यदि शून्य को उनकी बहुलता के साथ गिना जाता है और अनंत पर बिंदु शामिल होता है।

सामान्य मामले को बताने के लिए, और अनंत पर शून्य को विशेष शून्य नहीं मानने के लिए, सजातीय बहुपदों के साथ काम करना और प्रक्षेप्य स्थान में शून्य पर विचार करना सुविधाजनक है। इस संदर्भ में, एक सजातीय बहुपद का प्रक्षेप्य शून्य है, एक स्केलिंग तक, ए (n + 1)-ट्यूपल के तत्वों का K वह अलग है (0, …, 0), और ऐसा कि . यहाँ, स्केलिंग तक का मतलब है और किसी भी अशून्य के लिए समान शून्य माना जाता है दूसरे शब्दों में, शून्य आयाम के प्रक्षेप्य स्थान में एक बिंदु के सजातीय निर्देशांक का एक सेट है n.

फिर, बेज़ाउट का प्रमेय कहता है: दिया गया nडिग्रियों के सजातीय बहुपद में n + 1 अनिश्चित, जिसमें बीजगणितीय रूप से बंद विस्तार में सामान्य प्रक्षेप्य शून्य की केवल एक सीमित संख्या होती है K, इन शून्यों की बहुलता (गणित)या अंतच्छेदन बहुलता का योग गुणनफल है


जैकोबियन अनुमान

सामान्यीकरण

बहुपद वलय को कई तरीकों से सामान्यीकृत किया जा सकता है, जिसमें सामान्यीकृत घातांक के साथ बहुपद वलय, शक्ति श्रृंखला वलय, गैर-अनुवांशिक बहुपद वलय, तिरछा बहुपद वलय और बहुपद रिग (गणित) शामिल हैं।

अनंत अनेक चर

बहुपद वलय का एक छोटा सा सामान्यीकरण अपरिमित रूप से अनेक अनिश्चितों की अनुमति देना है। प्रत्येक एकपदी में अभी भी केवल अनिश्चित संख्याओं की एक सीमित संख्या शामिल होती है (ताकि इसकी डिग्री सीमित रहे), और प्रत्येक बहुपद अभी भी एकपदी का एक (सीमित) रैखिक संयोजन है। इस प्रकार, किसी भी व्यक्तिगत बहुपद में केवल सीमित रूप से कई अनिश्चितताएं शामिल होती हैं, और बहुपदों को शामिल करने वाली कोई भी परिमित गणना सीमित रूप से कई अनिश्चितताओं में बहुपदों के कुछ उपसमूह के अंदर रहती है। इस सामान्यीकरण में सामान्य बहुपद वलय का, मुक्त क्रमविनिमेय बीजगणित जैसा ही गुण है, अंतर केवल इतना है कि यह एक अनंत सेट पर एक स्वतंत्र वस्तु है।

एक सामान्यीकृत बहुपद के रूप में एक परिबद्ध डिग्री के साथ एकपदी के अनंत (या परिमित) औपचारिक योग को परिभाषित करके, एक सख्ती से बड़ी अंगूठी पर भी विचार किया जा सकता है। यह वलय सामान्य बहुपद वलय से बड़ा है, क्योंकि इसमें चरों का अनंत योग शामिल है। हालाँकि, यह कई वेरिएबल्स में पावर सीरीज़ रिंगया पावर सीरीज़ से छोटा है। ऐसी अंगूठी का उपयोग अनंत सेट पर सममित कार्यों की अंगूठी के निर्माण के लिए किया जाता है।

सामान्यीकृत घातांक

एक साधारण सामान्यीकरण केवल उस सेट को बदलता है जिससे चर पर घातांक निकाले जाते हैं। जोड़ और गुणा के सूत्र तभी तक सार्थक हैं जब तक कोई घातांक जोड़ सके: XiXj = Xi+j. एक सेट जिसके लिए जोड़ समझ में आता है (बंद और सहयोगी है) को मोनॉयड कहा जाता है। एक मोनॉयड एन से एक रिंग आर तक कार्यों का सेट जो केवल सीमित रूप से कई स्थानों पर गैर-शून्य है, उसे आर [एन] के रूप में ज्ञात एक रिंग की संरचना दी जा सकती है, आर में गुणांक के साथ एन की 'मोनोइड रिंग'। जोड़ है घटक-वार परिभाषित, ताकि यदि c = a + b, तब cn = an + bn एन में प्रत्येक एन के लिए। गुणन को कॉची उत्पाद के रूप में परिभाषित किया गया है, ताकि यदि c = ab, फिर एन, सी में प्रत्येक एन के लिएn सभी का योग है aibj जहां i, j का दायरा N के तत्वों के सभी युग्मों पर होता है जिनका योग n होता है।

जब N क्रमविनिमेय है, तो फ़ंक्शन a को R[N] में औपचारिक योग के रूप में निरूपित करना सुविधाजनक है:

और फिर जोड़ और गुणा के सूत्र परिचित हैं:

और

जहां बाद वाले योग को N में सभी i, j पर लिया जाता है, जो कि n का योग है।

कुछ लेखक जैसे (Lang 2002, II,§3) इस मोनॉइड परिभाषा को शुरुआती बिंदु के रूप में लेने के लिए यहां तक ​​​​जाएं, और नियमित एकल चर बहुपद विशेष मामले हैं जहां एन गैर-नकारात्मक पूर्णांकों का मोनॉइड है। अनेक चरों वाले बहुपदों में N को गैर-नकारात्मक पूर्णांकों के मोनॉइड की कई प्रतियों का प्रत्यक्ष उत्पाद माना जाता है। N को गैर-ऋणात्मक परिमेय संख्याओं का योगात्मक मोनोइड मानकर वलयों और समूहों के कई दिलचस्प उदाहरण बनाए जाते हैं, (Osbourne 2000, §4.4). पुइसेक्स श्रृंखला भी देखें।

शक्ति श्रृंखला

पावर श्रृंखला अनंत रूप से कई गैर-शून्य शब्दों की अनुमति देकर घातांक की पसंद को एक अलग दिशा में सामान्यीकृत करती है। इसके लिए घातांक के लिए उपयोग किए जाने वाले मोनॉइड एन पर विभिन्न परिकल्पनाओं की आवश्यकता होती है, ताकि यह सुनिश्चित किया जा सके कि कॉची उत्पाद में योग सीमित योग हैं। वैकल्पिक रूप से, एक टोपोलॉजी को रिंग पर रखा जा सकता है, और फिर एक टोपोलॉजी को अभिसरण अनंत रकम तक सीमित कर दिया जाता है। एन की मानक पसंद के लिए, गैर-नकारात्मक पूर्णांक, कोई परेशानी नहीं है, और औपचारिक शक्ति श्रृंखला की अंगूठी को घटक-वार जोड़ के साथ एन से रिंग आर तक कार्यों के सेट के रूप में परिभाषित किया गया है, और कॉची द्वारा दिया गया गुणन है। उत्पाद। घात श्रृंखला के वलय को उत्पन्न आदर्श के संबंध में बहुपद वलय के वलय के समापन के रूप में भी देखा जा सकता है x.

गैर क्रमविनिमेय बहुपद वलय

एक से अधिक चर वाले बहुपद वलय के लिए, उत्पाद X⋅Y और Y⋅X को बस बराबर के रूप में परिभाषित किया गया है। बहुपद वलय की अधिक सामान्य धारणा तब प्राप्त होती है जब इन दो औपचारिक उत्पादों के बीच अंतर बनाए रखा जाता है। औपचारिक रूप से, रिंग आर में गुणांक के साथ एन नॉनकम्यूटिंग वेरिएबल्स में बहुपद रिंग मोनोइड रिंग आर [एन] है, जहां मोनॉइड एन एन अक्षरों पर मुक्त मोनोइड है, जिसे एन प्रतीकों के वर्णमाला पर सभी स्ट्रिंग्स के सेट के रूप में भी जाना जाता है। , संयोजन द्वारा दिए गए गुणन के साथ। न तो गुणांकों और न ही चरों को आपस में परिवर्तन की आवश्यकता होती है, बल्कि गुणांक और चर एक दूसरे के साथ परिवर्तनशील होते हैं।

जिस प्रकार क्रमविनिमय वलय R में गुणांकों के साथ n चरों में बहुपद वलय, रैंक n का मुक्त क्रमविनिमेय R-बीजगणित है, उसी प्रकार क्रमविनिमेय वलय R में गुणांकों के साथ n चरों में गैर-अनुक्रमिक बहुपद वलय, मुक्त साहचर्य, एकात्मक R-बीजगणित है। n जेनरेटर, जो n > 1 होने पर गैर-अनुवांशिक होता है।

विभेदक और तिरछा-बहुपद वलय

बहुपदों के अन्य सामान्यीकरण विभेदक और तिरछे-बहुपद वलय हैं।

एक विभेदक बहुपद वलय एक वलय R और R के δ से R की व्युत्पत्ति (अमूर्त बीजगणित) δ से निर्मित विभेदक संचालकों का एक वलय है। यह व्युत्पत्ति आर पर संचालित होती है, और ऑपरेटर के रूप में देखे जाने पर इसे एक्स दर्शाया जाएगा। R के तत्व गुणन द्वारा R पर भी कार्य करते हैं। फ़ंक्शन संरचना को सामान्य गुणन के रूप में दर्शाया गया है। यह इस प्रकार है कि संबंध δ(ab) = (b) + δ(a)b पुनः लिखा जा सकता है जैसा

इस संबंध को आर में गुणांक वाले एक्स में दो बहुपदों के बीच एक विषम गुणन को परिभाषित करने के लिए बढ़ाया जा सकता है, जो उन्हें एक गैर-अनुवांशिक रिंग बनाता है।

मानक उदाहरण, जिसे वेइल बीजगणित कहा जाता है, R को एक (सामान्य) बहुपद वलय k[Y ] मानता है, और δ को मानक बहुपद व्युत्पन्न मानता है . उपरोक्त संबंध में a = Y लेने पर, विहित रूपान्तरण संबंध प्राप्त होता है, X⋅Y − Y⋅X = 1. साहचर्यता और वितरण द्वारा इस संबंध को विस्तारित करने से स्पष्ट रूप से वेइल बीजगणित का निर्माण करने की अनुमति मिलती है। (Lam 2001, §1,ex1.9).

तिरछा-बहुपद वलय को R और R के वलय एंडोमोर्फिज्म f के लिए समान रूप से परिभाषित किया गया है, संबंध Xr से गुणन का विस्तार करके = f(r)⋅X एक साहचर्य गुणन उत्पन्न करने के लिए जो मानक जोड़ पर वितरित होता है। अधिक आम तौर पर, धनात्मक पूर्णांकों के मोनॉइड एन से आर के एंडोमोर्फिज्म रिंग में एक होमोमोर्फिज्म एफ दिया जाता है, सूत्र एक्स n⋅r = F(n)(r)⋅X n एक तिरछा-बहुपद वलय बनाने की अनुमति देता है। (Lam 2001, §1,ex 1.11) तिरछा बहुपद वलय क्रॉस उत्पाद बीजगणित से निकटता से संबंधित हैं।

बहुपद रिग

एक बहुपद रिंग की परिभाषा को इस आवश्यकता को शिथिल करके सामान्यीकृत किया जा सकता है कि बीजगणितीय संरचना आर एक फ़ील्ड (गणित) या एक रिंग (गणित) है, इस आवश्यकता के लिए कि आर केवल एक अर्धफ़ील्ड या रिग (गणित) है; परिणामी बहुपद संरचना/विस्तार R[X] एक 'बहुपद रिग' है। उदाहरण के लिए, प्राकृतिक संख्या गुणांक वाले सभी बहुभिन्नरूपी बहुपदों का समुच्चय एक बहुपद रिग है।

यह भी देखें

संदर्भ

  1. Herstein 1975, p. 153
  2. Herstein, Hall p. 73
  3. Lang 2002, p. 97
  4. Herstein 1975, p. 154
  5. Lang 2002, p. 100
  6. Anton, Howard; Bivens, Irl C.; Davis, Stephen (2012), Calculus Single Variable, Wiley, p. 31, ISBN 9780470647707.
  7. Sendra, J. Rafael; Winkler, Franz; Pérez-Diaz, Sonia (2007), Rational Algebraic Curves: A Computer Algebra Approach, Algorithms and Computation in Mathematics, vol. 22, Springer, p. 250, ISBN 9783540737247.
  8. Eves, Howard Whitley (1980), Elementary Matrix Theory, Dover, p. 183, ISBN 9780486150277.
  9. Herstein 1975, pp. 155, 162
  10. Herstein 1975, p. 162
  11. Knapp, Anthony W. (2006), Basic Algebra, Birkhäuser, p. 121.
  12. Fröhlich, A.; Shepherson, J. C. (1955), "On the factorisation of polynomials in a finite number of steps", Mathematische Zeitschrift, 62 (1): 331–334, doi:10.1007/BF01180640, ISSN 0025-5874, S2CID 119955899