प्रोजेक्टिव मॉड्यूल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 16: Line 16:


=== विभाजित-त्रुटिहीन अनुक्रम ===
=== विभाजित-त्रुटिहीन अनुक्रम ===
मापांकP प्रक्षेपी है यदि केवल मापांक प्रपत्र के प्रत्येक छोटे त्रुटिहीन अनुक्रम
मापांक P प्रक्षेपी है यदि केवल मापांक प्रपत्र के प्रत्येक छोटे त्रुटिहीन अनुक्रम


:<math>0\rightarrow A\rightarrow B\rightarrow P\rightarrow 0</math>
:<math>0\rightarrow A\rightarrow B\rightarrow P\rightarrow 0</math>
Line 28: Line 28:
=== मुक्त मापांक के प्रत्यक्ष सारांश ===
=== मुक्त मापांक के प्रत्यक्ष सारांश ===


मापांकP प्रक्षेपी है यदि केवल कोई अन्य मापांक क्यू है जैसे किP और क्यू का [[ मॉड्यूल का प्रत्यक्ष योग |प्रत्यक्ष योग]] मुक्त मापांक है।
मापांक P प्रक्षेपी है यदि केवल कोई अन्य मापांक क्यू है जैसे किP और क्यू का [[ मॉड्यूल का प्रत्यक्ष योग |प्रत्यक्ष योग]] मुक्त मापांक है।


=== शुद्धता ===
=== शुद्धता ===


R-मापांकP प्रक्षेपी है यदि केवल सह-संयोजक [[ फंक्टर |कारक]] {{nowrap|Hom(''P'', -): ''R''-'''Mod''' → '''Ab'''}} [[ सटीक फंक्टर | त्रुटिहीन]] [[ फंक्टर |कारक]] है, जहां {{nowrap|''R''-'''Mod'''}} बाएं R-मापांक की श्रेणी है और 'Ab' [[ एबेलियन समूहों की श्रेणी |एबेलियन समूहों की श्रेणी]] है। जब छल्ला R [[ कम्यूटेटिव रिंग |विनिमेय छल्ला]] है, तो 'Ab' को पूर्ववर्ती लक्षण वर्णन में {{nowrap|''R''-'''Mod'''}} द्वारा लाभप्रद रूप से परिवर्तित कर दिया जाता है। यह कारक सदैव त्रुटिहीन ही विभक्त कर दिया जाता है, लेकिन, जब P प्रक्षेपी होता है, तो यह सही त्रुटिहीन भी होता है।इसका अर्थ यह है किP प्रक्षेपी है यदि केवल यह कारक [[ उपदेशता |एपिमोर्फिज्म]] (विशेषण समरूपता) को संरक्षित करता है, या यदि परिमित[[ कोलिमिट | कोलिमिट्स]] को संरक्षित करता है।
R-मापांक P प्रक्षेपी है यदि केवल सह-संयोजक [[ फंक्टर |कारक]] {{nowrap|Hom(''P'', -): ''R''-'''Mod''' → '''Ab'''}} [[ सटीक फंक्टर | त्रुटिहीन]] [[ फंक्टर |कारक]] है, जहां {{nowrap|''R''-'''Mod'''}} बाएं R-मापांक की श्रेणी है और 'Ab' [[ एबेलियन समूहों की श्रेणी |एबेलियन समूहों की श्रेणी]] है। जब छल्ला R [[ कम्यूटेटिव रिंग |विनिमेय छल्ला]] है, तो 'Ab' को पूर्ववर्ती लक्षण वर्णन में {{nowrap|''R''-'''Mod'''}} द्वारा लाभप्रद रूप से परिवर्तित कर दिया जाता है। यह कारक सदैव त्रुटिहीन ही विभक्त कर दिया जाता है, लेकिन, जब P प्रक्षेपी होता है, तो यह सही त्रुटिहीन भी होता है।इसका अर्थ यह है किP प्रक्षेपी है यदि केवल यह कारक [[ उपदेशता |एपिमोर्फिज्म]] (विशेषण समरूपता) को संरक्षित करता है, या यदि परिमित[[ कोलिमिट | कोलिमिट्स]] को संरक्षित करता है।


=== दोहरी आधार ===
=== उभय आधार ===
एक मापांकP प्रक्षेपी है यदि और केवल यदि कोई समुच्चय उपस्थित है <math>\{a_i \in P \mid i \in I\}</math> और एक समुच्चय <math>\{f_i\in \mathrm{Hom}(P,R) \mid i\in I\}</math> जैसे किP, एफ में प्रत्येक एक्स के लिए<sub>''i''&hairsp;&hairsp;</sub>(x) केवल कई के लिए अशून्य है, और <math>x=\sum f_i(x)a_i</math>।
एक मापांक P प्रक्षेपी है यदि केवल कोई समुच्चय उपस्थित है <math>\{a_i \in P \mid i \in I\}</math> और समुच्चय <math>\{f_i\in \mathrm{Hom}(P,R) \mid i\in I\}</math>में प्रत्येक x के लिए fi  (x) अत्यधिक i के लिए केवल अशून्य है, और                                 <math>x=\sum f_i(x)a_i</math>।


== प्राथमिक उदाहरण और गुण ==
== प्राथमिक उदाहरण और गुण ==
प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी जल्दी से घटाया जाता है:
प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी शीघ्रता से घटाया जाता है:
* प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी हैं।
* प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी होते हैं।
* यदि {{nowrap|1=''e'' = ''e''<sup>2</sup>}} वलय R में एक वर्गसम (वलय सिद्धांत) है, तब R,R पर एक प्रक्षेपी बाएं मापांक है।
* यदि {{nowrap|1=''e'' = ''e''<sup>2</sup>}} वलय R में वर्गसम (वलय सिद्धांत) है, तब R, R पर प्रक्षेपी बाएं मापांक है।


== अन्य मापांक-सिद्धांत गुणों से संबंध ==
== अन्य मापांक-सिद्धांत गुणों से संबंध ==


मुक्त और[[ फ्लैट मॉड्यूल | समतल मापांक]] के लिए प्रक्षेपी मापांक का संबंध मापांक गुणों के निम्नलिखित Rेख में प्रस्तुत किया गया है:
मुक्त और[[ फ्लैट मॉड्यूल | समतल मापांक]] के लिए प्रक्षेपी मापांक का संबंध गुणों के निम्नलिखित आरेख में प्रस्तुत किया गया है:


[[Image:Module properties in commutative algebra.svg|कम्यूटेटिव बीजगणित में मॉड्यूल गुण]]बाएं-से-दाएं निहितार्थ किसी भी वलय पर सही हैं, चूंकि कुछ लेखक केवल एक [[ डोमेन (रिंग सिद्धांत) |डोमेन (वलय सिद्धांत)]] पर मरोड़-मुक्त मापांक को परिभाषित करते हैं। दाएं-टू-बाएं के निहितार्थ उन्हें लेबल करने वाले वलय पर सही हैं। ऐसे अन्य वलय हो सकते हैं जिन पर वे सही हैं।उदाहरण के लिए, स्थानीय वलय याPआईडी लेबल किए गए निहितार्थ एक [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] पर बहुपद वलयों के लिए भी सही है: यह क्विलन -सुस्लिन प्रमेय है।
[[Image:Module properties in commutative algebra.svg|कम्यूटेटिव बीजगणित में मॉड्यूल गुण]]
 
बाएं-से-दाएं निहितार्थ किसी भी वलय पर सही हैं, चूंकि कुछ लेखक केवल [[ डोमेन (रिंग सिद्धांत) |डोमेन (वलय सिद्धांत)]] पर घुमाव-मुक्त मापांक को परिभाषित करते हैं। दाएं-से-बाएं निहितार्थ भी सही हैं। ऐसे और भी छल्ले हो सकते हैं जिन पर वे सत्य हों। उदाहरण के लिए, स्थानीय वलय या पीआईडी लेबल किए गए निहितार्थ [[ क्षेत्र (गणित) |क्षेत्र (गणित)]] पर बहुपद वलयों के लिए भी सही है: यह क्विलन -सुस्लिन प्रमेय है।


=== प्रक्षेपी विरुद्ध मुक्त मापांक ===
=== प्रक्षेपी विरुद्ध मुक्त मापांक ===
कोई भी मुक्त मापांक प्रक्षेपी है।निम्नलिखित स्थितियों में यह विपरीत सत्य है:
कोई भी मुक्त मापांक प्रक्षेपी है। निम्नलिखित स्थितियों में यह विपरीत सत्य है:
* यदि R एक क्षेत्र या[[ तिरछा क्षेत्र ]]है: इस स्थिति में कोई भी मापांक मुक्त है।
* यदि R क्षेत्र,[[ तिरछा क्षेत्र ]] है: इस स्थिति में कोई भी मापांक मुक्त होता है।  
* यदि वलय R एक प्रमुख आदर्श डोमेन है।उदाहरण के लिए, यह लागू होता है {{nowrap|1=''R'' = '''Z'''}} (पूर्णांक), इसलिए एक एबेलियन समूह अनुमानित है यदि और केवल यदि यह एक [[ मुक्त एबेलियन समूह |मुक्त एबेलियन समूह]] है।कारण यह है कि एक प्रमुख आदर्श डोमेन पर एक मुक्त मापांक का कोई भी[[ सबल | सबल]] मुक्त है।
* यदि वलय R प्रमुख आदर्श प्रांत है। उदाहरण के लिए, यह {{nowrap|1=''R'' = '''Z'''}} (पूर्णांक), पर लागू होता है, इसलिए एबेलियन समूह अनुमानित है यदि केवल यह [[ मुक्त एबेलियन समूह |मुक्त एबेलियन समूह]] है। इसका कारण यह है कि प्रमुख आदर्श डोमेन पर मापांक का कोई भी[[ सबल | उप- मापांक]] मुक्त है।
* यदि वलय R एक स्थानीय वलय है।यह तथ्य स्थानीय रूप से मुक्त = प्रक्षेप्य के अंतर्ज्ञान का आधार है।यह तथ्य सूक्ष्म रूप से उत्पन्न मापांक प्रक्षेपी मापांक के लिए [[ गणितीय प्रमाण |गणितीय प्रमाण]] के लिए सरल है।सामान्यतः, यह होने के कारण है {{harvtxt|कपलान्स्की|1958}};प्रक्षेपी मापांक पर कप्लांस्की के प्रमेय को देखें।
* यदि वलय R स्थानीय वलय है। यह तथ्य स्थानीय रूप से मुक्त = प्रक्षेप्य के अंतर्ज्ञान का आधार है। यह तथ्य सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक के लिए सिद्ध करना [[ गणितीय प्रमाण |गणितीय प्रमाण]] के लिए सरल है। सामान्यतः, यह {{harvtxt|कपलान्स्की|1958}} होने के कारण है; प्रक्षेपी मापांक पर कप्लांस्की के प्रमेय को देखें।


सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है:
सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है:
* वलय के प्रत्यक्ष उत्पाद पर {{nowrap|''R'' × ''S''}} जहां R और एस शून्य वलय हैं, दोनों {{nowrap|''R'' × 0}} और {{nowrap|0 × ''S''}} गैर-मुक्त प्रक्षेपी मापांक हैं।
* वलय के प्रत्यक्ष उत्पाद पर {{nowrap|''R'' × ''S''}} जहां R और S शून्य वलय हैं, दोनों {{nowrap|''R'' × 0}} और {{nowrap|0 × ''S''}} गैर-मुक्त प्रक्षेपी मापांक हैं।
* [[ डेडेकिंड डोमेन |डेडेकिंड डोमेन]] पर एक गैर-प्रमुख आदर्श (वलय सिद्धांत) प्रायः प्रक्षेपी मापांक है जो मुक्त मापांक नहीं है।
* [[ डेडेकिंड डोमेन |डेडेकिंड डोमेन]] पर अप्रमुख आदर्श (वलय सिद्धांत) प्रायः प्रक्षेपी मापांक होता है जो मुक्त मापांक नहीं होता है।
* एक [[ मैट्रिक्स रिंग |आव्यूह]] [[ डेडेकिंड रिंग |वलय]] एम पर<sub>''n''</sub>(R), प्राकृतिक मापांक R<sup>& hairsp; n </sup> प्रक्षेपी है लेकिन मुक्त नहीं है।{{dubious|reason=Needs qualification, e.g., 'for n&gt;1': n=1 is a clear counterexample.|date=May 2022}} सामान्यतः, किसी भी [[ सेमीसिम्पल रिंग |अर्ध-सरल]] [[ डेडेकिंड रिंग |वलय]] पर, प्रत्येक मापांक प्रक्षेपी होता है, लेकिन[[ शून्य आदर्श ]]और वलय ही एकमात्र मुक्त आदर्श हैं।
* [[ मैट्रिक्स रिंग |आव्यूह]] [[ डेडेकिंड रिंग |वलय]] M<sub>''n''</sub>(''R'') पर, प्राकृतिक मापांक ''R''<sup> ''n''</sup> प्रक्षेपी है लेकिन मुक्त नहीं है।{{dubious|reason=Needs qualification, e.g., 'for n&gt;1': n=1 is a clear counterexample.|date=May 2022}} सामान्यतः, किसी भी [[ सेमीसिम्पल रिंग |अर्ध-सरल]] [[ डेडेकिंड रिंग |वलय]] पर, प्रत्येक मापांक प्रक्षेपी होता है, लेकिन[[ शून्य आदर्श ]]और वलय ही एकमात्र मुक्त आदर्श हैं।
मुक्त और प्रक्षेप्य मापांक के बीच का अंतर, एक अर्थ में, बीजगणितीय K-सिद्धांत द्वारा मापा जाता है। बीजगणितीय K-सिद्धांत समूह (गणित) k<sub>0</sub>(R);नीचे देखें।
मुक्त और प्रक्षेपी मापांक के मध्य का अंतर, बीजगणितीय K-सिद्धांत द्वारा मापा जाता है। नीचे देखें।


=== प्रक्षेपी विरुद्ध समतल मापांक ===
=== प्रक्षेपी विरुद्ध समतल मापांक ===
प्रत्येक प्रक्षेपी मापांक समतल मापांक है।<ref>{{cite book|author=Hazewinkel |display-authors=etal |title=Algebras, Rings and Modules, Part 1|year=2004|contribution=Corollary 5.4.5|url={{Google books|plainurl=y|id=AibpdVNkFDYC|page=131|text=Every projective module is flat}}|page=131}}</ref> यह सामान्य रूप से सच नहीं है: एबेलियन समूह क्यू एक जेड-मापांक है जो समतल है, लेकिन अनुमानित नहीं है।<ref>{{cite book|author=Hazewinkel |display-authors=etal |year=2004|contribution=Remark after Corollary 5.4.5|title=Algebras, Rings and Modules, Part 1|url={{Google books|plainurl=y|id=AibpdVNkFDYC|page=132|text=Q is flat but it is not projective}}|pages=131–132}}</ref>
प्रत्येक प्रक्षेपी Cसमतल मापांक है।<ref>{{cite book|author=Hazewinkel |display-authors=etal |title=Algebras, Rings and Modules, Part 1|year=2004|contribution=Corollary 5.4.5|url={{Google books|plainurl=y|id=AibpdVNkFDYC|page=131|text=Every projective module is flat}}|page=131}}</ref> यह सामान्य रूप से सत्य नहीं है: एबेलियन समूह Q, Z-मापांक है जो समतल है, लेकिन अनुमानित नहीं है।<ref>{{cite book|author=Hazewinkel |display-authors=etal |year=2004|contribution=Remark after Corollary 5.4.5|title=Algebras, Rings and Modules, Part 1|url={{Google books|plainurl=y|id=AibpdVNkFDYC|page=132|text=Q is flat but it is not projective}}|pages=131–132}}</ref>
इसके विपरीत, एक सूक्ष्म संबंधित मापांक समतल मापांक प्रक्षेपी है।<ref>{{harvnb|Cohn|2003|loc=Corollary 4.6.4}}</ref>
 
इसके विपरीत, सूक्ष्म रूप से संबंधित समतल प्रक्षेपी है।<ref>{{harvnb|Cohn|2003|loc=Corollary 4.6.4}}</ref>


{{harvtxt|गोवरोव|1965}} और {{harvtxt|लाजार्ड|1969}} यह सिद्ध किया कि मापांक एम समतल है यदि और केवल यदि यह सूक्ष्म रूप से उत्पन्न मापांक की एक सीधी सीमा है।
{{harvtxt|गोवरोव|1965}} और {{harvtxt|लाजार्ड|1969}} ने यह सिद्ध किया कि मापांक M समतल है यदि केवल यह सीमित रूप से उत्पन्न मुक्त मॉड्यूल की सीधी सीमा है।


सामान्यतः, समतलता और प्रक्षेप्य के बीच त्रुटिहीन संबंध {{harvtxt|रेनॉड|ग्रुसन|1971}} द्वारा स्थापित किया गया था (यह सभी देखें {{harvtxt|ड्रिनफेल्ड|2006}} और {{harvtxt|ब्रौनलिंग|ग्रोचेनिग|वोल्फसन|2016}}) जिन्होंने दिखाया कि एक मापांक एम प्रक्षेपी है यदि और केवल यदि यह निम्नलिखित शर्तों को संतुष्ट करता है:
सामान्यतः, समतलता और प्रक्षेप्य के मध्य त्रुटिहीन संबंध {{harvtxt|रेनॉड|ग्रुसन|1971}} द्वारा स्थापित किया गया था (यह सभी देखें {{harvtxt|ड्रिनफेल्ड|2006}} और {{harvtxt|ब्रौनलिंग|ग्रोचेनिग|वोल्फसन|2016}}) जिन्होंने यह प्रदर्शित किया कि मापांक M प्रक्षेपी है यदि केवल यह निम्नलिखित नियमों को संतुष्ट करता है:
*एम समतल है,
*M समतल है।
*एम[[ गिनती योग्य सेट | गणनात्मक रूप से]] उत्पन्न मापांक का प्रत्यक्ष योग है,
*M[[ गिनती योग्य सेट | गणनात्मक रूप से]] उत्पन्न मापांक का प्रत्यक्ष योग है।
*एम एक निश्चित मित्तग-लेफलर प्रकार की स्थिति को संतुष्ट करता है।
*M निश्चित मित्तग-लेफलर प्रकार की स्थिति को संतुष्ट करता है।
इस लक्षण वर्णन का उपयोग यह दिखाने के लिए किया जा सकता है कि यदि <math>R \to S</math> क्रमविनिमेय वलयों का एक ईमानदारी से समतल रूपांतरण मानचित्र है और <math>M</math> एक <math>R</math>-मापांक, तब <math>M</math> यदि और केवल यदि <math>M \otimes_R S</math> प्रक्षेपी है।<ref>{{Cite web |title=Section 10.95 (05A4): Descending properties of modules—The Stacks project |url=https://stacks.math.columbia.edu/tag/05A4 |access-date=2022-11-03 |website=stacks.math.columbia.edu |language=en}}</ref> दूसरे शब्दों में, प्रक्षेपी होने की संपत्ति[[ ईमानदारी से सपाट वंश | ईमानदारी से समतल वंश]] को संतुष्ट करती है।
इस लक्षण वर्णन का उपयोग यह प्रदर्शित करने के लिए किया जा सकता है कि यदि <math>R \to S</math> क्रमविनिमेय वलयों का ईमानदारी से समतल रूपांतरण मानचित्र है <math>M</math> और <math>R</math>-मापांक, तब <math>M</math> केवल <math>M \otimes_R S</math> प्रक्षेपी है।<ref>{{Cite web |title=Section 10.95 (05A4): Descending properties of modules—The Stacks project |url=https://stacks.math.columbia.edu/tag/05A4 |access-date=2022-11-03 |website=stacks.math.columbia.edu |language=en}}</ref> दूसरे शब्दों में, प्रक्षेपी होने की संपत्ति[[ ईमानदारी से सपाट वंश | ईमानदारी से समतल वंश]] को संतुष्ट करती है।


== प्रक्षेपी मापांक की श्रेणी ==
== प्रक्षेपी मापांक की श्रेणी ==

Revision as of 20:04, 23 January 2023

गणित में, विशेष रूप से बीजगणित में, प्रक्षेपी मापांक का वर्ग (समूह सिद्धांत) मुक्त मापांक के कुछ मुख्य गुणों का अध्यन करते हुए, वलय (गणित) के साथ मुक्त मापांक (अर्थात, मापांक के आधार पर) के वर्ग को बढ़ाता है। इन मापांक के विभिन्न समकक्ष लक्षण नीचे प्रदर्शित हैं।

प्रत्येक मुक्त मापांक प्रक्षेपी मापांक है, लेकिन संवाद के आधार पर कुछ वलयों को धारण करने में विफल है, जैसे कि डेडेकिंड वलय जो प्रमुख आदर्श डोमेन नहीं हैं। चूंकि, प्रत्येक प्रक्षेपी मापांक मुक्त मापांक है यदि वलय प्रमुख आदर्श डोमेन है जैसे कि पूर्णांक, या बहुपद वलय (यह क्विलन -सुस्लिन प्रमेय है)।

प्रक्षेपी मापांक को प्रथम बार 1956 में हेनरी कार्टन और सैमुअल एलेनबर्ग द्वारा प्रभावशाली पुस्तक 'समरूप बीजगणित' 'में प्रस्तुत किया गया था।

परिभाषाएँ

उद्यत संपत्ति

सामान्य श्रेणी की सैद्धांतिक परिभाषा उद्यत की संपत्ति के संदर्भ में है जो मुक्त से प्रक्षेप्य मापांक तक ले जाती है: मापांक P प्रक्षेपी है यदि केवल प्रत्येक विशेषण मापांक समरूपता के लिए f : NM और प्रत्येक मापांक समरूपता g : PM, मापांक समरूपता h : PN उपस्थित है जैसे कि fh = g (हमें उद्यत समरूपता एच की आवश्यकता नहीं है; यह सार्वभौमिक संपत्ति नहीं है।)

Projective-module-P.svg
प्रक्षेपी की इस परिभाषा का लाभ यह है कि इसे मापांक श्रेणियों की तुलना में अधिक सामान्य श्रेणी (गणित) में किया जा सकता है: हमें मुक्त वस्तु की धारणा की आवश्यकता नहीं है। यह उभय (श्रेणी सिद्धांत) भी हो सकता है, जिससे एकत्र मापांक हो सकते हैं। भारोत्तोलन संपत्ति को प्रत्येक रूपवाद के रूप में भी उभय किया जा सकता है से कारक प्रत्येक एपिमोर्फिज्म के माध्यम से कारक को इस प्रकार, परिभाषा के अनुसार, प्रक्षेपी मापांक R-मापांक की श्रेणी में प्रक्षेप्य वस्तुएं हैं।

विभाजित-त्रुटिहीन अनुक्रम

मापांक P प्रक्षेपी है यदि केवल मापांक प्रपत्र के प्रत्येक छोटे त्रुटिहीन अनुक्रम

विभाजित त्रुटिहीन अनुक्रम है। अर्थात, प्रत्येक विशेषण मापांक समरूपता के लिए f : BP खंड मानचित्र उपस्थित है, अर्थात, मापांक समरूपतावाद h : PB ऐसा है कि fh = idP; समान रूप से, उस स्थिति में, h(P) B का प्रत्यक्ष योग है, h, P से h(P) तक समरूपता है और hf सारांश h(P), पर प्रक्षेपण है।


मुक्त मापांक के प्रत्यक्ष सारांश

मापांक P प्रक्षेपी है यदि केवल कोई अन्य मापांक क्यू है जैसे किP और क्यू का प्रत्यक्ष योग मुक्त मापांक है।

शुद्धता

R-मापांक P प्रक्षेपी है यदि केवल सह-संयोजक कारक Hom(P, -): R-ModAb त्रुटिहीन कारक है, जहां R-Mod बाएं R-मापांक की श्रेणी है और 'Ab' एबेलियन समूहों की श्रेणी है। जब छल्ला R विनिमेय छल्ला है, तो 'Ab' को पूर्ववर्ती लक्षण वर्णन में R-Mod द्वारा लाभप्रद रूप से परिवर्तित कर दिया जाता है। यह कारक सदैव त्रुटिहीन ही विभक्त कर दिया जाता है, लेकिन, जब P प्रक्षेपी होता है, तो यह सही त्रुटिहीन भी होता है।इसका अर्थ यह है किP प्रक्षेपी है यदि केवल यह कारक एपिमोर्फिज्म (विशेषण समरूपता) को संरक्षित करता है, या यदि परिमित कोलिमिट्स को संरक्षित करता है।

उभय आधार

एक मापांक P प्रक्षेपी है यदि केवल कोई समुच्चय उपस्थित है और समुच्चय में प्रत्येक x के लिए fi  (x) अत्यधिक i के लिए केवल अशून्य है, और

प्राथमिक उदाहरण और गुण

प्रक्षेपी मापांक के निम्नलिखित गुणों को प्रक्षेपी मापांक उपरोक्त (समतुल्य) परिभाषाओं में से किसी से भी शीघ्रता से घटाया जाता है:

  • प्रक्षेपी मापांक के प्रत्यक्ष योग और प्रत्यक्ष सारांश प्रक्षेपी होते हैं।
  • यदि e = e2 वलय R में वर्गसम (वलय सिद्धांत) है, तब R, R पर प्रक्षेपी बाएं मापांक है।

अन्य मापांक-सिद्धांत गुणों से संबंध

मुक्त और समतल मापांक के लिए प्रक्षेपी मापांक का संबंध गुणों के निम्नलिखित आरेख में प्रस्तुत किया गया है:

कम्यूटेटिव बीजगणित में मॉड्यूल गुण

बाएं-से-दाएं निहितार्थ किसी भी वलय पर सही हैं, चूंकि कुछ लेखक केवल डोमेन (वलय सिद्धांत) पर घुमाव-मुक्त मापांक को परिभाषित करते हैं। दाएं-से-बाएं निहितार्थ भी सही हैं। ऐसे और भी छल्ले हो सकते हैं जिन पर वे सत्य हों। उदाहरण के लिए, स्थानीय वलय या पीआईडी लेबल किए गए निहितार्थ क्षेत्र (गणित) पर बहुपद वलयों के लिए भी सही है: यह क्विलन -सुस्लिन प्रमेय है।

प्रक्षेपी विरुद्ध मुक्त मापांक

कोई भी मुक्त मापांक प्रक्षेपी है। निम्नलिखित स्थितियों में यह विपरीत सत्य है:

  • यदि R क्षेत्र,तिरछा क्षेत्र है: इस स्थिति में कोई भी मापांक मुक्त होता है।
  • यदि वलय R प्रमुख आदर्श प्रांत है। उदाहरण के लिए, यह R = Z (पूर्णांक), पर लागू होता है, इसलिए एबेलियन समूह अनुमानित है यदि केवल यह मुक्त एबेलियन समूह है। इसका कारण यह है कि प्रमुख आदर्श डोमेन पर मापांक का कोई भी उप- मापांक मुक्त है।
  • यदि वलय R स्थानीय वलय है। यह तथ्य स्थानीय रूप से मुक्त = प्रक्षेप्य के अंतर्ज्ञान का आधार है। यह तथ्य सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक के लिए सिद्ध करना गणितीय प्रमाण के लिए सरल है। सामान्यतः, यह कपलान्स्की (1958) होने के कारण है; प्रक्षेपी मापांक पर कप्लांस्की के प्रमेय को देखें।

सामान्यतः, प्रक्षेपी मापांक को मुक्त होने की आवश्यकता नहीं है:

  • वलय के प्रत्यक्ष उत्पाद पर R × S जहां R और S शून्य वलय हैं, दोनों R × 0 और 0 × S गैर-मुक्त प्रक्षेपी मापांक हैं।
  • डेडेकिंड डोमेन पर अप्रमुख आदर्श (वलय सिद्धांत) प्रायः प्रक्षेपी मापांक होता है जो मुक्त मापांक नहीं होता है।
  • आव्यूह वलय Mn(R) पर, प्राकृतिक मापांक Rn प्रक्षेपी है लेकिन मुक्त नहीं है।[dubious ] सामान्यतः, किसी भी अर्ध-सरल वलय पर, प्रत्येक मापांक प्रक्षेपी होता है, लेकिनशून्य आदर्श और वलय ही एकमात्र मुक्त आदर्श हैं।

मुक्त और प्रक्षेपी मापांक के मध्य का अंतर, बीजगणितीय K-सिद्धांत द्वारा मापा जाता है। नीचे देखें।

प्रक्षेपी विरुद्ध समतल मापांक

प्रत्येक प्रक्षेपी Cसमतल मापांक है।[1] यह सामान्य रूप से सत्य नहीं है: एबेलियन समूह Q, Z-मापांक है जो समतल है, लेकिन अनुमानित नहीं है।[2]

इसके विपरीत, सूक्ष्म रूप से संबंधित समतल प्रक्षेपी है।[3]

गोवरोव (1965) और लाजार्ड (1969) ने यह सिद्ध किया कि मापांक M समतल है यदि केवल यह सीमित रूप से उत्पन्न मुक्त मॉड्यूल की सीधी सीमा है।

सामान्यतः, समतलता और प्रक्षेप्य के मध्य त्रुटिहीन संबंध रेनॉड & ग्रुसन (1971) द्वारा स्थापित किया गया था (यह सभी देखें ड्रिनफेल्ड (2006) और ब्रौनलिंग, ग्रोचेनिग & वोल्फसन (2016)) जिन्होंने यह प्रदर्शित किया कि मापांक M प्रक्षेपी है यदि केवल यह निम्नलिखित नियमों को संतुष्ट करता है:

  • M समतल है।
  • M गणनात्मक रूप से उत्पन्न मापांक का प्रत्यक्ष योग है।
  • M निश्चित मित्तग-लेफलर प्रकार की स्थिति को संतुष्ट करता है।

इस लक्षण वर्णन का उपयोग यह प्रदर्शित करने के लिए किया जा सकता है कि यदि क्रमविनिमेय वलयों का ईमानदारी से समतल रूपांतरण मानचित्र है और -मापांक, तब केवल प्रक्षेपी है।[4] दूसरे शब्दों में, प्रक्षेपी होने की संपत्ति ईमानदारी से समतल वंश को संतुष्ट करती है।

प्रक्षेपी मापांक की श्रेणी

प्रक्षेपी मापांक के सबमॉड्यूल्स को प्रक्षेपी होने की आवश्यकता नहीं है; वलय R जिसके लिए प्रक्षेपी बाएं मापांक के प्रत्येक सबमॉड्यूल के प्रक्षेपी होते है, उसे वंशानुगत वलय कहा जाता है।

प्रक्षेपी मापांक के भागफल मापांक को भी प्रक्षेपी होने की आवश्यकता नहीं है, उदाहरण के लिए 'z'/n 'z' का एक भागफल है, लेकिन मरोड़-मुक्त मापांक नहीं है। इसलिए समतल नहीं है, और इसलिए प्रक्षेपी नहीं है।

वलय पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक की श्रेणी एक त्रुटिहीन श्रेणी है।(बीजगणितीय के-सिद्धांत भी देखें)।

प्रक्षेपी संकल्प

मापांक एम,को देखते हुए, एम का एक 'प्रक्षेपी संकल्प (बीजगणित)' मापांक का एक अनंत त्रुटिहीन अनुक्रम है

··· → Pn → ··· → P2P1P0M → 0,

सभीPi; प्रक्षेपी के साथ।प्रत्येक मापांक में एक अनुमानित संकल्प होता है।वास्तव में एक मुक्त संकल्प (मुक्त मापांक द्वारा संकल्प) उपस्थित है। प्रक्षेपी मापांक के त्रुटिहीन अनुक्रम को कभी -कभीP(M) → M → 0 या PM → 0 के रूप में संक्षिप्त किया जा सकता है। एक नियमित अनुक्रम के जटिल परिसर द्वारा प्रक्षेपी संकल्प का एक उत्कृष्ट उदाहरण दिया गया है, जो अनुक्रम द्वारा उत्पन्न आदर्श (वलय सिद्धांत) का एक मुक्त संकल्प है।

एक परिमित संकल्प की लंबाई सूचकांक n है जैसे किPn शून्य मापांक है और Pi = 0 के लिए i n से अधिक है।यदि M एक परिमित प्रक्षेपी संकल्प को स्वीकार करता है, तो M के सभी परिमित प्रक्षेपी संकल्प के बीच न्यूनतम लंबाई को इसका 'प्रक्षेपी आयाम' कहा जाता है औरPडी (एम) को निरूपित किया जाता है।यदि M एक परिमित प्रक्षेपी संकल्प को स्वीकार नहीं करता है, तब परिपाटी द्वारा प्रक्षेप्य आयाम को अनंत कहा जाता है।एक उदाहरण के रूप में, एक मापांक एम पर विचार करें जैसे कि pd(M) = 0।इस स्थिति में, अनुक्रम की त्रुटिहीन 0 →P0 → एम → 0 इंगित करता है कि केंद्र में तीर एक समरूपी है, और इसलिए एम स्वयं प्रक्षेपी है।

क्रमविनिमेय वलयों पर प्रक्षेपी मापांक

क्रमविनिमेय वलयों पर प्रक्षेपी मापांक में अच्छे गुण होते हैं।

प्रक्षेपी मापांक का स्थानीयकरण (क्रमविनिमेय बीजगणित) स्थानीयकृत वलय पर अनुमानित मापांक है।

स्थानीय वलय पर प्रक्षेपी मापांक निःशुल्क है।इस प्रकार एक प्रक्षेपी मापांक स्थानीय रूप से मुक्त है (इस अर्थ में कि प्रत्येक प्रमुख आदर्श पर इसका स्थानीयकरण वलय के संबंधित स्थानीयकरण पर मुक्त है)।

नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के लिए यह सच है: क्रमविनिमेय नोथेरियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक स्थानीय रूप से मुक्त है यदि और केवल यदि यह अनुमानित है।

चूंकि, एक नथियन वलय पर सूक्ष्म रूप से उत्पन्न मापांक के उदाहरण हैं जो स्थानीय रूप से स्वतंत्र हैं और अनुमानित नहीं हैं।उदाहरण के लिए, एक बूलियन वलय में दो तत्वों के क्षेत्र 'f'2, के लिए इसके सभी स्थानीयकरण समरूपी होते हैं, इसलिए बूलियन वलय पर कोई भी मापांक स्थानीय रूप से मुक्त होता है, किन्तु बूलियन के वलयों पर कुछ गैर-प्रक्षेप्य मापांक होते हैं।एक उदाहरण R/आई है जहां R 'एफ' की कई प्रतियों का एक प्रत्यक्ष उत्पाद है2 और आई R के अंदर 'एफ' की कई प्रतियों का प्रत्यक्ष योग है2। R-मापांक R/आई स्थानीय रूप से मुक्त है क्योंकि R बूलियन है (और यह R-मापांक के रूप में भी सूक्ष्म रूप से उत्पन्न होता है, आकार 1 के एक फैले हुए सेट के साथ), लेकिन R/आई प्रक्षेपी नहीं है क्योंकि आई एक प्रमुख आदर्श नहीं है।(यदि एक भागफल मापांक r/i, किसी भी क्रमविनिमेय रिंग R और आदर्श I के लिए, एक अनुमानित R-मापांक है तब आई प्रमुख है।)

चूंकि, यह सच है कि क्रमविनिमेय वलय R (विशेष रूप से यदि एम एक सूक्ष्म रूप से उत्पन्न R-मापांक है और R नूथेरियन है) पर सूक्ष्म रूप से प्रस्तुत मापांक के लिए, निम्नलिखित समतुल्य हैं।[5]

  1. सपाट है।
  2. प्रक्षेपी है।
  3. इस रूप में स्वतंत्र है प्रत्येक अधिकतम आदर्श के लिए -मापांक R।
  4. इस रूप में स्वतंत्र है -मिड्यूल हर प्राइम आदर्श के लिए R।
  5. वहां है यूनिट आदर्श को उत्पन्न करना जैसे कि के रूप में स्वतंत्र है प्रत्येक के लिए -मापांक।
  6. एक स्थानीय रूप से मुक्त शीफ है (जहां एक मापांक एम से जुड़ा शीफ है)

इसके अतिरिक्त, यदि R एक नॉटेथियन अभिन्न डोमेन है, तो, नाकायमा के लेम्मा द्वारा,ये स्थितियाँ समतुल्य हैं

  • का आयाम (सदिश स्थान) -सदिश स्थल सभी प्रमुख आदर्शों के लिए समान है R, जहां पर अवशेष क्षेत्र .[6]है कहने का अर्थ यह है कि, एम में निरंतर श्रेणी है (जैसा कि नीचे परिभाषित किया गया है)।

माना A एक क्रमविनिमेय वलय है।यदि B वलय पर (संभवतः गैर-क्रमविनिमेय) ए-बीजगणित है, जो एक सबरिंग के रूप में एक सूक्ष्म रूप से उत्पन्न प्रक्षेप्य ए-मापांक है, तो ए बी का प्रत्यक्ष कारक है।।[7]


श्रेणी

क्रमविनिमेय वलय R और एक्स पर एक सूक्ष्म रूप से उत्पन्न प्रक्षेपी मापांक हो। R वलय का स्पेक्ट्रम हो। एक प्रमुख आदर्श परP की श्रेणी एक्स में मुक्त की श्रेणी -मापांक है।यह X पर एक स्थानीय रूप से निरंतर कार्य है। विशेष रूप से, यदि X जुड़ा हुआ है (अर्थात यदि R में 0 और 1 से कोई अन्य वर्गसम नहीं है), तो P में निरंतर श्रेणी है।

सदिश बंडलों और स्थानीय रूप से मुक्त मापांक

सिद्धांत की मूल प्रेरणा यह है कि प्रक्षेपी मापांक (कम से कम कुछ क्रमविनिमेय वलयों से अधिक) सदिश बंडलों के अनुरूप हैं।इसे कॉम्पैक्ट स्पेस हौसडॉर्फ स्पेस पर रिंग ऑफ सतत कार्य (टोपोलॉजी) रिंग ऑफ़ कंटीन्यूअस फंक्शन (टोपोलॉजी) के लिए सटीक बनाया जा सकता है, साथ ही साथ एक गुना पर चिकनी कार्यों की अंगूठी के लिए (सेर्रे-वैन प्रमेय देखें जो एक सूक्ष्म रूप से उत्पन्न प्रक्षेप्य कहता हैएक कॉम्पैक्ट विविध पर चिकनी कार्यों के स्थान पर मापांक एक चिकनी सदिश बंडल के चिकनी वर्गों का स्थान है)।

सदिश बंडल स्थानीय रूप से मुक्त हैं।यदि स्थानीयकरण की कुछ धारणा है, जिसे मापांक पर ले जाया जा सकता है, जैसे कि एक वलय के सामान्य स्थानीयकरण, कोई स्थानीय रूप से मुक्त मापांक को परिभाषित कर सकता है, और प्रक्षेप्य मापांक तब सामान्यतः स्थानीय रूप से मुक्त मापांक के साथ मेल खाते हैं।

एक बहुपद वलय पर प्रक्षेपी मापांक

क्विलन -सुस्लिन प्रमेय, जो सेरे की समस्या को हल करता है, एक और गहरा परिणाम है: यदि k एक क्षेत्र है, या सामान्यतः एक प्रमुख आदर्श डोमेन है, और R = K[X1,...,Xn] K के ऊपर एक बहुपद वलय है, तब R पर प्रत्येक प्रक्षेपी मापांक मुक्त है। इस समस्या को पहले सेरे द्वारा K A क्षेत्र (और मापांक को सूक्ष्म रूप से उत्पन्न किया जा रहा है) के साथ उठाया गया था।बास ने इसे गैर-फिनती उत्पन्न मापांक के लिए बसाया,[8] और क्विलन और सुज़लिन ने स्वतंत्र रूप से और साथ ही साथ सूक्ष्म रूप से उत्पन्न मापांक की स्थिति का इलाज किया।

चूंकि एक प्रमुख आदर्श डोमेन पर प्रत्येक प्रक्षेपी मापांक स्वतंत्र है, कोई भी यह सवाल पूछ सकता है: यदि R एक क्रमविनिमेय वलय है जैसे कि प्रत्येक (सूक्ष्म रूप से उत्पन्न) प्रक्षेपी R-मापांक स्वतंत्र है, तो प्रत्येक(सूक्ष्म रूप से उत्पन्न) प्रक्षेपी R [एक्स] है।-मापांक मुक्त?जवाब न है।वक्र के स्थानीय वलय के बराबर R के साथ एक प्रतिवाद होता है y2 = x3 मूल में।इस प्रकार क्विलन-सुस्लिन प्रमेय कभी भी चर की संख्या पर एक साधारण गणितीय प्रेरण द्वारा सिद्ध नहीं किया जा सकता है।

यह भी देखें


टिप्पणियाँ

  1. Hazewinkel; et al. (2004). "Corollary 5.4.5". Algebras, Rings and Modules, Part 1. p. 131.
  2. Hazewinkel; et al. (2004). "Remark after Corollary 5.4.5". Algebras, Rings and Modules, Part 1. pp. 131–132.
  3. Cohn 2003, Corollary 4.6.4
  4. "Section 10.95 (05A4): Descending properties of modules—The Stacks project". stacks.math.columbia.edu (in English). Retrieved 2022-11-03.
  5. Exercises 4.11 and 4.12 and Corollary 6.6 of David Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, GTM 150, Springer-Verlag, 1995. Also, Milne 1980
  6. That is, is the residue field of the local ring .
  7. Bourbaki, Algèbre commutative 1989, Ch II, §5, Exercise 4
  8. Bass, Hyman (1963). "Big projective modules are free". Illinois Journal of Mathematics. Duke University Press. 7 (1). Corollary 4.5. doi:10.1215/ijm/1255637479.


संदर्भ

श्रेणी: होमोलॉजिकल बीजगणित श्रेणी: मॉड्यूल सिद्धांत]