त्रिविकल्पी नियम: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Law (all real numbers are positive, negative, or 0)}}
गणित में, त्रिभाजन का नियम बताता है कि प्रत्येक [[वास्तविक संख्या]] या तो धनात्मक,ऋणात्मक या शून्य होती है।<ref name="mathworld">[http://mathworld.wolfram.com/TrichotomyLaw.html Trichotomy Law] at [[MathWorld]]</ref>
गणित में, ट्राइकोटॉमी का नियम बताता है कि प्रत्येक [[वास्तविक संख्या]] या तो धनात्मक,ऋणात्मक या शून्य होती है।<ref name="mathworld">[http://mathworld.wolfram.com/TrichotomyLaw.html Trichotomy Law] at [[MathWorld]]</ref>
सामान्यत, एक [[सेट (गणित)|समुच्चय]]  पर [[द्विआधारी संबंध]] आर 'त्रिभाजनीय' है अगर सभी x औरy के लिए x में,पूर्णतया एक xry, yrx और x =y में से कोई एक धारण करता है  R को <के रूप में लिखने पर, इसे औपचारिक तर्क के रूप में व्यक्त किया जाता है
सामान्यत, एक [[सेट (गणित)|समुच्चय]]  पर एक [[द्विआधारी संबंध]] आर 'त्रिभाजनीय' है अगर सभी x औरy के लिए x में,पूर्णतया एक xry, yrx और x =y में से कोई एक धारण करता है  R को <के रूप में लिखने पर, इसे औपचारिक तर्क में इस रूप में व्यक्त किया जाता है
:<math>\forall x \in X \, \forall y \in X \, (
:<math>\forall x \in X \, \forall y \in X \, (
   [      x < y  \, \land \, \lnot(y < x) \, \land \, \lnot(x = y) ] \, \lor \,
   [      x < y  \, \land \, \lnot(y < x) \, \land \, \lnot(x = y) ] \, \lor \,
Line 10: Line 9:


=== गुण ===
=== गुण ===
* एक संबंध त्रिविभाजित है यदि, केवल , यह [[असममित संबंध]] से [[जुड़ा हुआ संबंध|जुड़ा हुआ]]  है।
* संबंध त्रिविभाजित है यदि, केवल , यह [[असममित संबंध]] से [[जुड़ा हुआ संबंध|जुड़ा हुआ]]  है।
* यदि एक त्रिगुणात्मक संबंध भी सकर्मक है, तो यह एक निश्चित कुल क्रम है, यह एक निश्चित कमजोर क्रम का सम्बन्ध है।<ref>[[Jerrold E. Marsden]] & Michael J. Hoffman (1993) ''Elementary Classical Analysis'', page 27, [[W. H. Freeman and Company]] {{ISBN|0-7167-2105-8}}</ref><ref>H.S. Bear (1997) ''An Introduction to Mathematical Analysis'', page 11, [[Academic Press]] {{ISBN|0-12-083940-7}}</ref>
* यदि त्रिभाजन संबंध भी सकर्मक है,तो यह निश्चित कुल क्रम है,यह निश्चित आसक्त क्रम का सम्बन्ध है।<ref>[[Jerrold E. Marsden]] & Michael J. Hoffman (1993) ''Elementary Classical Analysis'', page 27, [[W. H. Freeman and Company]] {{ISBN|0-7167-2105-8}}</ref><ref>H.S. Bear (1997) ''An Introduction to Mathematical Analysis'', page 11, [[Academic Press]] {{ISBN|0-12-083940-7}}</ref>


=== उदाहरण     एक ही सेट पर, चक्रीय संबंध r = {(a, b), (b, c), (c, a)} ट्राइकोटोमस है, लेकिन सकर्मक नहीं है;यह अविश्वास भी है। ===
=== उदाहरण   ===
* समुच्चय  x = {a, b, c},पर  संबंध r = {(a, b), (a, c), (b, c)} सकर्मक और त्रिगुणात्मक है, और इसलिए एक निश्चित [[कुल आदेश|क्रम]] है।
* समुच्चय  x = {a, b, c},पर  संबंध r = {(a, b), (a, c), (b, c)} सकर्मक और त्रिभाजन है, और इसलिए एक निश्चित [[कुल आदेश|क्रम]] है।
* एक समुच्चय पर, चक्रीय संबंध r = {(a, b), (b, c), (c, a)} त्रिगुणात्मक है, लेकिन सकर्मक नहीं है;यह अकर्मक भी है।
* समुच्चय पर,चक्रीय संबंध r = {(a, b), (b, c), (c, a)} त्रिभाजन है, लेकिन सकर्मक नहीं है;यह अकर्मक भी है।


== संख्या पर ट्राइकोटॉमी ==
== संख्या पर त्रिभाजन ==
संख्याओं के कुछ समुच्चय x पर त्रिगुणात्मक नियम सामान्यतः व्यक्त करता है कि x पर कुछ निश्चित रूप से दिए गए क्रम संबंध त्रिगुणात्मक है। किसी वास्तविक संख्या x और y के लिए यह नियम,पूर्णतया x<y, y <x, या x ; y पर लागू होता है;कुछ लेखक भी y को शून्य करने का प्रयास करते हैं,<ref name="mathworld"/>वास्तविक संख्या के धनात्मक रैखिक रूप से श्रेणीबद्ध किए गए समूह संरचना पर भरोसा करना उत्तरार्द्ध में [[समूह (गणित)|गणितीय समूह को संदर्भित]]    करता है।
संख्याओं के कुछ समुच्चय x पर त्रिभाजन नियम सामान्यतः व्यक्त करता है कि xपर कुछ निश्चित रूप से दिए गए क्रम संबंध त्रिभाजन है।किसी वास्तविक संख्या xऔर yके लिए यह नियम,पूर्णतया x<y, y <x, या x ; y पर लागू होता है;कुछ विद्धवान


शास्त्रीय तर्क में, त्रिगुनात्मकता का यह स्वयंसिद्ध, वास्तविक संख्याओं के बीच सामान्य तुलना के लिए होता है और इसलिए [[पूर्णांक]] और [[तर्कसंगत संख्या]]ओं के बीच तुलना के लिए भी इसका प्रयोग किया जाता है। त्रिगुणात्मक नियम सामान्य रूप से [[अंतर्ज्ञानवादी तर्क]] में नहीं है।{{cn|reason=Also give an example where the law doesn't hold.|date=May 2018}}
भी y को शून्य करने का प्रयास करते हैं,<ref name="mathworld" />वास्तविक संख्या के धनात्मक रैखिक रूप से श्रेणीबद्ध किए गए समूह संरचना पर विश्वास करना उत्तरार्द्ध में [[समूह (गणित)|गणितीय समूह को संदर्भित]] करता है।
 
शास्त्रीय तर्क में, त्रिगुनात्मकता का यह स्वयंसिद्ध, वास्तविक संख्याओं के बीच सामान्य तुलना के लिए होता है और इसलिए [[पूर्णांक]] और [[तर्कसंगत संख्या]]ओं के बीच तुलना के लिए भी इसका प्रयोग किया जाता है। त्रिभाजन नियम सामान्य रूप से [[अंतर्ज्ञानवादी तर्क]] में नहीं है।


ज़ेर्मेलो फ्रेंकेल समुच्चय सिद्धांत और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत में, त्रिगुनात्मकता का नियम स्वयंसिद्ध के बिना भी अच्छी तरह से श्रेणीबद्ध करने योग्य समुच्चयो की संख्या के बीच रहता है।यदि [[पसंद का स्वयंसिद्ध|स्वयंसिद्ध]]  इसको धारण करता है, तो त्रिगुनात्मकता  [[बुनियादी संख्या|बुनियादी संख्यायो]] के बीच रखती है क्योंकि वे प्रमेय को अच्छी तरह से श्रेणीबद्ध कर रहे हैं। उस सन्दर्भ में सभी सुव्यवस्थित करने योग्य होते है।<ref>{{cite book | author=Bernays, Paul | title=Axiomatic Set Theory | publisher=Dover Publications | year=1991 | isbn=0-486-66637-9}}</ref>
ज़ेर्मेलो फ्रेंकेल समुच्चय सिद्धांत और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत में, त्रिगुनात्मकता का नियम स्वयंसिद्ध के बिना भी अच्छी तरह से श्रेणीबद्ध करने योग्य समुच्चयो की संख्या के बीच रहता है।यदि [[पसंद का स्वयंसिद्ध|स्वयंसिद्ध]]  इसको धारण करता है, तो त्रिगुनात्मकता  [[बुनियादी संख्या|बुनियादी संख्यायो]] के बीच रखती है क्योंकि वे प्रमेय को अच्छी तरह से श्रेणीबद्ध कर रहे हैं। उस सन्दर्भ में सभी सुव्यवस्थित करने योग्य होते है।<ref>{{cite book | author=Bernays, Paul | title=Axiomatic Set Theory | publisher=Dover Publications | year=1991 | isbn=0-486-66637-9}}</ref>
Line 27: Line 28:


== यह भी देखें ==
== यह भी देखें ==
* [[Begriffsschrift]] में ट्राइकोटॉमी के कानून का एक प्रारंभिक सूत्रीकरण होता है
* बेग्रिफस्च्रिफ्टमें ट्राइकोटॉमी के कानून का एक प्रारंभिक सूत्रीकरण होता है
* द्विभाजन
* द्विभाजन
* नॉनकंट्रैडिक्शन का नियम
* नॉनकंट्रैडिक्शन का नियम
Line 36: Line 37:
{{reflist}}
{{reflist}}


[[Category: आदेश सिद्धांत]] [[Category: द्विआधारी संबंध]] [[Category: 3 (संख्या)]]
[[Category:3 (संख्या)]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:आदेश सिद्धांत]]
[[Category:द्विआधारी संबंध]]

Latest revision as of 13:08, 3 November 2023

गणित में, त्रिभाजन का नियम बताता है कि प्रत्येक वास्तविक संख्या या तो धनात्मक,ऋणात्मक या शून्य होती है।[1] सामान्यत, एक समुच्चय पर द्विआधारी संबंध आर 'त्रिभाजनीय' है अगर सभी x औरy के लिए x में,पूर्णतया एक xry, yrx और x =y में से कोई एक धारण करता है R को <के रूप में लिखने पर, इसे औपचारिक तर्क के रूप में व्यक्त किया जाता है


गुण

  • संबंध त्रिविभाजित है यदि, केवल , यह असममित संबंध से जुड़ा हुआ है।
  • यदि त्रिभाजन संबंध भी सकर्मक है,तो यह निश्चित कुल क्रम है,यह निश्चित आसक्त क्रम का सम्बन्ध है।[2][3]

उदाहरण

  • समुच्चय x = {a, b, c},पर संबंध r = {(a, b), (a, c), (b, c)} सकर्मक और त्रिभाजन है, और इसलिए एक निश्चित क्रम है।
  • समुच्चय पर,चक्रीय संबंध r = {(a, b), (b, c), (c, a)} त्रिभाजन है, लेकिन सकर्मक नहीं है;यह अकर्मक भी है।

संख्या पर त्रिभाजन

संख्याओं के कुछ समुच्चय x पर त्रिभाजन नियम सामान्यतः व्यक्त करता है कि xपर कुछ निश्चित रूप से दिए गए क्रम संबंध त्रिभाजन है।किसी वास्तविक संख्या xऔर yके लिए यह नियम,पूर्णतया x<y, y <x, या x ; y पर लागू होता है;कुछ विद्धवान

भी y को शून्य करने का प्रयास करते हैं,[1]वास्तविक संख्या के धनात्मक रैखिक रूप से श्रेणीबद्ध किए गए समूह संरचना पर विश्वास करना उत्तरार्द्ध में गणितीय समूह को संदर्भित करता है।

शास्त्रीय तर्क में, त्रिगुनात्मकता का यह स्वयंसिद्ध, वास्तविक संख्याओं के बीच सामान्य तुलना के लिए होता है और इसलिए पूर्णांक और तर्कसंगत संख्याओं के बीच तुलना के लिए भी इसका प्रयोग किया जाता है। त्रिभाजन नियम सामान्य रूप से अंतर्ज्ञानवादी तर्क में नहीं है।

ज़ेर्मेलो फ्रेंकेल समुच्चय सिद्धांत और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत में, त्रिगुनात्मकता का नियम स्वयंसिद्ध के बिना भी अच्छी तरह से श्रेणीबद्ध करने योग्य समुच्चयो की संख्या के बीच रहता है।यदि स्वयंसिद्ध इसको धारण करता है, तो त्रिगुनात्मकता बुनियादी संख्यायो के बीच रखती है क्योंकि वे प्रमेय को अच्छी तरह से श्रेणीबद्ध कर रहे हैं। उस सन्दर्भ में सभी सुव्यवस्थित करने योग्य होते है।[4]


यह भी देखें

  • बेग्रिफस्च्रिफ्टमें ट्राइकोटॉमी के कानून का एक प्रारंभिक सूत्रीकरण होता है
  • द्विभाजन
  • नॉनकंट्रैडिक्शन का नियम
  • बाहर के बीच का कानून
  • तीन-तरफ़ा तुलना

संदर्भ

  1. 1.0 1.1 Trichotomy Law at MathWorld
  2. Jerrold E. Marsden & Michael J. Hoffman (1993) Elementary Classical Analysis, page 27, W. H. Freeman and Company ISBN 0-7167-2105-8
  3. H.S. Bear (1997) An Introduction to Mathematical Analysis, page 11, Academic Press ISBN 0-12-083940-7
  4. Bernays, Paul (1991). Axiomatic Set Theory. Dover Publications. ISBN 0-486-66637-9.