ग्रुपॉयड: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{About|श्रेणी सिद्धांत में समूह|एकल द्विचर प्रचालन के साथ बीजगणितीय संरचना|मैग्मा (बीजगणित)}}
{{About|श्रेणी सिद्धांत में समूह|एकल द्विचर प्रचालन के साथ बीजगणितीय संरचना|मैग्मा (बीजगणित)}}
गणित में, विशेष रूप से [[श्रेणी सिद्धांत]] और [[होमोटॉपी सिद्धांत]] में, एक समूह बद्ध (अक्सर कम ब्रांट ग्रुपॉयड या आभासी समूह) कई समान तरीकों से [[समूह (गणित)|समूह]] की धारणा को सामान्यीकृत करता है। एक ग्रूपोइड को एक के रूप में देखा जा सकता है:
गणित में, विशेष रूप से [[श्रेणी सिद्धांत]] और [[होमोटॉपी सिद्धांत]] में, एक समूह बद्ध (अक्सर कम ब्रांट समूह बद्ध या आभासी समूह) कई समान तरीकों से [[समूह (गणित)|समूह]] की धारणा को सामान्यीकृत करता है। एक ग्रूपोइड को एक के रूप में देखा जा सकता है:
*[[एकात्मक ऑपरेशन|द्विचर प्रचालन]] की जगह एक [[आंशिक फलन]] वाला [[समूह]],
*[[एकात्मक ऑपरेशन|द्विचर प्रचालन]] की जगह एक [[आंशिक फलन]] वाला [[समूह]],
*'[[श्रेणी]]' जिसमें प्रत्येक [[आकारिकी]] व्युत्क्रमणीय होती है। इस प्रकार की एक श्रेणी को आकारिकी पर एक [[एकल संक्रिया]] के साथ संवर्धित के रूप में देखा जा सकता है, जिसे [[समूह सिद्धांत]] के साथ सादृश्य द्वारा व्युत्क्रम कहा जाता है।<ref name="dicks-ventura-96">{{cite book|author=Dicks & Ventura|year=1996|title=एक नि: शुल्क समूह के इंजेक्शन एंडोमोर्फिज्म के एक परिवार द्वारा तय किया गया समूह|url={{Google books|plainurl=y|id=3sWSRRfNFKgC|page=6|text=G has the structure of a graph}}|page=6}}</ref> एक समूह बद्ध जहां केवल एक वस्तु होती है वह एक सामान्य समूह होता है।
*'[[श्रेणी]]' जिसमें प्रत्येक [[आकारिकी]] व्युत्क्रमणीय होती है। इस प्रकार की एक श्रेणी को आकारिकी पर एक [[एकल संक्रिया]] के साथ संवर्धित के रूप में देखा जा सकता है, जिसे [[समूह सिद्धांत]] के साथ सादृश्य द्वारा व्युत्क्रम कहा जाता है।<ref name="dicks-ventura-96">{{cite book|author=Dicks & Ventura|year=1996|title=एक नि: शुल्क समूह के इंजेक्शन एंडोमोर्फिज्म के एक परिवार द्वारा तय किया गया समूह|url={{Google books|plainurl=y|id=3sWSRRfNFKgC|page=6|text=G has the structure of a graph}}|page=6}}</ref> एक समूह बद्ध जहां केवल एक वस्तु होती है वह एक सामान्य समूह होता है।


[[आश्रित प्रकार]] की उपस्थिति में, सामान्य रूप से एक श्रेणी को वर्गीकृत किए गए [[एकाभ]] के रूप में देखा जा सकता है, और इसी तरह, एक ग्रुपॉयड को केवल वर्गीकृत किए गए समूह के रूप में देखा जा सकता है। आकारिता एक वस्तु से दूसरी वस्तु पर ले जाता है, और प्रकारों के एक आश्रित परिवार का निर्माण करता हैं, इस प्रकार आकारिकी को <math>g:A \rightarrow B</math>,  <math>h:B \rightarrow C</math>, वर्गीकरण किया जा सकता है। संरचना तब कुल फलन है, <math>\circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C </math>, ताकि <math>h \circ g : A \rightarrow C </math> ।  
[[आश्रित प्रकार]] की उपस्थिति में, सामान्य रूप से एक श्रेणी को वर्गीकृत किए गए [[एकाभ]] के रूप में देखा जा सकता है, और इसी तरह, एक समूह बद्ध को केवल वर्गीकृत किए गए समूह के रूप में देखा जा सकता है। आकारिता एक वस्तु से दूसरी वस्तु पर ले जाता है, और प्रकारों के एक आश्रित परिवार का निर्माण करता हैं, इस प्रकार आकारिकी को <math>g:A \rightarrow B</math>,  <math>h:B \rightarrow C</math>, वर्गीकरण किया जा सकता है। संरचना तब कुल फलन है, <math>\circ : (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C </math>, ताकि <math>h \circ g : A \rightarrow C </math> ।  


विशेष स्थितियों में सम्मिलित हैं,
विशेष स्थितियों में सम्मिलित हैं,
Line 10: Line 10:
*[[जी-सेट|जी-समुच्चय]], समूह <math>G</math> की [[क्रिया]] से सुसज्जित समुच्चय।
*[[जी-सेट|जी-समुच्चय]], समूह <math>G</math> की [[क्रिया]] से सुसज्जित समुच्चय।


समूह बद्ध का उपयोग अक्सर [[ज्यामितीय]] वस्तुओं जैसे [[ कई गुना |विविध]] के बारे में तर्क करने के लिए किया जाता है। {{harvs|txt|first=हेनरिक |last=ब्रांट|authorlink=हेनरिक ब्रांट|year=1927}} ने [[ब्रांट सेमीग्रुप|ब्रांट अर्धसमूह]] के माध्यम से ग्रुपॉयड्स को स्पष्ट रूप से पेश किया।<ref>{{SpringerEOM|title=Brandt semi-group|ISBN=1-4020-0609-8}}</ref>
समूह बद्ध का उपयोग अक्सर [[ज्यामितीय]] वस्तुओं जैसे [[ कई गुना |विविध]] के बारे में तर्क करने के लिए किया जाता है। {{harvs|txt|first=हेनरिक |last=ब्रांट|authorlink=हेनरिक ब्रांट|year=1927}} ने [[ब्रांट सेमीग्रुप|ब्रांट अर्धसमूह]] के माध्यम से समूह बद्ध्स को स्पष्ट रूप से पेश किया।<ref>{{SpringerEOM|title=Brandt semi-group|ISBN=1-4020-0609-8}}</ref>
== परिभाषाएँ ==
== परिभाषाएँ ==


ग्रुपॉयड एक बीजगणितीय संरचना <math>(G,\ast)</math> है जिसमें  एक अरिक्त समुच्च्य <math>G</math> और एक द्विआधारी [[आंशिक फलन]] '<math>\ast</math>' शामिल है जो <math>G</math> पर परिभाषित है।
समूह बद्ध एक बीजगणितीय संरचना <math>(G,\ast)</math> है जिसमें  एक अरिक्त समुच्च्य <math>G</math> और एक द्विआधारी [[आंशिक फलन]] '<math>\ast</math>' शामिल है जो <math>G</math> पर परिभाषित है।


=== बीजगणितीय ===
=== बीजगणितीय ===


एक ग्रुपॉयड एक समुच्चय <math>G</math> है जिसमें एक [[एकात्मक संक्रिया]] <math>{}^{-1}:G\to G,</math>  के और [[आंशिक फलन]] <math>*:G\times G \rightharpoonup G</math> है। यहाँ * एक [[द्विआधारी संक्रिया]] नहीं है क्योंकि यह आवश्यक रूप से <math>G</math> के सभी तत्वों के जोड़े के लिए परिभाषित नहीं है। सटीक शर्तें जिसके तहत <math>*</math> परिभाषित किया गया है जो यहां व्यक्त नहीं किया गया है और जो स्थिति के अनुसार भिन्न होता है।
एक समूह बद्ध एक समुच्चय <math>G</math> है जिसमें एक [[एकात्मक संक्रिया]] <math>{}^{-1}:G\to G,</math>  के और [[आंशिक फलन]] <math>*:G\times G \rightharpoonup G</math> है। यहाँ * एक [[द्विआधारी संक्रिया]] नहीं है क्योंकि यह आवश्यक रूप से <math>G</math> के सभी तत्वों के जोड़े के लिए परिभाषित नहीं है। सटीक शर्तें जिसके तहत <math>*</math> परिभाषित किया गया है जो यहां व्यक्त नहीं किया गया है और जो स्थिति के अनुसार भिन्न होता है।


संक्रियाएँ <math>\ast</math> और <sup>−1</sup> में निम्नलिखित स्वयंसिद्ध गुण हैं, सभी के लिए <math>a</math>, <math>b</math>, और <math>c</math> <math>G</math> में ,
संक्रियाएँ <math>\ast</math> और <sup>−1</sup> में निम्नलिखित स्वयंसिद्ध गुण हैं, सभी के लिए <math>a</math>, <math>b</math>, और <math>c</math> <math>G</math> में ,
Line 67: Line 67:
का एक उपसमूह <math>G \rightrightarrows X</math> एक [[उपश्रेणी]] है <math>H \rightrightarrows Y</math> वह स्वयं एक समूह है। इसे विस्तृत या पूर्ण कहा जाता है यदि यह एक उपश्रेणी के रूप में [[विस्तृत उपश्रेणी]] या [[पूर्ण उपश्रेणी]] है, क्रमशः, यदि <math>X = Y</math> या <math>G(x,y)=H(x,y)</math> हरएक के लिए <math>x,y \in Y</math>.
का एक उपसमूह <math>G \rightrightarrows X</math> एक [[उपश्रेणी]] है <math>H \rightrightarrows Y</math> वह स्वयं एक समूह है। इसे विस्तृत या पूर्ण कहा जाता है यदि यह एक उपश्रेणी के रूप में [[विस्तृत उपश्रेणी]] या [[पूर्ण उपश्रेणी]] है, क्रमशः, यदि <math>X = Y</math> या <math>G(x,y)=H(x,y)</math> हरएक के लिए <math>x,y \in Y</math>.


एक समूह बद्ध मोर्फिज्म केवल दो (श्रेणी-सैद्धांतिक) ग्रुपॉयड्स के बीच एक मज़ेदार है।
एक समूह बद्ध मोर्फिज्म केवल दो (श्रेणी-सैद्धांतिक) समूह बद्ध्स के बीच एक मज़ेदार है।


समूह बद्ध के विशेष प्रकार के रूपवाद रुचि के हैं। एक रूपवाद <math>p: E \to B</math> यदि प्रत्येक वस्तु के लिए समूह बद्ध की संख्या को [[ कंपन ]] कहा जाता है <math>x</math> का <math>E</math> और प्रत्येक रूपवाद <math>b</math> का <math>B</math> पे शुरुवात <math>p(x)</math> एक आकृति है <math>e</math> का <math>E</math> पे शुरुवात <math>x</math> ऐसा है कि <math>p(e)=b</math>. एक कंपन को [[मोर्फिज्म को कवर करना]] या समूह बद्ध का कवरिंग कहा जाता है यदि आगे ऐसा हो <math>e</math> निराला है। समूह बद्ध के कवरिंग मोर्फिज़्म विशेष रूप से उपयोगी होते हैं क्योंकि उनका उपयोग रिक्त स्थान के मानचित्रों को कवर करने के लिए किया जा सकता है।<ref>J.P. May, ''A Concise Course in Algebraic Topology'', 1999, The University of Chicago Press {{ISBN|0-226-51183-9}} (''see chapter 2'')</ref>
समूह बद्ध के विशेष प्रकार के रूपवाद रुचि के हैं। एक रूपवाद <math>p: E \to B</math> यदि प्रत्येक वस्तु के लिए समूह बद्ध की संख्या को [[ कंपन ]] कहा जाता है <math>x</math> का <math>E</math> और प्रत्येक रूपवाद <math>b</math> का <math>B</math> पे शुरुवात <math>p(x)</math> एक आकृति है <math>e</math> का <math>E</math> पे शुरुवात <math>x</math> ऐसा है कि <math>p(e)=b</math>. एक कंपन को [[मोर्फिज्म को कवर करना]] या समूह बद्ध का कवरिंग कहा जाता है यदि आगे ऐसा हो <math>e</math> निराला है। समूह बद्ध के कवरिंग मोर्फिज़्म विशेष रूप से उपयोगी होते हैं क्योंकि उनका उपयोग रिक्त स्थान के मानचित्रों को कवर करने के लिए किया जा सकता है।<ref>J.P. May, ''A Concise Course in Algebraic Topology'', 1999, The University of Chicago Press {{ISBN|0-226-51183-9}} (''see chapter 2'')</ref>
यह भी सच है कि किसी दिए गए ग्रुपॉयड के आकारिकी को कवर करने की श्रेणी <math>B</math> Groupoid की क्रियाओं की श्रेणी के बराबर है <math>B</math> सेट पर।
यह भी सच है कि किसी दिए गए समूह बद्ध के आकारिकी को कवर करने की श्रेणी <math>B</math> Groupoid की क्रियाओं की श्रेणी के बराबर है <math>B</math> सेट पर।


== उदाहरण ==
== उदाहरण ==
Line 77: Line 77:
{{Main|Fundamental groupoid}}
{{Main|Fundamental groupoid}}
एक [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] <math>X</math> दिया गया , मान लो <math>G_0</math> ,<math>X</math> का समुच्चय है।  बिंदु से morphisms <math>p</math> मुद्दे पर <math>q</math> [[निरंतर कार्य (टोपोलॉजी)]] [[पथ (टोपोलॉजी)]] के समतुल्य वर्ग हैं <math>p</math> को <math>q</math>, दो रास्तों के समतुल्य होने के साथ यदि वे [[होमोटोपिक]] हैं।
एक [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] <math>X</math> दिया गया , मान लो <math>G_0</math> ,<math>X</math> का समुच्चय है।  बिंदु से morphisms <math>p</math> मुद्दे पर <math>q</math> [[निरंतर कार्य (टोपोलॉजी)]] [[पथ (टोपोलॉजी)]] के समतुल्य वर्ग हैं <math>p</math> को <math>q</math>, दो रास्तों के समतुल्य होने के साथ यदि वे [[होमोटोपिक]] हैं।
इस तरह के दो रूपों की रचना पहले पहले मार्ग का अनुसरण करके की जाती है, फिर दूसरे की; समरूपता तुल्यता गारंटी देती है कि यह रचना साहचर्य है। इस ग्रुपॉयड को [[ मौलिक समूह ]] कहा जाता है <math>X</math>, निरूपित <math>\pi_1(X)</math> (या कभी-कभी, <math>\Pi_1(X)</math>).<ref>{{Cite web|url=https://ncatlab.org/nlab/show/fundamental+groupoid|title=nLab में मौलिक Groupoid|website=ncatlab.org|access-date=2017-09-17}}</ref> सामान्य मौलिक समूह <math>\pi_1(X,x)</math> तो बिंदु के लिए शीर्ष समूह है <math>x</math>.
इस तरह के दो रूपों की रचना पहले पहले मार्ग का अनुसरण करके की जाती है, फिर दूसरे की; समरूपता तुल्यता गारंटी देती है कि यह रचना साहचर्य है। इस समूह बद्ध को [[ मौलिक समूह ]] कहा जाता है <math>X</math>, निरूपित <math>\pi_1(X)</math> (या कभी-कभी, <math>\Pi_1(X)</math>).<ref>{{Cite web|url=https://ncatlab.org/nlab/show/fundamental+groupoid|title=nLab में मौलिक Groupoid|website=ncatlab.org|access-date=2017-09-17}}</ref> सामान्य मौलिक समूह <math>\pi_1(X,x)</math> तो बिंदु के लिए शीर्ष समूह है <math>x</math>.


मौलिक समूह की कक्षाएँ <math>\pi_1(X)</math> के पथ से जुड़े घटक हैं <math>X</math>. तदनुसार, पथ से जुड़े स्थान का मूलभूत समूह सकर्मक है, और हम ज्ञात तथ्य को पुनर्प्राप्त करते हैं कि किसी भी आधार बिंदु पर मूलभूत समूह समरूप हैं। इसके अलावा, इस मामले में, मौलिक समूह और मौलिक समूह श्रेणियों के रूप में [[श्रेणियों की समानता]] हैं (सामान्य सिद्धांत के लिए समूह Groupoid#Relation to groups देखें)।
मौलिक समूह की कक्षाएँ <math>\pi_1(X)</math> के पथ से जुड़े घटक हैं <math>X</math>. तदनुसार, पथ से जुड़े स्थान का मूलभूत समूह सकर्मक है, और हम ज्ञात तथ्य को पुनर्प्राप्त करते हैं कि किसी भी आधार बिंदु पर मूलभूत समूह समरूप हैं। इसके अलावा, इस मामले में, मौलिक समूह और मौलिक समूह श्रेणियों के रूप में [[श्रेणियों की समानता]] हैं (सामान्य सिद्धांत के लिए समूह Groupoid#Relation to groups देखें)।
Line 85: Line 85:
=== तुल्यता संबंध ===
=== तुल्यता संबंध ===
अगर <math>X</math> एक समुच्चय है, अर्थात एक समतुल्य संबंध वाला समुच्चय <math>\sim</math>, तो इस तुल्यता संबंध का प्रतिनिधित्व करने वाला एक समूह निम्नानुसार बनाया जा सकता है:
अगर <math>X</math> एक समुच्चय है, अर्थात एक समतुल्य संबंध वाला समुच्चय <math>\sim</math>, तो इस तुल्यता संबंध का प्रतिनिधित्व करने वाला एक समूह निम्नानुसार बनाया जा सकता है:
* ग्रुपॉयड की वस्तुएं किसके तत्व हैं <math>X</math>;
* समूह बद्ध की वस्तुएं किसके तत्व हैं <math>X</math>;
* किन्हीं दो तत्वों के लिए <math>x</math> और <math>y</math> में <math>X</math>, वहाँ से एक एकल morphism है <math>x</math> को <math>y</math> (द्वारा इंगित करें <math>(y,x)</math>) अगर और केवल अगर <math>x\sim y</math>;
* किन्हीं दो तत्वों के लिए <math>x</math> और <math>y</math> में <math>X</math>, वहाँ से एक एकल morphism है <math>x</math> को <math>y</math> (द्वारा इंगित करें <math>(y,x)</math>) अगर और केवल अगर <math>x\sim y</math>;
* की रचना <math>(z,y)</math> और <math>(y,x)</math> है <math>(z,x)</math>.
* की रचना <math>(z,y)</math> और <math>(y,x)</math> है <math>(z,x)</math>.
Line 91: Line 91:


* यदि हर तत्व <math>X</math> के हर दूसरे तत्व के साथ संबंध है <math>X</math>, हम की जोड़ी Groupoid प्राप्त करते हैं <math>X</math>, जिसके पास संपूर्ण है <math>X \times X</math> तीरों के सेट के रूप में, और जो सकर्मक है।
* यदि हर तत्व <math>X</math> के हर दूसरे तत्व के साथ संबंध है <math>X</math>, हम की जोड़ी Groupoid प्राप्त करते हैं <math>X</math>, जिसके पास संपूर्ण है <math>X \times X</math> तीरों के सेट के रूप में, और जो सकर्मक है।
* यदि हर तत्व <math>X</math> केवल स्वयं के संबंध में है, एक यूनिट ग्रुपॉयड प्राप्त करता है, जिसमें है <math>X</math> तीरों के सेट के रूप में, <math>s = t = id_X</math>, और जो पूरी तरह से अकर्मक है (प्रत्येक सिंगलटन <math>\{x\}</math> एक कक्षा है)।
* यदि हर तत्व <math>X</math> केवल स्वयं के संबंध में है, एक यूनिट समूह बद्ध प्राप्त करता है, जिसमें है <math>X</math> तीरों के सेट के रूप में, <math>s = t = id_X</math>, और जो पूरी तरह से अकर्मक है (प्रत्येक सिंगलटन <math>\{x\}</math> एक कक्षा है)।


==== उदाहरण ====
==== उदाहरण ====
*अगर <math>f: X_0 \to Y</math> एक चिकनी विशेषण क्रिया है, फिर [[चिकनी कई गुना]]ओं का जलमग्न (गणित)। <math>X_0\times_YX_0 \subset X_0\times X_0</math> एक तुल्यता संबंध है<ref name=":0" />तब से <math>Y</math> के [[भागफल टोपोलॉजी|भागफल]] सांस्थितिकी के लिए एक सांस्थितिकी समरूपी है <math>X_0</math> टोपोलॉजिकल स्पेस के विशेषण मानचित्र के तहत। अगर हम लिखते हैं, <math>X_1 = X_0\times_YX_0</math> तब हमें एक ग्रुपॉयड <ब्लॉककोट> मिलता है<math>X_1 \rightrightarrows X_0</math>
*अगर <math>f: X_0 \to Y</math> एक चिकनी विशेषण क्रिया है, फिर [[चिकनी कई गुना]]ओं का जलमग्न (गणित)। <math>X_0\times_YX_0 \subset X_0\times X_0</math> एक तुल्यता संबंध है<ref name=":0" />तब से <math>Y</math> के [[भागफल टोपोलॉजी|भागफल]] सांस्थितिकी के लिए एक सांस्थितिकी समरूपी है <math>X_0</math> टोपोलॉजिकल स्पेस के विशेषण मानचित्र के तहत। अगर हम लिखते हैं, <math>X_1 = X_0\times_YX_0</math> तब हमें एक समूह बद्ध <ब्लॉककोट> मिलता है<math>X_1 \rightrightarrows X_0</math>
जिसे कभी-कभी स्मूथ मैनिफोल्ड्स के विशेषण निमज्जन का साधारण समूह कहा जाता है।
जिसे कभी-कभी स्मूथ मैनिफोल्ड्स के विशेषण निमज्जन का साधारण समूह कहा जाता है।
*यदि हम रिफ्लेक्सिविटी की आवश्यकता को शिथिल करते हैं और 'आंशिक तुल्यता संबंधों' पर विचार करते हैं, तो सेट के लिए कंप्यूटेशनल रियलाइजर्स पर तुल्यता की अर्ध-निर्णायक धारणाओं पर विचार करना संभव हो जाता है। यह समूह बद्ध को सिद्धांत सेट करने के लिए एक संगणनीय सन्निकटन के रूप में उपयोग करने की अनुमति देता है, जिसे ''प्रति मॉडल'' कहा जाता है। एक श्रेणी के रूप में माना जाता है, प्रति मॉडल एक कार्टेशियन बंद श्रेणी है जिसमें प्राकृतिक संख्या ऑब्जेक्ट और सबोबजेक्ट क्लासिफायरियर हैं, जो [[मार्टिन हाइलैंड]] द्वारा पेश किए गए [[प्रभावी टोपोस]] को जन्म देते हैं।
*यदि हम रिफ्लेक्सिविटी की आवश्यकता को शिथिल करते हैं और 'आंशिक तुल्यता संबंधों' पर विचार करते हैं, तो सेट के लिए कंप्यूटेशनल रियलाइजर्स पर तुल्यता की अर्ध-निर्णायक धारणाओं पर विचार करना संभव हो जाता है। यह समूह बद्ध को सिद्धांत सेट करने के लिए एक संगणनीय सन्निकटन के रूप में उपयोग करने की अनुमति देता है, जिसे ''प्रति मॉडल'' कहा जाता है। एक श्रेणी के रूप में माना जाता है, प्रति मॉडल एक कार्टेशियन बंद श्रेणी है जिसमें प्राकृतिक संख्या ऑब्जेक्ट और सबोबजेक्ट क्लासिफायरियर हैं, जो [[मार्टिन हाइलैंड]] द्वारा पेश किए गए [[प्रभावी टोपोस]] को जन्म देते हैं।
Line 100: Line 100:
=== चेक समूह बद्ध ===
=== चेक समूह बद्ध ===
{{See also|Simplicial manifold|Nerve of a covering}}
{{See also|Simplicial manifold|Nerve of a covering}}
और चेक ग्रुपॉयड<ref name=":0">{{cite arXiv|last1=Block|first1=Jonathan|last2=Daenzer|first2=Calder|date=2009-01-09|title=कनेक्शन के साथ गेर्ब्स के लिए मुकाई द्वैत|class=math.QA|eprint=0803.1529}}</ref><sup>पी। 5</sup> एक खुले आवरण द्वारा दिए गए तुल्यता संबंध से जुड़ा एक विशेष प्रकार का समूह है <math>\mathcal{U} = \{U_i\}_{i\in I}</math> कुछ कई गुना <math>X</math>. इसकी वस्तुएं असम्बद्ध संघ द्वारा दी गई हैं
और चेक समूह बद्ध<ref name=":0">{{cite arXiv|last1=Block|first1=Jonathan|last2=Daenzer|first2=Calder|date=2009-01-09|title=कनेक्शन के साथ गेर्ब्स के लिए मुकाई द्वैत|class=math.QA|eprint=0803.1529}}</ref><sup>पी। 5</sup> एक खुले आवरण द्वारा दिए गए तुल्यता संबंध से जुड़ा एक विशेष प्रकार का समूह है <math>\mathcal{U} = \{U_i\}_{i\in I}</math> कुछ कई गुना <math>X</math>. इसकी वस्तुएं असम्बद्ध संघ द्वारा दी गई हैं
<ब्लॉककोट><math>\mathcal{G}_0 = \coprod U_i</math>,</blockquote>
<ब्लॉककोट><math>\mathcal{G}_0 = \coprod U_i</math>,</blockquote>
और उसके तीर चौराहा हैं
और उसके तीर चौराहा हैं
Line 119: Line 119:
* आकारिकी का प्रकार्य संघटन इसके द्विआधारी संक्रिया की व्याख्या करता है <math>G</math>.
* आकारिकी का प्रकार्य संघटन इसके द्विआधारी संक्रिया की व्याख्या करता है <math>G</math>.


अधिक स्पष्ट रूप से, एक्शन ग्रुपॉयड एक छोटी श्रेणी है <math>\mathrm{ob}(C)=X</math> और <math>\mathrm{hom}(C)=G\times X</math> और स्रोत और लक्ष्य मानचित्रों के साथ <math>s(g,x) = x</math> और <math>t(g,x) = gx</math>. इसे अक्सर निरूपित किया जाता है <math>G \ltimes X</math> (या <math>X\rtimes G</math> उचित कार्य के लिए)। समूहभ में गुणन (या संघटन) तब होता है <math>(h,y)(g,x) = (hg,x)</math> जिसे परिभाषित किया गया है <math>y=gx</math>.
अधिक स्पष्ट रूप से, एक्शन समूह बद्ध एक छोटी श्रेणी है <math>\mathrm{ob}(C)=X</math> और <math>\mathrm{hom}(C)=G\times X</math> और स्रोत और लक्ष्य मानचित्रों के साथ <math>s(g,x) = x</math> और <math>t(g,x) = gx</math>. इसे अक्सर निरूपित किया जाता है <math>G \ltimes X</math> (या <math>X\rtimes G</math> उचित कार्य के लिए)। समूहभ में गुणन (या संघटन) तब होता है <math>(h,y)(g,x) = (hg,x)</math> जिसे परिभाषित किया गया है <math>y=gx</math>.


के लिए <math>x</math> में <math>X</math>शीर्ष समूह में वे सम्मिलित हैं <math>(g,x)</math> साथ <math>gx=x</math>, जो सिर्फ [[आइसोट्रॉपी उपसमूह]] है <math>x</math> दी गई क्रिया के लिए (यही कारण है कि शीर्ष समूहों को आइसोट्रॉपी समूह भी कहा जाता है)। इसी तरह, एक्शन ग्रुपॉयड की कक्षाएँ समूह क्रिया की [[कक्षा (समूह सिद्धांत)]] हैं, और समूह बद्ध सकर्मक है अगर और केवल अगर समूह क्रिया [[सकर्मक समूह क्रिया]] है।
के लिए <math>x</math> में <math>X</math>शीर्ष समूह में वे सम्मिलित हैं <math>(g,x)</math> साथ <math>gx=x</math>, जो सिर्फ [[आइसोट्रॉपी उपसमूह]] है <math>x</math> दी गई क्रिया के लिए (यही कारण है कि शीर्ष समूहों को आइसोट्रॉपी समूह भी कहा जाता है)। इसी तरह, एक्शन समूह बद्ध की कक्षाएँ समूह क्रिया की [[कक्षा (समूह सिद्धांत)]] हैं, और समूह बद्ध सकर्मक है अगर और केवल अगर समूह क्रिया [[सकर्मक समूह क्रिया]] है।


वर्णन करने का दूसरा तरीका <math>G</math>-सेट फ़ंक्टर श्रेणी है <math>[\mathrm{Gr},\mathrm{Set}]</math>, कहाँ <math>\mathrm{Gr}</math> समूह के लिए एक तत्व और समरूपता के साथ समूह (श्रेणी) है <math>G</math>. दरअसल, हर कार्यकर्ता <math>F</math> इस श्रेणी का एक सेट परिभाषित करता है <math>X=F(\mathrm{Gr})</math> और प्रत्येक के लिए <math>g</math> में <math>G</math> (अर्थात प्रत्येक आकृतिवाद के लिए <math>\mathrm{Gr}</math>) आपत्ति उत्पन्न करता है <math>F_g</math> : <math>X\to X</math>. फ़ैक्टर की श्रेणीबद्ध संरचना <math>F</math> हमें विश्वास दिलाता है <math>F</math> ए परिभाषित करता है <math>G</math>-सेट पर कार्रवाई <math>G</math>. (अद्वितीय) प्रतिनिधित्व करने योग्य फ़ैक्टर <math>F</math> : <math>\mathrm{Gr} \to \mathrm{Set}</math> केली का प्रमेय है <math>G</math>. वास्तव में, यह फ़ैक्टर समरूपी है <math>\mathrm{Hom}(\mathrm{Gr},-)</math> और इसलिए भेजता है <math>\mathrm{ob}(\mathrm{Gr})</math> सेट पर <math>\mathrm{Hom}(\mathrm{Gr},\mathrm{Gr})</math> जो परिभाषा के अनुसार सेट है <math>G</math> और रूपवाद <math>g</math> का <math>\mathrm{Gr}</math> (यानी तत्व <math>g</math> का <math>G</math>) क्रमपरिवर्तन के लिए <math>F_g</math> सेट का <math>G</math>. हम Yoneda एंबेडिंग से यह निष्कर्ष निकालते हैं कि समूह <math>G</math> समूह के लिए समरूपी है <math>\{F_g\mid g\in G\}</math>, के [[क्रमपरिवर्तन समूह]]ों के समूह का एक [[उपसमूह]] <math>G</math>.
वर्णन करने का दूसरा तरीका <math>G</math>-सेट फ़ंक्टर श्रेणी है <math>[\mathrm{Gr},\mathrm{Set}]</math>, कहाँ <math>\mathrm{Gr}</math> समूह के लिए एक तत्व और समरूपता के साथ समूह (श्रेणी) है <math>G</math>. दरअसल, हर कार्यकर्ता <math>F</math> इस श्रेणी का एक सेट परिभाषित करता है <math>X=F(\mathrm{Gr})</math> और प्रत्येक के लिए <math>g</math> में <math>G</math> (अर्थात प्रत्येक आकृतिवाद के लिए <math>\mathrm{Gr}</math>) आपत्ति उत्पन्न करता है <math>F_g</math> : <math>X\to X</math>. फ़ैक्टर की श्रेणीबद्ध संरचना <math>F</math> हमें विश्वास दिलाता है <math>F</math> ए परिभाषित करता है <math>G</math>-सेट पर कार्रवाई <math>G</math>. (अद्वितीय) प्रतिनिधित्व करने योग्य फ़ैक्टर <math>F</math> : <math>\mathrm{Gr} \to \mathrm{Set}</math> केली का प्रमेय है <math>G</math>. वास्तव में, यह फ़ैक्टर समरूपी है <math>\mathrm{Hom}(\mathrm{Gr},-)</math> और इसलिए भेजता है <math>\mathrm{ob}(\mathrm{Gr})</math> सेट पर <math>\mathrm{Hom}(\mathrm{Gr},\mathrm{Gr})</math> जो परिभाषा के अनुसार सेट है <math>G</math> और रूपवाद <math>g</math> का <math>\mathrm{Gr}</math> (यानी तत्व <math>g</math> का <math>G</math>) क्रमपरिवर्तन के लिए <math>F_g</math> सेट का <math>G</math>. हम Yoneda एंबेडिंग से यह निष्कर्ष निकालते हैं कि समूह <math>G</math> समूह के लिए समरूपी है <math>\{F_g\mid g\in G\}</math>, के [[क्रमपरिवर्तन समूह]]ों के समूह का एक [[उपसमूह]] <math>G</math>.
Line 142: Line 142:


=== समूह बद्ध का फाइबर उत्पाद ===
=== समूह बद्ध का फाइबर उत्पाद ===
ग्रुपॉयड मॉर्फिज्म के साथ ग्रुपॉयड्स का आरेख दिया गया है
समूह बद्ध मॉर्फिज्म के साथ समूह बद्ध्स का आरेख दिया गया है
:<math>
:<math>
\begin{align}
\begin{align}
Line 190: Line 190:
C_1 \overset{d}{\rightarrow}C_0
C_1 \overset{d}{\rightarrow}C_0
</math>
</math>
कंक्रीट श्रेणी में वस्तुओं की संख्या [[एबेलियन श्रेणी]] का उपयोग ग्रुपॉयड बनाने के लिए किया जा सकता है। इसमें वस्तुओं के रूप में सेट है <math>C_0</math> और तीर के रूप में सेट <math>C_1\oplus C_0</math>; स्रोत morphism सिर्फ प्रक्षेपण है <math>C_0</math> जबकि लक्ष्य आकृतिवाद पर प्रक्षेपण का जोड़ है <math>C_1</math> से बना है <math>d</math> और पर प्रक्षेपण <math>C_0</math>. यानी दिया <math>c_1 + c_0 \in C_1\oplus C_0</math>, अपने पास
कंक्रीट श्रेणी में वस्तुओं की संख्या [[एबेलियन श्रेणी]] का उपयोग समूह बद्ध बनाने के लिए किया जा सकता है। इसमें वस्तुओं के रूप में सेट है <math>C_0</math> और तीर के रूप में सेट <math>C_1\oplus C_0</math>; स्रोत morphism सिर्फ प्रक्षेपण है <math>C_0</math> जबकि लक्ष्य आकृतिवाद पर प्रक्षेपण का जोड़ है <math>C_1</math> से बना है <math>d</math> और पर प्रक्षेपण <math>C_0</math>. यानी दिया <math>c_1 + c_0 \in C_1\oplus C_0</math>, अपने पास
:<math>
:<math>
t(c_1 + c_0) = d(c_1) + c_0.
t(c_1 + c_0) = d(c_1) + c_0.
Line 198: Line 198:
=== पहेलियाँ ===
=== पहेलियाँ ===


जबकि रूबिक क्यूब जैसी पहेलियों को समूह सिद्धांत (रुबिक क्यूब समूह देखें) का उपयोग करके तैयार किया जा सकता है, कुछ पहेलियों को समूह बद्ध के रूप में बेहतर रूप से तैयार किया जाता है।<ref>[https://www.crcpress.com/An-Introduction-to-Groups-Groupoids-and-Their-Representations/Ibort-Rodriguez/p/book/9781138035867 An Introduction to Groups, Groupoids and Their Representations: An Introduction]; Alberto Ibort, Miguel A. Rodriguez; CRC Press, 2019.</ref>
जबकि [[रूबिक क्यूब]] जैसी पहेलियों को समूह सिद्धांत ([[रुबिक क्यूब समूह]] देखें) का उपयोग करके तैयार किया जा सकता है, कुछ पहेलियों को समूह बद्ध के रूप में बेहतर रूप से तैयार किया जाता है।<ref>[https://www.crcpress.com/An-Introduction-to-Groups-Groupoids-and-Their-Representations/Ibort-Rodriguez/p/book/9781138035867 An Introduction to Groups, Groupoids and Their Representations: An Introduction]; Alberto Ibort, Miguel A. Rodriguez; CRC Press, 2019.</ref>
पन्द्रह पहेली के परिवर्तन एक समूह बद्ध बनाते हैं (समूह नहीं, क्योंकि सभी चालों की रचना नहीं की जा सकती)।<ref>Jim Belk (2008) [https://cornellmath.wordpress.com/2008/01/27/puzzles-groups-and-groupoids/ Puzzles, Groups, and Groupoids], The Everything Seminar</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 The 15-puzzle groupoid (1)] {{Webarchive|url=https://web.archive.org/web/20151225220110/http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 |date=2015-12-25 }}, Never Ending Books</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 The 15-puzzle groupoid (2)] {{Webarchive|url=https://web.archive.org/web/20151225210035/http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 |date=2015-12-25 }}, Never Ending Books</ref> यह समूह क्रिया (गणित)#विन्यास और विन्यास पर सामान्यीकरण।


=== मैथ्यू ग्रुपोइड ===
[[पन्द्रह पहेली]] के परिवर्तन एक समूह बद्ध बनाते हैं (एक समूह नहीं, क्योंकि सभी चालों की रचना नहीं की जा सकती)।<ref>Jim Belk (2008) [https://cornellmath.wordpress.com/2008/01/27/puzzles-groups-and-groupoids/ Puzzles, Groups, and Groupoids], The Everything Seminar</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 The 15-puzzle groupoid (1)] {{Webarchive|url=https://web.archive.org/web/20151225220110/http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 |date=2015-12-25 }}, Never Ending Books</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 The 15-puzzle groupoid (2)] {{Webarchive|url=https://web.archive.org/web/20151225210035/http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 |date=2015-12-25 }}, Never Ending Books</ref> यह [[समूह बद्ध]] संरूपण पर [[कार्य]] करता है।


[[मैथ्यू ग्रुपॉयड]] [[जॉन हॉर्टन कॉनवे]] द्वारा पेश किया गया एक समूह है जो 13 बिंदुओं पर अभिनय करता है जैसे कि एक बिंदु को ठीक करने वाले तत्व [[मैथ्यू समूह]] एम की एक प्रति बनाते हैं।<sub>12</sub>.
=== मैथ्यू समूह बद्ध ===
 
[[मैथ्यू ग्रुपॉयड|मैथ्यू समूह बद्ध]] [[जॉन हॉर्टन कॉनवे]] द्वारा पेश किया गया एक समूह है जो 13 बिंदुओं पर अभिनय करता है जैसे कि एक बिंदु को ठीक करने वाले तत्व [[मैथ्यू समूह]] M<sub>12</sub> की एक प्रति बनाते हैं।


== समूहों से संबंध ==
== समूहों से संबंध ==
Line 221: Line 222:
*समुच्चय <math>X</math>, समूह <math>G</math> की एक क्रिया से सुसज्जित है, क्रिया की प्रत्येक [[कक्षा]] के लिए <math>G</math> की एक प्रति के बराबर (एक समूह के रूप में) है, लेकिन एक [[समरूपता]] को यह निर्दिष्ट करने की आवश्यकता होती है कि प्रत्येक कक्षा क्या समुच्चय है।
*समुच्चय <math>X</math>, समूह <math>G</math> की एक क्रिया से सुसज्जित है, क्रिया की प्रत्येक [[कक्षा]] के लिए <math>G</math> की एक प्रति के बराबर (एक समूह के रूप में) है, लेकिन एक [[समरूपता]] को यह निर्दिष्ट करने की आवश्यकता होती है कि प्रत्येक कक्षा क्या समुच्चय है।


समूहों के एक मात्र संग्रह में समूह का पतन, श्रेणी-सिद्धांत के दृष्टिकोण से भी कुछ जानकारी खो देता है, क्योंकि यह [[प्राकृतिक]] नहीं है। इस प्रकार जब ग्रुपॉयड अन्य संरचनाओं के संदर्भ में उत्पन्न होते हैं, जैसा कि उपरोक्त उदाहरणों में है, तो यह पूरे ग्रुपॉयड को बनाए रखने में मददगार हो सकता है। अन्यथा, एक समूह के संदर्भ में प्रत्येक <math>G(x)</math> को देखने का एक तरीका चुनना होगा, और यह विकल्प यादृच्छिक हो सकता है। [[सांस्थितिकी]] के उदाहरण में, एक ही पथ से जुड़े घटक में प्रत्येक बिंदु <math>p</math> से प्रत्येक बिंदु <math>q</math> तक पथों (या पथों के समतुल्य वर्ग) का एक सुसंगत विकल्प बनाना होगा।
समूहों के एक मात्र संग्रह में समूह का पतन, श्रेणी-सिद्धांत के दृष्टिकोण से भी कुछ जानकारी खो देता है, क्योंकि यह [[प्राकृतिक]] नहीं है। इस प्रकार जब समूह बद्ध अन्य संरचनाओं के संदर्भ में उत्पन्न होते हैं, जैसा कि उपरोक्त उदाहरणों में है, तो यह पूरे समूह बद्ध को बनाए रखने में मददगार हो सकता है। अन्यथा, एक समूह के संदर्भ में प्रत्येक <math>G(x)</math> को देखने का एक तरीका चुनना होगा, और यह विकल्प यादृच्छिक हो सकता है। [[सांस्थितिकी]] के उदाहरण में, एक ही पथ से जुड़े घटक में प्रत्येक बिंदु <math>p</math> से प्रत्येक बिंदु <math>q</math> तक पथों (या पथों के समतुल्य वर्ग) का एक सुसंगत विकल्प बनाना होगा।


एक अधिक रोशन करने वाले उदाहरण के रूप में, एक [[एंडोमोर्फिज्म|अंतःरूपांतरण]] वाले समूह बद्ध का वर्गीकरण विशुद्ध रूप से समूह सैद्धांतिक विचारों को कम नहीं करता है। यह इस तथ्य के अनुरूप है कि एक अंतःरूपांतरण वाले [[सदिश समष्टि]] का वर्गीकरण गैर-तुच्छ है।
एक अधिक रोशन करने वाले उदाहरण के रूप में, एक [[एंडोमोर्फिज्म|अंतःरूपांतरण]] वाले समूह बद्ध का वर्गीकरण विशुद्ध रूप से समूह सैद्धांतिक विचारों को कम नहीं करता है। यह इस तथ्य के अनुरूप है कि एक अंतःरूपांतरण वाले [[सदिश समष्टि]] का वर्गीकरण गैर-तुच्छ है।
Line 248: Line 249:
=== [[एससेट]] से संबंध ===
=== [[एससेट]] से संबंध ===


[[तंत्रिका (श्रेणी सिद्धांत)|तंत्रिका प्रकार्यक]] <math>N :  \mathbf{Grpd} \to \mathbf{sSet}</math> जीआरपीडी को साधारण सेट की श्रेणी की पूर्ण उपश्रेणी के रूप में सन्निहित करता है। ग्रुपॉयड की तंत्रिका हमेशा [[ कान जटिल |कान सम्मिश्र]] होती है।
[[तंत्रिका (श्रेणी सिद्धांत)|तंत्रिका प्रकार्यक]] <math>N :  \mathbf{Grpd} \to \mathbf{sSet}</math> जीआरपीडी को साधारण सेट की श्रेणी की पूर्ण उपश्रेणी के रूप में सन्निहित करता है। समूह बद्ध की तंत्रिका हमेशा [[ कान जटिल |कान सम्मिश्र]] होती है।


तंत्रिका में एक बायां जोड़ होता है
तंत्रिका में एक बायां जोड़ होता है
Line 258: Line 259:
}}
}}


एक अतिरिक्त संरचना जो समूह बद्ध आंतरिक से समूह बद्ध, दोहरे समूह की श्रेणी में प्राप्त की जा सकती है।<ref>{{cite arXiv|last1=Cegarra|first1=Antonio M.|last2=Heredia|first2=Benjamín A.|last3=Remedios|first3=Josué|date=2010-03-19|title=Double groupoids and homotopy 2-types|class=math.AT|eprint=1003.3820}}</ref><ref>{{Cite journal|last=Ehresmann|first=Charles|date=1964|title=Catégories et structures : extraits|url=http://www.numdam.org/item/?id=SE_1964__6__A8_0|journal=Séminaire Ehresmann. Topologie et géométrie différentielle|language=en|volume=6|pages=1–31}}</ref> क्योंकि जीआरपीडी ए 2-श्रेणी है, ये वस्तुएँ 1-श्रेणी के बजाय 2-श्रेणी बनाती हैं क्योंकि वहाँ अतिरिक्त संरचना होती है। अनिवार्य रूप से, ये ग्रुपॉयड <math>\mathcal{G}_1,\mathcal{G}_0</math> प्रकार्यक <blockquote><math>s,t: \mathcal{G}_1 \to \mathcal{G}_0</math></blockquote>के साथ हैं और एक पहचान प्रकार्यक <blockquote> <math>i:\mathcal{G}_0 \to\mathcal{G}_1</math></blockquote>द्वारा दिया गया एक अंत: स्थापन है। इन 2-समूह बद्ध के बारे में सोचने का एक तरीका यह है कि इनमें वस्तुए, आकारिकी, और वर्ग होते हैं जो लंबवत और क्षैतिज रूप से एक साथ रचना कर सकते हैं। उदाहरण के लिए, दिए गए वर्गों <math>\begin{matrix}
एक अतिरिक्त संरचना जो समूह बद्ध आंतरिक से समूह बद्ध, दोहरे समूह की श्रेणी में प्राप्त की जा सकती है।<ref>{{cite arXiv|last1=Cegarra|first1=Antonio M.|last2=Heredia|first2=Benjamín A.|last3=Remedios|first3=Josué|date=2010-03-19|title=Double groupoids and homotopy 2-types|class=math.AT|eprint=1003.3820}}</ref><ref>{{Cite journal|last=Ehresmann|first=Charles|date=1964|title=Catégories et structures : extraits|url=http://www.numdam.org/item/?id=SE_1964__6__A8_0|journal=Séminaire Ehresmann. Topologie et géométrie différentielle|language=en|volume=6|pages=1–31}}</ref> क्योंकि जीआरपीडी ए 2-श्रेणी है, ये वस्तुएँ 1-श्रेणी के बजाय 2-श्रेणी बनाती हैं क्योंकि वहाँ अतिरिक्त संरचना होती है। अनिवार्य रूप से, ये समूह बद्ध <math>\mathcal{G}_1,\mathcal{G}_0</math> प्रकार्यक <blockquote><math>s,t: \mathcal{G}_1 \to \mathcal{G}_0</math></blockquote>के साथ हैं और एक पहचान प्रकार्यक <blockquote> <math>i:\mathcal{G}_0 \to\mathcal{G}_1</math></blockquote>द्वारा दिया गया एक अंत: स्थापन है। इन 2-समूह बद्ध के बारे में सोचने का एक तरीका यह है कि इनमें वस्तुए, आकारिकी, और वर्ग होते हैं जो लंबवत और क्षैतिज रूप से एक साथ रचना कर सकते हैं। उदाहरण के लिए, दिए गए वर्गों <math>\begin{matrix}
\bullet & \to & \bullet \\
\bullet & \to & \bullet \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
Line 277: Line 278:
== ज्यामितीय संरचनाओं के साथ समूह बद्ध ==
== ज्यामितीय संरचनाओं के साथ समूह बद्ध ==


ज्यामितीय वस्तुओं का अध्ययन करते समय, उत्पन्न होने वाले समूह बद्ध में अक्सर एक [[सांस्थितिकी]] होती है, जो उन्हें [[टोपोलॉजिकल ग्रुपॉयड|सांस्थितिक ग्रुपॉयड]] में बदल देती हैं, या यहां तक ​​​​कि कुछ [[अलग-अलग संरचना]], उन्हें [[लाइ ग्रुपोइड्स|लाइ समूह बद्ध]] में बदल देते हैं। इन अंतिम वस्तुओं का अध्ययन उनके संबंधित [[झूठ बीजगणित|लाइ]] [[झूठ बीजगणित|बीजगणित]] ,[[झूठ समूह|लाइ समूह बद्ध]] और [[झूठ बीजगणित|लाइ]] [[बीजगणित]] के बीच संबंध के अनुरूप संदर्भ में भी किया जा सकता है।
ज्यामितीय वस्तुओं का अध्ययन करते समय, उत्पन्न होने वाले समूह बद्ध में अक्सर एक [[सांस्थितिकी]] होती है, जो उन्हें [[टोपोलॉजिकल ग्रुपॉयड|सांस्थितिक समूह बद्ध]] में बदल देती हैं, या यहां तक ​​​​कि कुछ [[अलग-अलग संरचना]], उन्हें [[लाइ ग्रुपोइड्स|लाइ समूह बद्ध]] में बदल देते हैं। इन अंतिम वस्तुओं का अध्ययन उनके संबंधित [[झूठ बीजगणित|लाइ]] [[झूठ बीजगणित|बीजगणित]] ,[[झूठ समूह|लाइ समूह बद्ध]] और [[झूठ बीजगणित|लाइ]] [[बीजगणित]] के बीच संबंध के अनुरूप संदर्भ में भी किया जा सकता है।


ज्यामिति से उत्पन्न होने वाले ग्रुपॉयड्स में अक्सर आगे की संरचनाएं होती हैं जो ग्रुपॉयड गुणन के साथ परस्पर क्रिया करती हैं। उदाहरण के लिए, [[पोइसन ज्यामिति]] में एक [[ सहानुभूति समूह | साइमलेक्टिक समूह]] की धारणा है, जो एक संगत[[ सिंपलेक्टिक मैनिफोल्ड | सिंपलेक्टिक विधि]] के साथ एक [[झूठ बोलना|लाइ]] [[झूठ बोलना|ग्रुपॉयड]] है। इसी तरह, किसी के पास संगत [[रिमेंनियन मीट्रिक|रीमानी ज्यमिति]], या [[ जटिल कई गुना |सम्मिश्र संरचना]] आदि के साथ ग्रुपॉयड हो सकते हैं।
ज्यामिति से उत्पन्न होने वाले समूह बद्ध्स में अक्सर आगे की संरचनाएं होती हैं जो समूह बद्ध गुणन के साथ परस्पर क्रिया करती हैं। उदाहरण के लिए, [[पोइसन ज्यामिति]] में एक [[ सहानुभूति समूह | साइमलेक्टिक समूह]] की धारणा है, जो एक संगत[[ सिंपलेक्टिक मैनिफोल्ड | सिंपलेक्टिक विधि]] के साथ एक [[झूठ बोलना|लाइ]] [[झूठ बोलना|समूह बद्ध]] है। इसी तरह, किसी के पास संगत [[रिमेंनियन मीट्रिक|रीमानी ज्यमिति]], या [[ जटिल कई गुना |सम्मिश्र संरचना]] आदि के साथ समूह बद्ध हो सकते हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 286: Line 287:
* [[ होमोटॉपी प्रकार सिद्धांत | समस्थेयता प्रकार सिद्धांत]]
* [[ होमोटॉपी प्रकार सिद्धांत | समस्थेयता प्रकार सिद्धांत]]
*उलट श्रेणी
*उलट श्रेणी
* [[ग्रुपॉयड बीजगणित]] ([[बीजगणितीय ग्रुपॉयड]] के साथ भ्रमित नहीं होना चाहिए)
* [[ग्रुपॉयड बीजगणित|समूह बद्ध बीजगणित]] ([[बीजगणितीय ग्रुपॉयड|बीजगणितीय समूह बद्ध]] के साथ भ्रमित नहीं होना चाहिए)
*[[आर-बीजगणित]]
*[[आर-बीजगणित]]



Revision as of 23:01, 28 May 2023

गणित में, विशेष रूप से श्रेणी सिद्धांत और होमोटॉपी सिद्धांत में, एक समूह बद्ध (अक्सर कम ब्रांट समूह बद्ध या आभासी समूह) कई समान तरीकों से समूह की धारणा को सामान्यीकृत करता है। एक ग्रूपोइड को एक के रूप में देखा जा सकता है:

आश्रित प्रकार की उपस्थिति में, सामान्य रूप से एक श्रेणी को वर्गीकृत किए गए एकाभ के रूप में देखा जा सकता है, और इसी तरह, एक समूह बद्ध को केवल वर्गीकृत किए गए समूह के रूप में देखा जा सकता है। आकारिता एक वस्तु से दूसरी वस्तु पर ले जाता है, और प्रकारों के एक आश्रित परिवार का निर्माण करता हैं, इस प्रकार आकारिकी को , , वर्गीकरण किया जा सकता है। संरचना तब कुल फलन है, , ताकि

विशेष स्थितियों में सम्मिलित हैं,

समूह बद्ध का उपयोग अक्सर ज्यामितीय वस्तुओं जैसे विविध के बारे में तर्क करने के लिए किया जाता है। हेनरिक ब्रांट (1927) ने ब्रांट अर्धसमूह के माध्यम से समूह बद्ध्स को स्पष्ट रूप से पेश किया।[2]

परिभाषाएँ

समूह बद्ध एक बीजगणितीय संरचना है जिसमें एक अरिक्त समुच्च्य और एक द्विआधारी आंशिक फलन '' शामिल है जो पर परिभाषित है।

बीजगणितीय

एक समूह बद्ध एक समुच्चय है जिसमें एक एकात्मक संक्रिया के और आंशिक फलन है। यहाँ * एक द्विआधारी संक्रिया नहीं है क्योंकि यह आवश्यक रूप से के सभी तत्वों के जोड़े के लिए परिभाषित नहीं है। सटीक शर्तें जिसके तहत परिभाषित किया गया है जो यहां व्यक्त नहीं किया गया है और जो स्थिति के अनुसार भिन्न होता है।

संक्रियाएँ और −1 में निम्नलिखित स्वयंसिद्ध गुण हैं, सभी के लिए , , और में ,

  1. साहचर्य, यदि और परिभाषित हैं, तो और परिभाषित हैं और बराबर हैं। इसके विपरीत यदि एक और परिभाषित है, तब वे दोनों परिभाषित हैं (और वे एक दूसरे के बराबर हैं), और और साथ भी परिभाषित हैं।
  2. गुणात्मक प्रतिलोम, और हमेशा परिभाषित होते हैं।
  3. पहचान, यदि परिभाषित किया गया है, तो , और । (पिछले दो स्वयंसिद्ध पहले से ही दिखाते हैं कि ये भाव परिभाषित और स्पष्ट हैं।)

इन स्वयंसिद्धों से दो आसान और सुविधाजनक गुण निकलते हैं,

  • ,
  • अगर परिभाषित किया गया है, तो [3]

श्रेणी सिद्धांत

एक समूह एक छोटी श्रेणी है जिसमें प्रत्येक आकृतिवाद एक समरूपता है, अर्थात, उलटा।[1] अधिक स्पष्ट रूप से, एक समूह G है,

  • वस्तुओं का एक सेट G0
  • G0 में वस्तुओं x और y की प्रत्येक जोड़ी के लिए, x से y तक आकारिता (या तीर) का एक (संभवतः खाली) समुच्चय G(x,y) मौजूद है। हम f : x → y लिखते हैं, यह दर्शाने के लिए कि f, G(x,y) का एक अवयव है।
  • प्रत्येक वस्तु x के लिए, G(x,x) का एक निर्दिष्ट तत्व ,
  • वस्तुओं x, y, और z के प्रत्येक त्रिगुण के लिए, एक फलन ,
  • वस्तुओं के प्रत्येक जोड़ी के लिए x, y एक फलन है ,

संतोषजनक, किसी भी f : x → y, g : y → z, और h : z → w के लिए,

  • और ;
  • ;
  • और

यदि f, G(x, y) का एक अवयव है तो x को f का 'स्रोत' कहा जाता है, जिसे s(f) लिखा जाता है, और y को f का 'लक्ष्य' कहा जाता है, जिसे t(f) लिखा जाता है। एक समूह G को कभी-कभी के रूप में दर्शाया जाता है, जहां सभी रूपों का समुच्चय है, और दो तीर स्रोत और लक्ष्य का प्रतिनिधित्व करते हैं।

अधिक आम तौर पर, परिमित फाइबर उत्पादों को स्वीकार करने वाली मनमानी श्रेणी में एक समूहबद्ध वस्तु पर विचार किया जा सकता है।

परिभाषाओं की तुलना

बीजगणितीय और श्रेणी-सैद्धांतिक परिभाषाएँ समतुल्य हैं, जैसा कि अब हम दिखाते हैं। श्रेणी-सैद्धांतिक अर्थों में एक समूह को देखते हुए, G को सभी सेट G (x, y) (यानी x से y तक morphisms के सेट) का असंयुक्त मिलन होने दें। तब और जी पर आंशिक संचालन बनें, और वास्तव में हर जगह परिभाषित किया जाएगा। हम ∗ को परिभाषित करते हैं और −1 होना है , जो बीजगणितीय अर्थ में एक समूह बद्ध देता है। जी. का स्पष्ट संदर्भ0 (और इसलिए ) छोड़ा जा सकता है।

इसके विपरीत, बीजगणितीय अर्थ में एक समूह बद्ध जी दिया गया है, एक समानता संबंध परिभाषित करें इसके तत्वों पर अगर एक ∗ एक−1 = बी ∗ बी-1. चलो जी0 के तुल्यता वर्गों का समुच्चय हो , अर्थात। . एक * ए को निरूपित करें−1 द्वारा अगर साथ .

अब परिभाषित करें सभी तत्वों के समुच्चय के रूप में f जैसे कि मौजूद। दिया गया और उनके संयोजन के रूप में परिभाषित किया गया है . यह देखने के लिए कि यह अच्छी तरह से परिभाषित है, इसे देखें और मौजूद है, तो करता है . तब x पर सर्वसमिका आकारिकी है , और f का श्रेणी-सैद्धांतिक व्युत्क्रम f है-1.

उपरोक्त परिभाषाओं में सेट को वर्ग (सेट सिद्धांत) से बदला जा सकता है, जैसा कि आमतौर पर श्रेणी सिद्धांत में होता है।

शीर्ष समूह और कक्षाएँ

एक समूह जी को देखते हुए, जी में 'वर्टेक्स समूह' या 'आइसोट्रॉपी समूह' या 'ऑब्जेक्ट समूह' फॉर्म जी (एक्स, एक्स) के सबसेट हैं, जहां एक्स जी का कोई ऑब्जेक्ट है। यह उपरोक्त स्वयंसिद्धों से आसानी से अनुसरण करता है कि ये वास्तव में समूह हैं, क्योंकि तत्वों की प्रत्येक जोड़ी रचना योग्य है और व्युत्क्रम एक ही शीर्ष समूह में हैं।

एक बिंदु पर समूह बद्ध G की 'कक्षा' सेट द्वारा दिया गया है जी में एक morphism द्वारा एक्स से जोड़ा जा सकता है कि हर बिंदु से युक्त। यदि दो अंक और समान कक्षाओं में हैं, उनके शीर्ष समूह और समूह समरूपता हैं: यदि से कोई morphism है को , तो मानचित्रण द्वारा समरूपता दी जाती है .

कक्षाएँ सेट X का एक विभाजन बनाती हैं, और एक समूह को सकर्मक कहा जाता है यदि इसकी केवल एक कक्षा होती है (समकक्ष रूप से, यदि यह एक श्रेणी के रूप में जुड़ा हुआ है (श्रेणी सिद्धांत)। उस स्थिति में, सभी शीर्ष समूह समरूपी होते हैं (दूसरी ओर, यह संक्रामकता के लिए पर्याप्त स्थिति नहीं है; प्रतिउदाहरणों के लिए Groupoid#Examples अनुभाग देखें)।

उपसमूह और आकारिकी

का एक उपसमूह एक उपश्रेणी है वह स्वयं एक समूह है। इसे विस्तृत या पूर्ण कहा जाता है यदि यह एक उपश्रेणी के रूप में विस्तृत उपश्रेणी या पूर्ण उपश्रेणी है, क्रमशः, यदि या हरएक के लिए .

एक समूह बद्ध मोर्फिज्म केवल दो (श्रेणी-सैद्धांतिक) समूह बद्ध्स के बीच एक मज़ेदार है।

समूह बद्ध के विशेष प्रकार के रूपवाद रुचि के हैं। एक रूपवाद यदि प्रत्येक वस्तु के लिए समूह बद्ध की संख्या को कंपन कहा जाता है का और प्रत्येक रूपवाद का पे शुरुवात एक आकृति है का पे शुरुवात ऐसा है कि . एक कंपन को मोर्फिज्म को कवर करना या समूह बद्ध का कवरिंग कहा जाता है यदि आगे ऐसा हो निराला है। समूह बद्ध के कवरिंग मोर्फिज़्म विशेष रूप से उपयोगी होते हैं क्योंकि उनका उपयोग रिक्त स्थान के मानचित्रों को कवर करने के लिए किया जा सकता है।[4] यह भी सच है कि किसी दिए गए समूह बद्ध के आकारिकी को कवर करने की श्रेणी Groupoid की क्रियाओं की श्रेणी के बराबर है सेट पर।

उदाहरण

टोपोलॉजी

एक सांस्थितिक समष्टि दिया गया , मान लो , का समुच्चय है। बिंदु से morphisms मुद्दे पर निरंतर कार्य (टोपोलॉजी) पथ (टोपोलॉजी) के समतुल्य वर्ग हैं को , दो रास्तों के समतुल्य होने के साथ यदि वे होमोटोपिक हैं। इस तरह के दो रूपों की रचना पहले पहले मार्ग का अनुसरण करके की जाती है, फिर दूसरे की; समरूपता तुल्यता गारंटी देती है कि यह रचना साहचर्य है। इस समूह बद्ध को मौलिक समूह कहा जाता है , निरूपित (या कभी-कभी, ).[5] सामान्य मौलिक समूह तो बिंदु के लिए शीर्ष समूह है .

मौलिक समूह की कक्षाएँ के पथ से जुड़े घटक हैं . तदनुसार, पथ से जुड़े स्थान का मूलभूत समूह सकर्मक है, और हम ज्ञात तथ्य को पुनर्प्राप्त करते हैं कि किसी भी आधार बिंदु पर मूलभूत समूह समरूप हैं। इसके अलावा, इस मामले में, मौलिक समूह और मौलिक समूह श्रेणियों के रूप में श्रेणियों की समानता हैं (सामान्य सिद्धांत के लिए समूह Groupoid#Relation to groups देखें)।

इस विचार का एक महत्वपूर्ण विस्तार मौलिक समूह पर विचार करना है कहाँ आधार बिंदुओं का एक चुना हुआ समूह है। यहाँ का एक (विस्तृत) उपसमूह है , जहां कोई केवल उन रास्तों पर विचार करता है जिनके अंतबिंदु संबंधित हैं . सेट स्थिति की ज्यामिति के अनुसार चुना जा सकता है।

तुल्यता संबंध

अगर एक समुच्चय है, अर्थात एक समतुल्य संबंध वाला समुच्चय , तो इस तुल्यता संबंध का प्रतिनिधित्व करने वाला एक समूह निम्नानुसार बनाया जा सकता है:

  • समूह बद्ध की वस्तुएं किसके तत्व हैं ;
  • किन्हीं दो तत्वों के लिए और में , वहाँ से एक एकल morphism है को (द्वारा इंगित करें ) अगर और केवल अगर ;
  • की रचना और है .

इस समूह के शीर्ष समूह हमेशा तुच्छ होते हैं; इसके अलावा, यह समूह आम तौर पर सकर्मक नहीं है और इसकी कक्षाएँ बिल्कुल तुल्यता वर्ग हैं। दो चरम उदाहरण हैं:

  • यदि हर तत्व के हर दूसरे तत्व के साथ संबंध है , हम की जोड़ी Groupoid प्राप्त करते हैं , जिसके पास संपूर्ण है तीरों के सेट के रूप में, और जो सकर्मक है।
  • यदि हर तत्व केवल स्वयं के संबंध में है, एक यूनिट समूह बद्ध प्राप्त करता है, जिसमें है तीरों के सेट के रूप में, , और जो पूरी तरह से अकर्मक है (प्रत्येक सिंगलटन एक कक्षा है)।

उदाहरण

  • अगर एक चिकनी विशेषण क्रिया है, फिर चिकनी कई गुनाओं का जलमग्न (गणित)। एक तुल्यता संबंध है[6]तब से के भागफल सांस्थितिकी के लिए एक सांस्थितिकी समरूपी है टोपोलॉजिकल स्पेस के विशेषण मानचित्र के तहत। अगर हम लिखते हैं, तब हमें एक समूह बद्ध <ब्लॉककोट> मिलता है

जिसे कभी-कभी स्मूथ मैनिफोल्ड्स के विशेषण निमज्जन का साधारण समूह कहा जाता है।

  • यदि हम रिफ्लेक्सिविटी की आवश्यकता को शिथिल करते हैं और 'आंशिक तुल्यता संबंधों' पर विचार करते हैं, तो सेट के लिए कंप्यूटेशनल रियलाइजर्स पर तुल्यता की अर्ध-निर्णायक धारणाओं पर विचार करना संभव हो जाता है। यह समूह बद्ध को सिद्धांत सेट करने के लिए एक संगणनीय सन्निकटन के रूप में उपयोग करने की अनुमति देता है, जिसे प्रति मॉडल कहा जाता है। एक श्रेणी के रूप में माना जाता है, प्रति मॉडल एक कार्टेशियन बंद श्रेणी है जिसमें प्राकृतिक संख्या ऑब्जेक्ट और सबोबजेक्ट क्लासिफायरियर हैं, जो मार्टिन हाइलैंड द्वारा पेश किए गए प्रभावी टोपोस को जन्म देते हैं।

चेक समूह बद्ध

और चेक समूह बद्ध[6]पी। 5 एक खुले आवरण द्वारा दिए गए तुल्यता संबंध से जुड़ा एक विशेष प्रकार का समूह है कुछ कई गुना . इसकी वस्तुएं असम्बद्ध संघ द्वारा दी गई हैं

<ब्लॉककोट>,

और उसके तीर चौराहा हैं <ब्लॉककोट></ब्लॉककोट>

स्रोत और लक्ष्य मानचित्र तब प्रेरित मानचित्र <ब्लॉककोट> द्वारा दिए जाते हैंऔर समावेशन मानचित्र

समूह बद्ध की संरचना दे रहा है। वास्तव में,

को सेट करके इसे और बढ़ाया जा सकता है

के रूप में -इटरेटेड फाइबर उत्पाद जहां का प्रतिनिधित्व करता है संयोजन योग्य तीरों के टुपल्स।

के बाद से फाइबर उत्पाद का संरचना मानचित्र स्पष्ट रूप से लक्ष्य मानचित्र है

एक कार्तीय आरेख है जहाँ मानचित्रों को दिखाया जाता है लक्ष्य मानचित्र हैं। इस निर्माण को कुछ ∞-समूह बद्ध के लिए एक मॉडल के रूप में देखा जा सकता है। इसके अलावा, इस निर्माण का एक और आर्टिफैक्ट है Čech cohomology|k-cocycles

एबेलियन समूहों के कुछ निरंतर शेफ के लिए एक समारोह <ब्लॉककोट> के रूप में प्रदर्शित किया जा सकता हैकोहोलॉजी कक्षाओं का एक स्पष्ट प्रतिनिधित्व दे रहा है।

समूह क्रिया

यदि समूह (गणित) सेट पर काम करता है , तो हम इस ग्रुप एक्शन (गणित) का प्रतिनिधित्व करने वाले एक्शन समूह बद्ध (या ट्रांसफॉर्मेशन समूह बद्ध) को निम्नानुसार बना सकते हैं:

  • वस्तुएँ किसके तत्व हैं ;
  • किन्हीं दो तत्वों के लिए और में , से morphisms को तत्वों के अनुरूप का ऐसा है कि ;
  • आकारिकी का प्रकार्य संघटन इसके द्विआधारी संक्रिया की व्याख्या करता है .

अधिक स्पष्ट रूप से, एक्शन समूह बद्ध एक छोटी श्रेणी है और और स्रोत और लक्ष्य मानचित्रों के साथ और . इसे अक्सर निरूपित किया जाता है (या उचित कार्य के लिए)। समूहभ में गुणन (या संघटन) तब होता है जिसे परिभाषित किया गया है .

के लिए में शीर्ष समूह में वे सम्मिलित हैं साथ , जो सिर्फ आइसोट्रॉपी उपसमूह है दी गई क्रिया के लिए (यही कारण है कि शीर्ष समूहों को आइसोट्रॉपी समूह भी कहा जाता है)। इसी तरह, एक्शन समूह बद्ध की कक्षाएँ समूह क्रिया की कक्षा (समूह सिद्धांत) हैं, और समूह बद्ध सकर्मक है अगर और केवल अगर समूह क्रिया सकर्मक समूह क्रिया है।

वर्णन करने का दूसरा तरीका -सेट फ़ंक्टर श्रेणी है , कहाँ समूह के लिए एक तत्व और समरूपता के साथ समूह (श्रेणी) है . दरअसल, हर कार्यकर्ता इस श्रेणी का एक सेट परिभाषित करता है और प्रत्येक के लिए में (अर्थात प्रत्येक आकृतिवाद के लिए ) आपत्ति उत्पन्न करता है  : . फ़ैक्टर की श्रेणीबद्ध संरचना हमें विश्वास दिलाता है ए परिभाषित करता है -सेट पर कार्रवाई . (अद्वितीय) प्रतिनिधित्व करने योग्य फ़ैक्टर  : केली का प्रमेय है . वास्तव में, यह फ़ैक्टर समरूपी है और इसलिए भेजता है सेट पर जो परिभाषा के अनुसार सेट है और रूपवाद का (यानी तत्व का ) क्रमपरिवर्तन के लिए सेट का . हम Yoneda एंबेडिंग से यह निष्कर्ष निकालते हैं कि समूह समूह के लिए समरूपी है , के क्रमपरिवर्तन समूहों के समूह का एक उपसमूह .

परिमित सेट

की समूह क्रिया पर विचार करें परिमित सेट पर जो प्रत्येक संख्या को उसके ऋणात्मक में ले जाता है, इसलिए और . भागफल समूह इस समूह क्रिया से तुल्यता वर्गों का समुच्चय है , और की सामूहिक क्रिया है इस पर।

भागफल विविधता

कोई परिमित समूह जो मैप करता है affine अंतरिक्ष पर एक ग्रुप एक्शन दें (चूंकि यह ऑटोमोर्फिज्म का समूह है)। फिर, एक भागफल समूह रूपों का हो सकता है , जिसमें स्टेबलाइजर के साथ एक बिंदु है मूल में। इस तरह के उदाहरण orbifold ्स के सिद्धांत का आधार बनाते हैं। ऑर्बिफोल्ड्स का एक अन्य सामान्यतः अध्ययन किया गया परिवार भारित प्रक्षेपी स्थान है और उनके उप-स्थान, जैसे कैलाबी-याउ मैनिफोल्ड | कैलाबी-याउ ऑर्बिफोल्ड्स।

समूह बद्ध का फाइबर उत्पाद

समूह बद्ध मॉर्फिज्म के साथ समूह बद्ध्स का आरेख दिया गया है

कहाँ और , हम समूह बद्ध बना सकते हैं जिनकी वस्तुएँ त्रिगुण हैं , कहाँ , , और में . morphisms को morphisms की एक जोड़ी के रूप में परिभाषित किया जा सकता है कहाँ और ऐसा कि ट्रिपल के लिए , में एक क्रमविनिमेय आरेख है का , और यह .[7]


समरूप बीजगणित

एक दो टर्म कॉम्प्लेक्स

कंक्रीट श्रेणी में वस्तुओं की संख्या एबेलियन श्रेणी का उपयोग समूह बद्ध बनाने के लिए किया जा सकता है। इसमें वस्तुओं के रूप में सेट है और तीर के रूप में सेट ; स्रोत morphism सिर्फ प्रक्षेपण है जबकि लक्ष्य आकृतिवाद पर प्रक्षेपण का जोड़ है से बना है और पर प्रक्षेपण . यानी दिया , अपने पास

बेशक, अगर एबेलियन श्रेणी एक योजना पर सुसंगत ढेरों की श्रेणी है, तो इस निर्माण का उपयोग समूह बद्ध के presheaf बनाने के लिए किया जा सकता है।

पहेलियाँ

जबकि रूबिक क्यूब जैसी पहेलियों को समूह सिद्धांत (रुबिक क्यूब समूह देखें) का उपयोग करके तैयार किया जा सकता है, कुछ पहेलियों को समूह बद्ध के रूप में बेहतर रूप से तैयार किया जाता है।[8]

पन्द्रह पहेली के परिवर्तन एक समूह बद्ध बनाते हैं (एक समूह नहीं, क्योंकि सभी चालों की रचना नहीं की जा सकती)।[9][10][11] यह समूह बद्ध संरूपण पर कार्य करता है।

मैथ्यू समूह बद्ध

मैथ्यू समूह बद्ध जॉन हॉर्टन कॉनवे द्वारा पेश किया गया एक समूह है जो 13 बिंदुओं पर अभिनय करता है जैसे कि एक बिंदु को ठीक करने वाले तत्व मैथ्यू समूह M12 की एक प्रति बनाते हैं।

समूहों से संबंध

Group-like structures
Totalityα Associativity Identity Inverse Commutativity
Semigroupoid Unneeded Required Unneeded Unneeded Unneeded
Small category Unneeded Required Required Unneeded Unneeded
Groupoid Unneeded Required Required Required Unneeded
Magma Required Unneeded Unneeded Unneeded Unneeded
Quasigroup Required Unneeded Unneeded Required Unneeded
Unital magma Required Unneeded Required Unneeded Unneeded
Semigroup Required Required Unneeded Unneeded Unneeded
Loop Required Unneeded Required Required Unneeded
Monoid Required Required Required Unneeded Unneeded
Group Required Required Required Required Unneeded
Commutative monoid Required Required Required Unneeded Required
Abelian group Required Required Required Required Required
The closure axiom, used by many sources and defined differently, is equivalent.

यदि एक समूह बद्ध में केवल एक ही वस्तु है, तो इसके आकारिकी का समुच्चय एक समूह (बीजगणित) बनाता है। बीजगणितीय परिभाषा का प्रयोग करते हुए, इस तरह के समूह बद्ध का शाब्दिक रूप से सिर्फ एक समूह है।[12] समूह सिद्धांत की कई अवधारणाएं समूह बद्ध के लिए ,समूह समरूपता की जगह प्रकार्यक की धारणा के साथ सामान्यीकृत होती हैं।

प्रत्येक सकर्मक / जुड़ा हुआ समूह - अर्थात, जैसा कि ऊपर बताया गया है, जिसमें कोई भी दो वस्तुएँ कम से कम एक आकारिकी द्वारा जुड़ी हुई हैं - एक क्रिया समूह के लिए समरूपी है (जैसा कि ऊपर परिभाषित किया गया है)। सकर्मकता से, क्रिया के तहत केवल एक कक्षा होगी।

ध्यान दें कि अभी उल्लिखित समरूपता अद्वितीय नहीं है, और कोई प्राकृतिक समकक्ष विकल्प नहीं है। एक सकर्मक समूह के लिए इस तरह की एक समरूपता को चुनना अनिवार्य रूप से एक वस्तु , एक समूह समरूपता को से तक, और के अलावा प्रत्येक के लिए, से से और में एक आकारिकी को चुनना है।

यदि कोई समूह बद्ध सकर्मक नहीं है, तो यह उपरोक्त प्रकार के समूह बद्ध के असंयुक्त सम्मिलन के लिए समरूपी है, जिसे इसके जुड़े हुए घटक भी कहा जाता है (संभवतः विभिन्न समूहों के साथ और समुच्चय प्रत्येक जुड़े हुए घटक के लिए)।

श्रेणी-सैद्धांतिक शब्दों में, एक समूह बद्ध का प्रत्येक जुड़ा हुआ घटक एक समूह के साथ समतुल्य (लेकिन समरूपी नहीं) हैं, जो कि एक एकल समूह है। इस प्रकार कोई भी समूह असंबद्ध समूहों के एक बहुसमूह के बराबर है। दूसरे शब्दों में, केवल समूह की समरूपता के बजाय समानता के लिए, किसी को समुच्चय निर्दिष्ट करने की आवश्यकता नहीं है। उदाहरण के लिए,

  • का मौलिक समूह, के प्रत्येक पथ से जुड़े घटक के मौलिक समूहों के संग्रह के बराबर है , लेकिन एक समरूपता के लिए प्रत्येक घटक में बिंदुओं के समुच्चय को निर्दिष्ट करने की आवश्यकता होती है,
  • तुल्यता संबंध के साथ समुच्चय प्रत्येक तुल्यता वर्ग के लिए तुच्छ समूह की एक प्रति के समतुल्य (एक समूह के रूप में) है, लेकिन एक तुल्याकारिता के लिए यह निर्दिष्ट करना आवश्यक है कि प्रत्येक तुल्यता वर्ग क्या है,
  • समुच्चय , समूह की एक क्रिया से सुसज्जित है, क्रिया की प्रत्येक कक्षा के लिए की एक प्रति के बराबर (एक समूह के रूप में) है, लेकिन एक समरूपता को यह निर्दिष्ट करने की आवश्यकता होती है कि प्रत्येक कक्षा क्या समुच्चय है।

समूहों के एक मात्र संग्रह में समूह का पतन, श्रेणी-सिद्धांत के दृष्टिकोण से भी कुछ जानकारी खो देता है, क्योंकि यह प्राकृतिक नहीं है। इस प्रकार जब समूह बद्ध अन्य संरचनाओं के संदर्भ में उत्पन्न होते हैं, जैसा कि उपरोक्त उदाहरणों में है, तो यह पूरे समूह बद्ध को बनाए रखने में मददगार हो सकता है। अन्यथा, एक समूह के संदर्भ में प्रत्येक को देखने का एक तरीका चुनना होगा, और यह विकल्प यादृच्छिक हो सकता है। सांस्थितिकी के उदाहरण में, एक ही पथ से जुड़े घटक में प्रत्येक बिंदु से प्रत्येक बिंदु तक पथों (या पथों के समतुल्य वर्ग) का एक सुसंगत विकल्प बनाना होगा।

एक अधिक रोशन करने वाले उदाहरण के रूप में, एक अंतःरूपांतरण वाले समूह बद्ध का वर्गीकरण विशुद्ध रूप से समूह सैद्धांतिक विचारों को कम नहीं करता है। यह इस तथ्य के अनुरूप है कि एक अंतःरूपांतरण वाले सदिश समष्टि का वर्गीकरण गैर-तुच्छ है।

समूह बद्ध आकारिता समूहों की तुलना में अधिक प्रकार के होते हैं, उदाहरण के लिए, हमारे पास फ़िब्रेशन्स, आकारिता समुपयोग, सार्वभौमिक आकारिता और भागफल आकारिता हैं। इस प्रकार एक समूह उपसमूह , में के सहसमुच्चयों के समुच्चय पर की क्रिया उत्पन्न करता है इसलिए एक आच्छादन आकारिकी से, मान लीजिए, से तक, जहां शीर्ष समूहों के साथ एक समूह बद्ध है जो तक समरूपी है। इस प्रकार समूह की प्रस्तुतियों को समूह की प्रस्तुतियों के लिए "उठाया" जा सकता है, और यह उपसमूह की प्रस्तुतियों के बारे में जानकारी प्राप्त करने का एक उपयोगी तरीका है। अधिक जानकारी के लिए, संदर्भ में हिगिंस और ब्राउन द्वारा पुस्तकें देखें।

समूह बद्ध की श्रेणी

वह श्रेणी जिसकी वस्तुएँ समूह बद्ध हैं और जिनकी आकृतियाँ समूह बद्ध आकारिता हैं, उन्हें समूह बद्ध श्रेणी या समूह बद्ध की श्रेणी कहा जाता है, और इसे जीआरपीडी द्वारा निरूपित किया जाता है।

श्रेणी जीआरपीडी, छोटी श्रेणियों की श्रेणी की तरह, कार्तीय बंद है, किसी भी समूह बद्ध के लिय हम एक समूह बद्ध का निर्माण कर सकते हैं, जिनकी वस्तुएं आकारिकी हैं और जिनके तीर आकारिकी के प्राकृतिक तुल्यता हैं। इस प्रकार यदि केवल समूह बद्ध हैं, तो ऐसे तीर आकारिकी के संयुग्मन हैं। मुख्य परिणाम यह है कि किसी भी समूह के लिए एक प्राकृतिक आक्षेप

है।

यह परिणाम दिलचस्प है, भले ही सभी समूह समूह मात्र हैं।

जीआरपीडी का एक अन्य महत्वपूर्ण गुण यह है कि यह पूर्ण और सह पूर्ण दोनों है।

कैट से संबंध

समावेश में बाएँ और दाएँ दोनों सन्निकट हैं,

यहाँ, एक श्रेणी के स्थानीयकरण को दर्शाता है जो प्रत्येक आकारिता को उलट देता है, और सभी समरूपताओं की उपश्रेणी को दर्शाता है।

एससेट से संबंध

तंत्रिका प्रकार्यक जीआरपीडी को साधारण सेट की श्रेणी की पूर्ण उपश्रेणी के रूप में सन्निहित करता है। समूह बद्ध की तंत्रिका हमेशा कान सम्मिश्र होती है।

तंत्रिका में एक बायां जोड़ होता है

जहा, साधारण समुच्चय X के मूलभूत समूह को दर्शाता है।

जीआरपीडी में समूह बद्ध

एक अतिरिक्त संरचना जो समूह बद्ध आंतरिक से समूह बद्ध, दोहरे समूह की श्रेणी में प्राप्त की जा सकती है।[13][14] क्योंकि जीआरपीडी ए 2-श्रेणी है, ये वस्तुएँ 1-श्रेणी के बजाय 2-श्रेणी बनाती हैं क्योंकि वहाँ अतिरिक्त संरचना होती है। अनिवार्य रूप से, ये समूह बद्ध प्रकार्यक

के साथ हैं और एक पहचान प्रकार्यक

द्वारा दिया गया एक अंत: स्थापन है। इन 2-समूह बद्ध के बारे में सोचने का एक तरीका यह है कि इनमें वस्तुए, आकारिकी, और वर्ग होते हैं जो लंबवत और क्षैतिज रूप से एक साथ रचना कर सकते हैं। उदाहरण के लिए, दिए गए वर्गों और को समान आकारिता के साथ ,उन्हें एक आरेख देकर लंबवत जोड़ा जा सकता है जिसे ऊर्ध्वाधर तीरों की रचना करके दूसरे वर्ग में परिवर्तित किया जा सकता है। वर्गों के क्षैतिज बन्धन के लिए एक समान रचना नियम है।

ज्यामितीय संरचनाओं के साथ समूह बद्ध

ज्यामितीय वस्तुओं का अध्ययन करते समय, उत्पन्न होने वाले समूह बद्ध में अक्सर एक सांस्थितिकी होती है, जो उन्हें सांस्थितिक समूह बद्ध में बदल देती हैं, या यहां तक ​​​​कि कुछ अलग-अलग संरचना, उन्हें लाइ समूह बद्ध में बदल देते हैं। इन अंतिम वस्तुओं का अध्ययन उनके संबंधित लाइ बीजगणित ,लाइ समूह बद्ध और लाइ बीजगणित के बीच संबंध के अनुरूप संदर्भ में भी किया जा सकता है।

ज्यामिति से उत्पन्न होने वाले समूह बद्ध्स में अक्सर आगे की संरचनाएं होती हैं जो समूह बद्ध गुणन के साथ परस्पर क्रिया करती हैं। उदाहरण के लिए, पोइसन ज्यामिति में एक साइमलेक्टिक समूह की धारणा है, जो एक संगत सिंपलेक्टिक विधि के साथ एक लाइ समूह बद्ध है। इसी तरह, किसी के पास संगत रीमानी ज्यमिति, या सम्मिश्र संरचना आदि के साथ समूह बद्ध हो सकते हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Dicks & Ventura (1996). एक नि: शुल्क समूह के इंजेक्शन एंडोमोर्फिज्म के एक परिवार द्वारा तय किया गया समूह. p. 6.
  2. "Brandt semi-group", Encyclopedia of Mathematics, EMS Press, 2001 [1994], ISBN 1-4020-0609-8
  3. Proof of first property: from 2. and 3. we obtain a−1 = a−1 * a * a−1 and (a−1)−1 = (a−1)−1 * a−1 * (a−1)−1. Substituting the first into the second and applying 3. two more times yields (a−1)−1 = (a−1)−1 * a−1 * a * a−1 * (a−1)−1 = (a−1)−1 * a−1 * a = a. ✓
    Proof of second property: since a * b is defined, so is (a * b)−1 * a * b. Therefore (a * b)−1 * a * b * b−1 = (a * b)−1 * a is also defined. Moreover since a * b is defined, so is a * b * b−1 = a. Therefore a * b * b−1 * a−1 is also defined. From 3. we obtain (a * b)−1 = (a * b)−1 * a * a−1 = (a * b)−1 * a * b * b−1 * a−1 = b−1 * a−1. ✓
  4. J.P. May, A Concise Course in Algebraic Topology, 1999, The University of Chicago Press ISBN 0-226-51183-9 (see chapter 2)
  5. "nLab में मौलिक Groupoid". ncatlab.org. Retrieved 2017-09-17.
  6. 6.0 6.1 Block, Jonathan; Daenzer, Calder (2009-01-09). "कनेक्शन के साथ गेर्ब्स के लिए मुकाई द्वैत". arXiv:0803.1529 [math.QA].
  7. "स्थानीयकरण और ग्रोमोव-विटन इनवेरिएंट्स" (PDF). p. 9. Archived (PDF) from the original on February 12, 2020.
  8. An Introduction to Groups, Groupoids and Their Representations: An Introduction; Alberto Ibort, Miguel A. Rodriguez; CRC Press, 2019.
  9. Jim Belk (2008) Puzzles, Groups, and Groupoids, The Everything Seminar
  10. The 15-puzzle groupoid (1) Archived 2015-12-25 at the Wayback Machine, Never Ending Books
  11. The 15-puzzle groupoid (2) Archived 2015-12-25 at the Wayback Machine, Never Ending Books
  12. Mapping a group to the corresponding groupoid with one object is sometimes called delooping, especially in the context of homotopy theory, see "delooping in nLab". ncatlab.org. Retrieved 2017-10-31..
  13. Cegarra, Antonio M.; Heredia, Benjamín A.; Remedios, Josué (2010-03-19). "Double groupoids and homotopy 2-types". arXiv:1003.3820 [math.AT].
  14. Ehresmann, Charles (1964). "Catégories et structures : extraits". Séminaire Ehresmann. Topologie et géométrie différentielle (in English). 6: 1–31.


संदर्भ