कमी की संभावना: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:


== मापन और व्याख्या ==
== मापन और व्याख्या ==
[[जलीय घोल|जलीय विलयनों]] में, उपापचयन '''विभव''' किसी प्रतिक्रिया में इलेक्ट्रॉनों को प्राप्त करने अथवा लुप्त करने के समाधान की प्रवृत्ति का माप है। किसी अन्य अणु की तुलना में उच्च (अधिक धनात्मक) अपचयन विभव वाले समाधान में इस अन्य अणु से इलेक्ट्रॉनों को प्राप्त करने की प्रवृत्ति होगी (अर्थात इस अन्य अणु को ऑक्सीकरण विधि द्वारा कम किया जा सकता है) और कम (अधिक ऋणात्मक) अपचयन विभव वाले समाधान में अन्य पदार्थों के लिए इलेक्ट्रॉन को त्यागने की प्रवृत्ति होगी (अन्य पदार्थ को कम करके ऑक्सीकरण किया जाएगा)। यद्यपि पूर्ण विभवों को त्रुटिहीन रूप से मापना लगभग असंभव होता है तथा अपचयन विभवों को संदर्भ इलेक्ट्रोड के सापेक्ष परिभाषित किया जाता है। जलीय विलयनों के अपचयन विभव का निर्धारण विलयन के संपर्क में अक्रिय संवेदन इलेक्ट्रोड और सॉल्ट ब्रिज द्वारा विलयन से संयोजित स्थिर संदर्भ इलेक्ट्रोड के मध्य संभावित अंतर को मापकर किया जाता है।<ref name="Environmental Chemistry (vanLoon)">{{cite book|last=vanLoon|first=Gary|title=पर्यावरण रसायन विज्ञान - (* गैरी वालेस) एक वैश्विक परिप्रेक्ष्य|year=2011|publisher=Oxford University Press|isbn=978-0-19-922886-7|pages=235–248|edition=3rd|author2=Duffy, Stephen }}</ref>
[[जलीय घोल|जलीय विलयनों]] में, उपापचयन '''विभव''' किसी अभिक्रिया में इलेक्ट्रॉनों को प्राप्त करने अथवा लुप्त करने के समाधान की प्रवृत्ति का माप है। किसी अन्य अणु की तुलना में उच्च (अधिक धनात्मक) अपचयन विभव वाले समाधान में इस अन्य अणु से इलेक्ट्रॉनों को प्राप्त करने की प्रवृत्ति होगी (अर्थात इस अन्य अणु को ऑक्सीकरण विधि द्वारा कम किया जा सकता है) और कम (अधिक ऋणात्मक) अपचयन विभव वाले समाधान में अन्य पदार्थों के लिए इलेक्ट्रॉन को त्यागने की प्रवृत्ति होगी (अन्य पदार्थ को कम करके ऑक्सीकरण किया जाएगा)। यद्यपि पूर्ण विभवों को त्रुटिहीन रूप से मापना लगभग असंभव होता है तथा अपचयन विभवों को संदर्भ इलेक्ट्रोड के सापेक्ष परिभाषित किया जाता है। जलीय विलयनों के अपचयन विभव का निर्धारण विलयन के संपर्क में अक्रिय संवेदन इलेक्ट्रोड और सॉल्ट ब्रिज द्वारा विलयन से संयोजित स्थिर संदर्भ इलेक्ट्रोड के मध्य संभावित अंतर को मापकर किया जाता है।<ref name="Environmental Chemistry (vanLoon)">{{cite book|last=vanLoon|first=Gary|title=पर्यावरण रसायन विज्ञान - (* गैरी वालेस) एक वैश्विक परिप्रेक्ष्य|year=2011|publisher=Oxford University Press|isbn=978-0-19-922886-7|pages=235–248|edition=3rd|author2=Duffy, Stephen }}</ref>


संवेदन इलेक्ट्रोड संदर्भ अर्ध सेल से इलेक्ट्रॉन स्थानांतरण के लिए मंच के रूप में कार्य करता है; यह सामान्यतः [[ प्लैटिनम |प्लैटिनम]] से बना होता है, यद्यपि स्वर्ण और [[ग्रेफाइट]] का भी उपयोग किया जा सकता है। संदर्भ अर्ध सेल में ज्ञात विभव का रेडॉक्स मानक होता है। [[मानक हाइड्रोजन इलेक्ट्रोड]] (एसएचई) वह संदर्भ है जिससे सभी मानक रेडॉक्स विभवों को निर्धारित किया जाता है, और इसे 0.0 वी का आरबिटरेरी [[आधा सेल|अर्ध सेल]] विभव प्रदान किया गया है। यद्यपि, यह नियमित प्रयोगशाला उपयोग के लिए सूक्ष्म और अव्यवहारिक है। इसलिए, अन्य अधिक स्थिर संदर्भ इलेक्ट्रोड जैसे [[सिल्वर क्लोराइड इलेक्ट्रोड]] और [[संतृप्त कैलोमेल इलेक्ट्रोड]] (एससीई) सामान्यतः उनके अधिक विश्वसनीय प्रदर्शन के कारण उपयोग किए जाते हैं।
संवेदन इलेक्ट्रोड संदर्भ अर्ध सेल से इलेक्ट्रॉन स्थानांतरण के लिए मंच के रूप में कार्य करता है; यह सामान्यतः [[ प्लैटिनम |प्लैटिनम]] से बना होता है, यद्यपि स्वर्ण और [[ग्रेफाइट]] का भी उपयोग किया जा सकता है। संदर्भ अर्ध सेल में ज्ञात विभव का रेडॉक्स मानक होता है। [[मानक हाइड्रोजन इलेक्ट्रोड]] (एसएचई) वह संदर्भ है जिससे सभी मानक रेडॉक्स विभवों को निर्धारित किया जाता है, और इसे 0.0 वी का आरबिटरेरी [[आधा सेल|अर्ध सेल]] विभव प्रदान किया गया है। यद्यपि, यह नियमित प्रयोगशाला उपयोग के लिए सूक्ष्म और अव्यवहारिक है। इसलिए, अन्य अधिक स्थिर संदर्भ इलेक्ट्रोड जैसे [[सिल्वर क्लोराइड इलेक्ट्रोड]] और [[संतृप्त कैलोमेल इलेक्ट्रोड]] (एससीई) सामान्यतः उनके अधिक विश्वसनीय प्रदर्शन के कारण उपयोग किए जाते हैं।


यद्यपि जलीय विलयनों में रेडॉक्स विभव का माप अपेक्षाकृत सरल होता है, विभिन्न कारक इसकी व्याख्या को सीमित करते हैं, जिनमें समाधान तापमान और पीएच, [[प्रतिवर्ती प्रतिक्रिया]], मंद इलेक्ट्रोड कैनेटीक्स, असंतुलन, कई रेडॉक्स युग्म की उपस्थिति, इलेक्ट्रोड विषाक्तता, छोटी विनिमय धाराएँ और अक्रिय रेडॉक्स युग्म सम्मिलित हैं। परिणामस्वरूप, व्यावहारिक माप संभवतः ही कभी गणना किए गए मानों से युग्मित होते हैं। तत्पश्चात, संभावित माप में कमी उनके पूर्ण मान (जैसे प्रक्रिया नियंत्रण और अनुमापन) को निर्धारित करने के अतिरिक्त प्रणाली में परिवर्तन के निरीक्षण में विश्लेषणात्मक उपकरण के रूप में उपयोगी सिद्ध हुआ है।
यद्यपि जलीय विलयनों में रेडॉक्स विभव का माप अपेक्षाकृत सरल होता है, विभिन्न कारक इसकी व्याख्या को सीमित करते हैं, जिनमें समाधान तापमान और पीएच, [[प्रतिवर्ती प्रतिक्रिया|प्रतिवर्ती अभिक्रिया]], मंद इलेक्ट्रोड कैनेटीक्स, असंतुलन, कई रेडॉक्स युग्म की उपस्थिति, इलेक्ट्रोड विषाक्तता, छोटी विनिमय धाराएँ और अक्रिय रेडॉक्स युग्म सम्मिलित हैं। परिणामस्वरूप, व्यावहारिक माप संभवतः ही कभी गणना किए गए मानों से युग्मित होते हैं। तत्पश्चात, संभावित माप में कमी उनके पूर्ण मान (जैसे प्रक्रिया नियंत्रण और अनुमापन) को निर्धारित करने के अतिरिक्त प्रणाली में परिवर्तन के निरीक्षण में विश्लेषणात्मक उपकरण के रूप में उपयोगी सिद्ध हुआ है।


== स्पष्टीकरण ==
== स्पष्टीकरण ==
Line 19: Line 19:
वास्तव में, <math>pe = -\log[e^-]</math> को समाधान में मुक्त इलेक्ट्रॉन एकाग्रता के ऋणात्मक लघुगणक के रूप में परिभाषित किया गया है, और रेडॉक्स विभव के सीधे आनुपातिक होता है।<ref name="Environmental Chemistry (vanLoon)" /><ref>Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York.</ref> कभी-कभी <math>pe</math> के अतिरिक्त <math>E_h</math> का उपयोग अपचयन विभव की इकाई के रूप में किया जाता है, उदाहरण के लिए, पर्यावरण रसायन विज्ञान में इसका उपयोग किया जाता है।<ref name="Environmental Chemistry (vanLoon)" /> यदि कोई हाइड्रोजन के <math>pe</math> को शून्य पर सामान्यीकृत करता है, तो उसे कक्ष के तापमान पर <math>pe = 16.9\ E_h</math> संबंध प्राप्त होता है। रेडॉक्स विभव का अध्ययन करने के लिए यह धारणा उपयोगी है, यद्यपि थर्मल संतुलन में मुक्त इलेक्ट्रॉनों की पूर्ण एकाग्रता के अतिरिक्त इलेक्ट्रॉनों का स्थानांतरण, सामान्यतः रेडॉक्स विभव के सम्बन्ध में विचार करता है। यद्यपि, सैद्धांतिक रूप से, दो दृष्टिकोण समतुल्य हैं।
वास्तव में, <math>pe = -\log[e^-]</math> को समाधान में मुक्त इलेक्ट्रॉन एकाग्रता के ऋणात्मक लघुगणक के रूप में परिभाषित किया गया है, और रेडॉक्स विभव के सीधे आनुपातिक होता है।<ref name="Environmental Chemistry (vanLoon)" /><ref>Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York.</ref> कभी-कभी <math>pe</math> के अतिरिक्त <math>E_h</math> का उपयोग अपचयन विभव की इकाई के रूप में किया जाता है, उदाहरण के लिए, पर्यावरण रसायन विज्ञान में इसका उपयोग किया जाता है।<ref name="Environmental Chemistry (vanLoon)" /> यदि कोई हाइड्रोजन के <math>pe</math> को शून्य पर सामान्यीकृत करता है, तो उसे कक्ष के तापमान पर <math>pe = 16.9\ E_h</math> संबंध प्राप्त होता है। रेडॉक्स विभव का अध्ययन करने के लिए यह धारणा उपयोगी है, यद्यपि थर्मल संतुलन में मुक्त इलेक्ट्रॉनों की पूर्ण एकाग्रता के अतिरिक्त इलेक्ट्रॉनों का स्थानांतरण, सामान्यतः रेडॉक्स विभव के सम्बन्ध में विचार करता है। यद्यपि, सैद्धांतिक रूप से, दो दृष्टिकोण समतुल्य हैं।


इसके विपरीत, कोई पीएच के अनुरूप विभव को विलेय और पीएच तटस्थ (न्यूट्रल) पानी के मध्य विभवान्तर के रूप में परिभाषित कर सकता है, जिसे पोरस मेम्ब्रेन (जो हाइड्रोजन आयनों के लिए पारगम्य है) द्वारा पृथक किया गया है। इस प्रकार के विभवान्तर वास्तव में जैविक झिल्लियों पर अम्लता के अंतर द्वारा उत्पन्न होते हैं। यह विभव (जहां पीएच तटस्थ (न्यूट्रल) पानी 0 V पर सेट है) रेडॉक्स विभव के अनुरूप है (जहां मानकीकृत हाइड्रोजन समाधान 0 V पर सेट है), किन्तु हाइड्रोजन आयनों के अतिरिक्त, इलेक्ट्रॉनों को रेडॉक्स स्थिति में स्थानांतरित किया जाता है। पीएच और रेडॉक्स विभव दोनों ही विलयन के गुण होते हैं, न कि स्वयं तत्वों अथवा रासायनिक यौगिकों के, और सांद्रता, तापमान आदि पर निर्भर करते हैं।
इसके विपरीत, कोई पीएच के अनुरूप विभव को विलेय और पीएच तटस्थ (न्यूट्रल) पानी के मध्य विभवान्तर के रूप में परिभाषित कर सकता है, जिसे पोरस मेम्ब्रेन (जो हाइड्रोजन आयनों के लिए पारगम्य है) द्वारा पृथक किया गया है। इस प्रकार के विभवान्तर वास्तव में जैविक झिल्लियों पर अम्लता के अंतर द्वारा उत्पन्न होते हैं। यह विभव (जहाँ पीएच तटस्थ (न्यूट्रल) पानी 0 V पर सेट है) रेडॉक्स विभव के अनुरूप है (जहाँ मानकीकृत हाइड्रोजन समाधान 0 V पर सेट है), किन्तु हाइड्रोजन आयनों के अतिरिक्त, इलेक्ट्रॉनों को रेडॉक्स स्थिति में स्थानांतरित किया जाता है। पीएच और रेडॉक्स विभव दोनों ही विलयन के गुण होते हैं, न कि स्वयं तत्वों अथवा रासायनिक यौगिकों के, और सांद्रता, तापमान आदि पर निर्भर करते हैं।


नीचे दी गई तालिका में कुछ अपचयन विभव दर्शाए गए हैं, जिनके चिन्ह को परिवर्तित करके ऑक्सीकरण विभव में परिवर्तित किया जा सकता है। अपचायक ऑक्सीकरण एजेंटों को इलेक्ट्रॉनों का दान (या कम) करता है, जिनके सम्बन्ध में कहा जाता है कि वे रेड्यूसर द्वारा "कम किए जाते हैं"। रिड्यूसर तब दृढ़ होता है जब उसमें अधिक ऋणात्मक अपचयन विभव होता है और अशक्त तब होता है जब उसमें अधिक धनात्मक अपचयन विभव होता है। अपचयन विभव जितना अधिक धनात्मक होगा, प्रजातियों के इलेक्ट्रॉनों के प्रति आकर्षण और कम होने की प्रवृत्ति उतनी ही अधिक होगी। निम्न तालिका 25 डिग्री सेल्सियस पर संकेतित अपचायक का अपचयन विभव प्रदान करती है। उदाहरण के लिए, [[सोडियम]] (Na) धातु, [[क्रोमियम]] (Cr) धातु, [[ कपनुमा |क्यूप्रस]] (Cu<sup>+</sup>) आयन और [[क्लोराइड]] (Cl<sup>−</sup>) आयन के मध्य, यह Na धातु है जो सबसे प्रबल अपचायक है जबकि Cl<sup>−</sup> आयन सबसे निर्बल है; जिसे भिन्न रूप से कहा कहा गया है, Na<sup>+</sup> आयन इस सारिणी में सबसे निर्बल ऑक्सीकरण एजेंट है जबकि {{chem2|Cl2}} अणु सबसे प्रबल होता है।
नीचे दी गई तालिका में कुछ अपचयन विभव दर्शाए गए हैं, जिनके चिन्ह को परिवर्तित करके ऑक्सीकरण विभव में परिवर्तित किया जा सकता है। अपचायक ऑक्सीकरण एजेंटों को इलेक्ट्रॉनों का दान (या कम) करता है, जिनके सम्बन्ध में कहा जाता है कि वे रेड्यूसर द्वारा "कम किए जाते हैं"। रिड्यूसर तब दृढ़ होता है जब उसमें अधिक ऋणात्मक अपचयन विभव होता है और अशक्त तब होता है जब उसमें अधिक धनात्मक अपचयन विभव होता है। अपचयन विभव जितना अधिक धनात्मक होगा, प्रजातियों के इलेक्ट्रॉनों के प्रति आकर्षण और कम होने की प्रवृत्ति उतनी ही अधिक होगी। निम्न तालिका 25 डिग्री सेल्सियस पर संकेतित अपचायक का अपचयन विभव प्रदान करती है। उदाहरण के लिए, [[सोडियम]] (Na) धातु, [[क्रोमियम]] (Cr) धातु, [[ कपनुमा |क्यूप्रस]] (Cu<sup>+</sup>) आयन और [[क्लोराइड]] (Cl<sup>−</sup>) आयन के मध्य, यह Na धातु है जो सबसे प्रबल अपचायक है जबकि Cl<sup>−</sup> आयन सबसे निर्बल है; जिसे भिन्न रूप से कहा कहा गया है, Na<sup>+</sup> आयन इस सारिणी में सबसे निर्बल ऑक्सीकरण एजेंट है जबकि {{chem2|Cl2}} अणु सबसे प्रबल होता है।
Line 25: Line 25:
{{center|{{ReductionPotentialTable}}}}
{{center|{{ReductionPotentialTable}}}}


कुछ तत्व और यौगिक अपचायक अथवा ऑक्सीकारक दोनों हो सकते हैं। इस प्रकार हाइड्रोजन गैस जब अधातुओं के साथ प्रतिक्रिया करती है तो यह अपचायक एजेंट होती है और जब यह धातुओं के साथ प्रतिक्रिया करती है तो यह [[ऑक्सीकरण एजेंट]] होती है।
कुछ तत्व और यौगिक अपचायक अथवा ऑक्सीकारक दोनों हो सकते हैं। इस प्रकार हाइड्रोजन गैस जब अधातुओं के साथ अभिक्रिया करती है तो यह अपचायक एजेंट होती है और जब यह धातुओं के साथ अभिक्रिया करती है तो यह [[ऑक्सीकरण एजेंट]] होती है।


:{{chem2|2 Li (s) + H2 (g) -> 2 LiH (s)}}{{efn|[[Half reaction]]s: {{chem2|2 Li (s) -> 2 Li+ (s) + 2 e-}} combined along with: {{chem2|H2 (g) -> 2 H+ (g) + 2 e-}}}}
:{{chem2|2 Li (s) + H2 (g) -> 2 LiH (s)}}{{efn|[[Half reaction]]s: {{chem2|2 Li (s) -> 2 Li+ (s) + 2 e-}} combined along with: {{chem2|H2 (g) -> 2 H+ (g) + 2 e-}}}}
Line 37: Line 37:
== मानक अपचयन विभव ==
== मानक अपचयन विभव ==
{{See also|मानक इलेक्ट्रोड क्षमता|मानक हाइड्रोजन इलेक्ट्रोड|मानक इलेक्ट्रोड क्षमता (डेटा पृष्ठ)|जैव रसायन विज्ञान में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी संभावनाओं की तालिका}}
{{See also|मानक इलेक्ट्रोड क्षमता|मानक हाइड्रोजन इलेक्ट्रोड|मानक इलेक्ट्रोड क्षमता (डेटा पृष्ठ)|जैव रसायन विज्ञान में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी संभावनाओं की तालिका}}
[[मानक कमी क्षमता|मानक अपचयन विभव]] <math>E^{\ominus}_{red}</math> को मानक परिस्थितियों के अंतर्गत में मापा जाता है: T = 298.15 K (25 डिग्री सेल्सियस, अथवा 77 डिग्री फारेनहाइट), [[रासायनिक प्रतिक्रिया]] में भाग लेने वाले प्रत्येक [[आयन]] के लिए इकाई [[गतिविधि (रसायन विज्ञान)]] ({{mvar|a {{=}} 1}}) है तथा प्रतिक्रिया में भाग लेने वाली प्रत्येक [[गैस]] के लिए 1 एटीएम (1.013 बार) का [[आंशिक दबाव]] और [[धातु|धातुएँ]] अपनी शुद्ध अवस्था में होनी चाहिए। इस प्रकार, मानक अपचयन विभव <math>E^{\ominus}_{red}</math> संदर्भ इलेक्ट्रोड के रूप में उपयोग किए जाने वाले मानक हाइड्रोजन इलेक्ट्रोड (एसएचई) के सापेक्ष परिभाषित किया गया है, जिसे आरबिटरेरी रूप से 0.00 V का विभव दिया जाता है। यद्यपि, क्योंकि इन्हें रेडॉक्स विभव के रूप में भी संदर्भित किया जा सकता है तथा आईयूपीएसी द्वारा अपचयन विभव और ऑक्सीकरण विभव को प्राथमिकता दी जाती है। इस प्रकार दोनों को <math>E_{ox} = -E_{red}</math> के साथ प्रतीक <math>E_{red}</math> और <math>E_{ox}</math> द्वारा स्पष्ट रूप से पृथक किया जा सकता है।
[[मानक कमी क्षमता|मानक अपचयन विभव]] <math>E^{\ominus}_{red}</math> को मानक परिस्थितियों के अंतर्गत में मापा जाता है: T = 298.15 K (25 डिग्री सेल्सियस, अथवा 77 डिग्री फारेनहाइट), [[रासायनिक प्रतिक्रिया|रासायनिक अभिक्रिया]] में भाग लेने वाले प्रत्येक [[आयन]] के लिए इकाई [[गतिविधि (रसायन विज्ञान)]] ({{mvar|a {{=}} 1}}) है तथा अभिक्रिया में भाग लेने वाली प्रत्येक [[गैस]] के लिए 1 एटीएम (1.013 बार) का [[आंशिक दबाव]] और [[धातु|धातुएँ]] अपनी शुद्ध अवस्था में होनी चाहिए। इस प्रकार, मानक अपचयन विभव <math>E^{\ominus}_{red}</math> संदर्भ इलेक्ट्रोड के रूप में उपयोग किए जाने वाले मानक हाइड्रोजन इलेक्ट्रोड (एसएचई) के सापेक्ष परिभाषित किया गया है, जिसे आरबिटरेरी रूप से 0.00 V का विभव दिया जाता है। यद्यपि, क्योंकि इन्हें रेडॉक्स विभव के रूप में भी संदर्भित किया जा सकता है तथा आईयूपीएसी द्वारा अपचयन विभव और ऑक्सीकरण विभव को प्राथमिकता दी जाती है। इस प्रकार दोनों को <math>E_{ox} = -E_{red}</math> के साथ प्रतीक <math>E_{red}</math> और <math>E_{ox}</math> द्वारा स्पष्ट रूप से पृथक किया जा सकता है।


== अर्ध सेल ==
== अर्ध सेल ==
इलेक्ट्रॉन प्रवाह की दिशा का अनुमान लगाने के लिए विभिन्न अर्ध सेलों के सापेक्ष [[प्रतिक्रियाशीलता (रसायन विज्ञान)]] की तुलना की जा सकती है। उच्च <math>E^{\ominus}_{red}</math> का तात्पर्य यह है कि अपचयन होने की प्रवृत्ति अधिक है, जबकि कम होने का तात्पर्य यह है कि ऑक्सीकरण होने की प्रवृत्ति अधिक है।
इलेक्ट्रॉन प्रवाह की दिशा का अनुमान लगाने के लिए विभिन्न अर्ध सेलों के सापेक्ष [[प्रतिक्रियाशीलता (रसायन विज्ञान)|अभिक्रियाशीलता (रसायन विज्ञान)]] की तुलना की जा सकती है। उच्च <math>E^{\ominus}_{red}</math> का तात्पर्य यह है कि अपचयन होने की प्रवृत्ति अधिक है, जबकि कम होने का तात्पर्य यह है कि ऑक्सीकरण होने की प्रवृत्ति अधिक है।


कोई भी प्रणाली अथवा वातावरण जो सामान्य हाइड्रोजन इलेक्ट्रोड से इलेक्ट्रॉनों को स्वीकार करता है, अर्ध सेल है जिसे धनात्मक रेडॉक्स विभव के रूप में परिभाषित किया गया है; इस प्रकार हाइड्रोजन इलेक्ट्रोड को इलेक्ट्रॉन दान करने वाली किसी भी प्रणाली को ऋणात्मक रेडॉक्स विभव के रूप में परिभाषित किया गया है। <math>E_{h}</math> को सामान्यतः वोल्ट (V) अथवा [[millivolts|मिलीवोल्ट]] में व्यक्त किया जाता है। उच्च धनात्मक <math>E_{h}</math> ऐसे वातावरण को दर्शाता है जो मुक्त [[ऑक्सीजन]] जैसी ऑक्सीकरण प्रतिक्रिया का समर्थन करता है। इसी प्रकार कम ऋणात्मक <math>E_{h}</math> मुक्त धातुओं जैसे प्रबल अपचयन वातावरण को दर्शाता है।
कोई भी प्रणाली अथवा वातावरण जो सामान्य हाइड्रोजन इलेक्ट्रोड से इलेक्ट्रॉनों को स्वीकार करता है, अर्ध सेल है जिसे धनात्मक रेडॉक्स विभव के रूप में परिभाषित किया गया है; इस प्रकार हाइड्रोजन इलेक्ट्रोड को इलेक्ट्रॉन दान करने वाली किसी भी प्रणाली को ऋणात्मक रेडॉक्स विभव के रूप में परिभाषित किया गया है। <math>E_{h}</math> को सामान्यतः वोल्ट (V) अथवा [[millivolts|मिलीवोल्ट]] में व्यक्त किया जाता है। उच्च धनात्मक <math>E_{h}</math> ऐसे वातावरण को दर्शाता है जो मुक्त [[ऑक्सीजन]] जैसी ऑक्सीकरण अभिक्रिया का समर्थन करता है। इसी प्रकार कम ऋणात्मक <math>E_{h}</math> मुक्त धातुओं जैसे प्रबल अपचयन वातावरण को दर्शाता है।


कभी-कभी जब जलीय विलयन में [[इलेक्ट्रोलीज़|विद्युत अपघटन]] किया जाता है, तो विलेय के अतिरिक्त पानी ऑक्सीकृत अथवा कम हो जाता है। उदाहरण के लिए, यदि [[सोडियम क्लोराइड]] के जलीय विलयन का विद्युत विश्लेषण किया जाता है, तो पानी को कैथोड पर कम करके H<sub>2(g)</sub> और OH− आयन का उत्पादन किया जा सकता है, Na+ को Na(s) में कम करने के अतिरिक्त, जिस प्रकार पानी की अनुपस्थिति में होता है। यह उपस्थित प्रत्येक प्रजाति का संभावित क्षय है जो यह निर्धारित करेगा कि कौन सी प्रजाति ऑक्सीकृत अथवा अपचयित हो जाएगी।
कभी-कभी जब जलीय विलयन में [[इलेक्ट्रोलीज़|विद्युत अपघटन]] किया जाता है, तो विलेय के अतिरिक्त पानी ऑक्सीकृत अथवा कम हो जाता है। उदाहरण के लिए, यदि [[सोडियम क्लोराइड]] के जलीय विलयन का विद्युत विश्लेषण किया जाता है, तो पानी को कैथोड पर कम करके H<sub>2(g)</sub> और OH− आयन का उत्पादन किया जा सकता है, Na+ को Na(s) में कम करने के अतिरिक्त, जिस प्रकार पानी की अनुपस्थिति में होता है। यह उपस्थित प्रत्येक प्रजाति का संभावित क्षय है जो यह निर्धारित करेगा कि कौन सी प्रजाति ऑक्सीकृत अथवा अपचयित हो जाएगी।


यदि कोई किसी प्रतिक्रिया के लिए इलेक्ट्रोड और विद्युत-अपघटक के मध्य वास्तविक विभव को जानता है, तो पूर्ण संभावित क्षय निर्धारित किया जा सकता है। भूतल ध्रुवीकरण मापन के साथ हस्तक्षेप करता है, किन्तु विभिन्न स्रोत 4.4 V से 4.6 V (विद्युत-अपघटक धनात्मक है) के मानक हाइड्रोजन इलेक्ट्रोड के लिए अनुमानित क्षमता देते हैं।
यदि कोई किसी अभिक्रिया के लिए इलेक्ट्रोड और विद्युत-अपघटक के मध्य वास्तविक विभव को जानता है, तो पूर्ण संभावित क्षय निर्धारित किया जा सकता है। भूतल ध्रुवीकरण मापन के साथ हस्तक्षेप करता है, किन्तु विभिन्न स्रोत 4.4 V से 4.6 V (विद्युत-अपघटक धनात्मक है) के मानक हाइड्रोजन इलेक्ट्रोड के लिए अनुमानित क्षमता देते हैं।


अर्ध-सेल समीकरणों को संयोजित किया जा सकता है यदि ऑक्सीकरण के अनुरूप समीकरण को परिवर्तित कर दिया जाए जिससे रिडक्टेंट द्वारा दिए गए प्रत्येक इलेक्ट्रॉन को ऑक्सीडेंट द्वारा स्वीकार किया जा सके। इस प्रकार, वैश्विक संयुक्त समीकरण में अब इलेक्ट्रॉन नहीं होते हैं।
अर्ध-सेल समीकरणों को संयोजित किया जा सकता है यदि ऑक्सीकरण के अनुरूप समीकरण को परिवर्तित कर दिया जाए जिससे रिडक्टेंट द्वारा दिए गए प्रत्येक इलेक्ट्रॉन को ऑक्सीडेंट द्वारा स्वीकार किया जा सके। इस प्रकार, वैश्विक संयुक्त समीकरण में अब इलेक्ट्रॉन नहीं होते हैं।


== नर्नस्ट समीकरण ==
== नर्नस्ट समीकरण ==
{{Main|नर्नस्ट समीकरण}}<nowiki> </nowiki><math>E_h</math> h> और किसी विलयन का pH, Nernst समीकरण द्वारा संबंधित होते हैं, जैसा कि सामान्यतः Poorbaix आरेख द्वारा दर्शाया जाता है {{nowrap|(<math>E_h</math> – [[pH]] plot)}}. अर्ध सेल समीकरण के लिए, पारंपरिक रूप से कमी प्रतिक्रिया के रूप में लिखा जाता है (अर्थात, बाईं ओर ऑक्सीडेंट द्वारा इलेक्ट्रॉनों को स्वीकार किया जाता है):
{{Main|नर्नस्ट समीकरण}}किसी विलयन के <math>E_h</math> और '''pH''', नर्नस्ट समीकरण द्वारा संबंधित होते हैं, जैसा कि सामान्यतः पौरबैक्स आरेख {{nowrap|(<math>E_h</math> – [[pH]] plot)}} द्वारा दर्शाया जाता है। अर्ध सेल समीकरण के लिए, पारंपरिक रूप से अपचयन अभिक्रिया के रूप में लिखा जाता है (अर्थात, बाईं ओर ऑक्सीडेंट द्वारा इलेक्ट्रॉनों को स्वीकार किया जाता है):


:<math chem>a \, A + b \, B + h \, \ce{H+} + z \, e^{-} \quad \ce{<=>} \quad c \, C + d \, D</math>
:<math chem>a \, A + b \, B + h \, \ce{H+} + z \, e^{-} \quad \ce{<=>} \quad c \, C + d \, D</math>
अर्ध सेल मानक कमी क्षमता <math>E^{\ominus}_\text{red}</math> द्वारा दिया गया है
अर्ध सेल मानक अपचयन विभव <math>E^{\ominus}_\text{red}</math> द्वारा दिया गया है


:<math>E^{\ominus}_\text{red} (\text{volts}) = -\frac{\Delta G^\ominus}{zF}</math>
:<math>E^{\ominus}_\text{red} (\text{volts}) = -\frac{\Delta G^\ominus}{zF}</math>
कहाँ <math>\Delta G^\ominus</math> मानक [[गिब्स मुक्त ऊर्जा]] परिवर्तन है, {{mvar|z}} शामिल इलेक्ट्रॉनों की संख्या है, और {{mvar|F}} फैराडे स्थिरांक है। नर्नस्ट समीकरण पीएच और से संबंधित है <math>E_h</math>:
जहाँ <math>\Delta G^\ominus</math> मानक [[गिब्स मुक्त ऊर्जा]] परिवर्तन है, {{mvar|z}} सम्मिलित इलेक्ट्रॉनों की संख्या है, और {{mvar|F}} फैराडे स्थिरांक है। नर्नस्ट समीकरण '''pH''' और <math>E_h</math> से संबंधित है:


: <math>E_h = E_\text{red} = E^{\ominus}_\text{red} - \frac{0.05916}{z} \log\left(\frac{\{C\}^c\{D\}^d}{\{A\}^a\{B\}^b}\right) - \frac{0.05916\,h}{z} \text{pH}</math>  
: <math>E_h = E_\text{red} = E^{\ominus}_\text{red} - \frac{0.05916}{z} \log\left(\frac{\{C\}^c\{D\}^d}{\{A\}^a\{B\}^b}\right) - \frac{0.05916\,h}{z} \text{pH}</math>  


जहां घुंघराले कोष्ठक गतिविधि (रसायन विज्ञान) को इंगित करते हैं, और घातांक पारंपरिक तरीके से दिखाए जाते हैं।<br />यह समीकरण सीधी रेखा का समीकरण है <math>E_h</math> की ढलान के साथ पीएच के समारोह के रूप में <math>-0.05916\,\left(\frac{h}{z}\right)</math> वोल्ट (पीएच की कोई इकाई नहीं है)
जहाँ कर्ली कोष्ठक गतिविधियों (रसायन विज्ञान) की ओर संकेत करते हैं, और घातांक पारंपरिक रूप से दर्शाये जाते हैं।<br />यह समीकरण <math>-0.05916\,\left(\frac{h}{z}\right)</math> वोल्ट (पीएच की कोई इकाई नहीं है) के स्लोप के साथ '''pH''' के फलन के रूप में <math>E_h</math> के लिए सरल रेखा का समीकरण है।


यह समीकरण कम भविष्यवाणी करता है <math>E_h</math> उच्च पीएच मान पर। यह ओ की कमी के लिए मनाया जाता है<sub>2</sub> एच में<sub>2</sub>ओ, या ओह<sup>-</sup>, और H को कम करने के लिए<sup>+</sup> एच में<sub>2</sub>:
यह समीकरण उच्च '''pH''' मान पर कम <math>E_h</math> की भविष्यवाणी करता है। यह O<sub>2</sub> के H<sub>2</sub>O अथवा OH<sup></sup> में अपचयन के लिए और H<sup>+</sup> के H<sub>2</sub> में अपचयन के लिए देखा जाता है:


:{{chem2|O2 + 4 H+ + 4 e- <-> 2 H2O}}
:{{chem2|O2 + 4 H+ + 4 e- <-> 2 H2O}}
Line 69: Line 69:
:{{chem2|2 H+ + 2 e- <-> H2}}
:{{chem2|2 H+ + 2 e- <-> H2}}


केंद्रीय रेडॉक्स-सक्रिय परमाणु, ऑक्साइड आयनों के साथ ऑक्सीजन को शामिल करने वाली अधिकांश (यदि सभी नहीं) प्रतिक्रियाओं में ({{chem|O|2-}}) अधिक मात्रा में होने पर मुक्त हो जाते हैं जब केंद्रीय परमाणु कम हो जाता है। प्रत्येक ऑक्साइड आयन का अम्ल-क्षार निराकरण 2 की खपत करता है {{H+}} या {{H2O}} अणु इस प्रकार है:
केंद्रीय रेडॉक्स-सक्रिय परमाणु, ऑक्साइड आयनों के साथ ऑक्सीजन को सम्मिलित करने वाली अधिकांश (यदि सभी नहीं) अपचयन अभिक्रियाओं में केंद्रीय परमाणु अपचयित होने पर ऑक्साइड आयन ({{chem|O|2-}}) अधिक मात्रा में मुक्त हो जाते हैं। प्रत्येक ऑक्साइड आयन के अम्ल-क्षार निराकरण में 2 {{H+}} अथवा 1, {{H2O}} अणु का उपयोग निम्नानुसार होता है:


: {{chem|O|2-}} + 2 {{chem|H|+}} ⇌ {{chem|H|2|O}}
: {{chem|O|2-}} + 2 {{chem|H|+}} ⇌ {{chem|H|2|O}}
Line 75: Line 75:
: {{chem|O|2-}} + {{chem|H|2|O}} ⇌ 2 {{chem|OH|-}}
: {{chem|O|2-}} + {{chem|H|2|O}} ⇌ 2 {{chem|OH|-}}


यही कारण है कि प्रोटॉन हमेशा कमी प्रतिक्रियाओं के बाईं ओर अभिकर्मक के रूप में लगे रहते हैं जैसा कि सामान्यतः [[मानक कमी क्षमता (डेटा पृष्ठ)]] की तालिका में देखा जा सकता है।
यही कारण है कि प्रोटॉन सदैव अपचयन अभिक्रियाओं के बाईं ओर अभिकर्मक के रूप में लगे रहते हैं जैसा कि सामान्यतः [[मानक कमी क्षमता (डेटा पृष्ठ)|मानक अपचयन विभव (डेटा पृष्ठ)]] की तालिका में देखा जा सकता है।


यदि, कमी प्रतिक्रियाओं के बहुत ही दुर्लभ उदाहरणों में, एच<sup>+</sup> कमी प्रतिक्रिया द्वारा गठित उत्पाद थे और इस प्रकार समीकरण के दाईं ओर दिखाई देने पर, रेखा का ढलान व्युत्क्रम होगा और इस प्रकार धनात्मक (उच्च <math>E_h</math> उच्च पीएच पर)
यदि, अपचयन अभिक्रियाओं के अत्यधिक दुर्लभ उदाहरणों में, H<sup>+</sup> अपचयन अभिक्रिया द्वारा गठित उत्पाद थे और इस प्रकार समीकरण के दाईं ओर दिखाई दे रहे थे, तो रेखा का स्लोप व्युत्क्रम होगा और इस प्रकार (उच्च <math>E_h</math> उच्च '''pH''' पर) धनात्मक होगा।


इसका उदाहरण [[मैग्नेटाइट]] का रिडक्टिव विघटन होगा ({{chem2|Fe3O4}} ≈ {{chem2|Fe2O3}}·FeO 2 के साथ {{chem|Fe|3+}} और 1 {{chem|Fe|2+}}) 3 HFeO बनाने के लिए{{su|p=−|b=2&nbsp;(aq)}} (जिसमें घुला लोहा, Fe(II), द्विसंयोजक है और Fe(III) की तुलना में बहुत अधिक घुलनशील है), जबकि जारी करते हुए {{H+}}:<ref name="garrels">{{cite book |author1=Garrels, R. M. |author2=Christ, C. L. | title = खनिज, समाधान और संतुलन| publisher =[[Jones and Bartlett]] | location = London | year = 1990}}</ref>
इसका उदाहरण [[मैग्नेटाइट]] का रिडक्टिव विघटन होगा ({{chem2|Fe3O4}} ≈ {{chem2|Fe2O3}}·FeO 2 के साथ {{chem|Fe|3+}} और 1 {{chem|Fe|2+}}) जिससे 3 HFeO{{su|p=−|b=2&nbsp;(aq)}} बनता है (जिसमें घुला हुआ लोहा, Fe(II), द्विसंयोजक है और Fe(III) की तुलना में अत्यधिक घुलनशील है), जबकि {{H+}} निकलता है:<ref name="garrels">{{cite book |author1=Garrels, R. M. |author2=Christ, C. L. | title = खनिज, समाधान और संतुलन| publisher =[[Jones and Bartlett]] | location = London | year = 1990}}</ref>
: {{math| {{chem|Fe|3|O|4}} + 2 {{chem|H|2|O}} + 2 {{e-}} <math>\rightleftharpoons</math> 3 {{chem|HFeO|2|−}} + {{H+}} }}
: {{math| {{chem|Fe|3|O|4}} + 2 {{chem|H|2|O}} + 2 {{e-}} <math>\rightleftharpoons</math> 3 {{chem|HFeO|2|−}} + {{H+}} }}


कहाँ:
जहाँ:


: {{math|1=''E{{sub|h}}'' = −1.1819 − 0.0885 log [{{chem|HFeO|−|2}}]<sup>3</sup> + 0.0296 pH}}
: {{math|1=''E{{sub|h}}'' = −1.1819 − 0.0885 log [{{chem|HFeO|−|2}}]<sup>3</sup> + 0.0296 pH}}


ध्यान दें कि लाइन का स्लोप 0.0296 ऊपर दिए गए -0.05916 मान का -1/2 है, क्योंकि {{math|1=''h''/''z'' = −1/2}}. यह भी ध्यान दें कि मान -0.0885 -0.05916 × 3/2 से मेल खाता है।
ध्यान दें कि रेखा का स्लोप 0.0296 ऊपर दिए गए -0.05916 मान का -1/2 है, क्योंकि {{math|1=''h''/''z'' = −1/2}} है। यह भी ध्यान दें कि मान -0.0885, -0.05916 × 3/2 से युग्मित होता है।


== जैव रसायन ==
== जैव रसायन ==
{{See also|जैव रसायन विज्ञान में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी संभावनाओं की तालिका}}
{{See also|जैव रसायन विज्ञान में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी संभावनाओं की तालिका}}
कई [[एंजाइम]] प्रतिक्रियाएं ऑक्सीकरण-कमी प्रतिक्रियाएं होती हैं, जिसमें यौगिक ऑक्सीकरण होता है और दूसरा यौगिक कम हो जाता है। किसी जीव की ऑक्सीकरण-अपचयन अभिक्रियाओं को पूरा करने की क्षमता पर्यावरण की ऑक्सीकरण-अपचयन अवस्था या इसकी अपचयन क्षमता पर निर्भर करती है (<math>E_h</math>).
कई [[एंजाइम]] अभिक्रियाएं ऑक्सीकरण-कमी अभिक्रियाएं होती हैं, जिसमें यौगिक ऑक्सीकरण होता है और दूसरा यौगिक कम हो जाता है। किसी जीव की ऑक्सीकरण-अपचयन अभिक्रियाओं को पूरा करने की क्षमता पर्यावरण की ऑक्सीकरण-अपचयन अवस्था या इसकी अपचयन क्षमता पर निर्भर करती है (<math>E_h</math>).


सख्ती से [[एरोबियन]] आम तौर पर धनात्मक पर सक्रिय होते हैं <math>E_h</math> मूल्य, जबकि सख्त [[अवायवीय]] सामान्यतः नकारात्मक पर सक्रिय होते हैं <math>E_h</math> मान। रेडॉक्स पोषक तत्वों, विशेष रूप से धातु आयनों की घुलनशीलता को प्रभावित करता है।<ref>{{Cite journal |title = Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH |date = 1996 |journal = Water, Air, & Soil Pollution |doi = 10.1007/BF00282668 |last1 = Chuan |first1 = M. |last2 = Liu |first2 = G. Shu. J. |volume=90 |issue = 3–4 |pages=543–556 |bibcode = 1996WASP...90..543C|s2cid = 93256604 }}</ref>
सख्ती से [[एरोबियन]] आम तौर पर धनात्मक पर सक्रिय होते हैं <math>E_h</math> मूल्य, जबकि सख्त [[अवायवीय]] सामान्यतः नकारात्मक पर सक्रिय होते हैं <math>E_h</math> मान। रेडॉक्स पोषक तत्वों, विशेष रूप से धातु आयनों की घुलनशीलता को प्रभावित करता है।<ref>{{Cite journal |title = Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH |date = 1996 |journal = Water, Air, & Soil Pollution |doi = 10.1007/BF00282668 |last1 = Chuan |first1 = M. |last2 = Liu |first2 = G. Shu. J. |volume=90 |issue = 3–4 |pages=543–556 |bibcode = 1996WASP...90..543C|s2cid = 93256604 }}</ref>
ऐसे जीव हैं जो अपने चयापचय को अपने वातावरण में समायोजित कर सकते हैं, जैसे वैकल्पिक अवायवीय। वैकल्पिक एनारोबेस धनात्मक ई पर सक्रिय हो सकते हैं<sub>h</sub>मान, और नकारात्मक ई पर<sub>h</sub>नाइट्रेट्स और सल्फेट्स जैसे ऑक्सीजन युक्त अकार्बनिक यौगिकों की उपस्थिति में मूल्य।
ऐसे जीव हैं जो अपने चयापचय को अपने वातावरण में समायोजित कर सकते हैं, जैसे वैकल्पिक अवायवीय। वैकल्पिक एनारोबेस धनात्मक ई पर सक्रिय हो सकते हैं<sub>h</sub>मान, और नकारात्मक ई पर<sub>h</sub>नाइट्रेट्स और सल्फेट्स जैसे ऑक्सीजन युक्त अकार्बनिक यौगिकों की उपस्थिति में मूल्य।


जैव रसायन में, स्पष्ट मानक कमी क्षमता, या औपचारिक क्षमता, (<math>E^{\ominus '}_{red}</math>, प्राइम के साथ नोट किया गया{{'}} मार्क इन सुपरस्क्रिप्ट) जैविक और इंट्रा-सेलुलर तरल पदार्थों के पीएच 7 के करीब पीएच 7 पर गणना की जाती है, यदि किसी जैव रासायनिक रेडॉक्स प्रतिक्रिया संभव है तो अधिक आसानी से आकलन करने के लिए उपयोग किया जाता है। उन्हें सामान्य मानक कटौती क्षमता के साथ भ्रमित नहीं होना चाहिए {{nowrap|(<math>E^{\ominus}_{red}</math>)}} मानक शर्तों के तहत निर्धारित ({{nowrap|T {{=}} 298.15 K {{=}} 25 °C {{=}} 77 °F}}; {{nowrap|P<sub>gas</sub> {{=}} 1 atm {{=}} 1.013 bar}}) प्रत्येक विघटित प्रजाति की सांद्रता को 1 M के रूप में लिया जा रहा है, और इस प्रकार {{nowrap|[{{H+}}] {{=}} 1 M and [[pH]] {{=}} 0}}.
जैव रसायन में, स्पष्ट मानक कमी क्षमता, या औपचारिक क्षमता, (<math>E^{\ominus '}_{red}</math>, प्राइम के साथ नोट किया गया{{'}} मार्क इन सुपरस्क्रिप्ट) जैविक और इंट्रा-सेलुलर तरल पदार्थों के पीएच 7 के करीब पीएच 7 पर गणना की जाती है, यदि किसी जैव रासायनिक रेडॉक्स अभिक्रिया संभव है तो अधिक आसानी से आकलन करने के लिए उपयोग किया जाता है। उन्हें सामान्य मानक कटौती क्षमता के साथ भ्रमित नहीं होना चाहिए {{nowrap|(<math>E^{\ominus}_{red}</math>)}} मानक शर्तों के तहत निर्धारित ({{nowrap|T {{=}} 298.15 K {{=}} 25 °C {{=}} 77 °F}}; {{nowrap|P<sub>gas</sub> {{=}} 1 atm {{=}} 1.013 bar}}) प्रत्येक विघटित प्रजाति की सांद्रता को 1 M के रूप में लिया जा रहा है, और इस प्रकार {{nowrap|[{{H+}}] {{=}} 1 M and [[pH]] {{=}} 0}}.


== पर्यावरण रसायन ==
== पर्यावरण रसायन ==
Line 111: Line 111:
ऑक्सीडो-रिडक्शन पोटेंशिअल (ORP) का उपयोग कीटाणुशोधन क्षमता के लिए ल-मूल्य माप के लाभ के साथ पानी की गुणवत्ता की निगरानी करने वाली प्रणालियों के लिए किया जा सकता है, जो लागू खुराक के अतिरिक्त कीटाणुनाशक की प्रभावी गतिविधि को दर्शाता है।<ref name="suslow">Trevor V. Suslow, 2004. ''Oxidation-Reduction Potential for Water Disinfection Monitoring, Control, and Documentation'', University of California Davis, http://anrcatalog.ucdavis.edu/pdf/8149.pdf</ref> उदाहरण के लिए, ई. कोलाई, [[साल्मोनेला]], [[लिस्टेरिया]] और अन्य रोगजनकों का जीवित रहने का समय 30 सेकंड से कम होता है जब ORP 665 mV से ऊपर होता है, जबकि ORP 485 mV से कम होने पर 300 सेकंड से अधिक होता है।<ref name=suslow />
ऑक्सीडो-रिडक्शन पोटेंशिअल (ORP) का उपयोग कीटाणुशोधन क्षमता के लिए ल-मूल्य माप के लाभ के साथ पानी की गुणवत्ता की निगरानी करने वाली प्रणालियों के लिए किया जा सकता है, जो लागू खुराक के अतिरिक्त कीटाणुनाशक की प्रभावी गतिविधि को दर्शाता है।<ref name="suslow">Trevor V. Suslow, 2004. ''Oxidation-Reduction Potential for Water Disinfection Monitoring, Control, and Documentation'', University of California Davis, http://anrcatalog.ucdavis.edu/pdf/8149.pdf</ref> उदाहरण के लिए, ई. कोलाई, [[साल्मोनेला]], [[लिस्टेरिया]] और अन्य रोगजनकों का जीवित रहने का समय 30 सेकंड से कम होता है जब ORP 665 mV से ऊपर होता है, जबकि ORP 485 mV से कम होने पर 300 सेकंड से अधिक होता है।<ref name=suslow />


[[हेन्नेपिन काउंटी]], [[मिनेसोटा]] में पारंपरिक भागों-प्रति संकेतन (पीपीएम) [[जल क्लोरीनीकरण]] रीडिंग और ओआरपी की तुलना करते हुए अध्ययन किया गया था। इस अध्ययन के परिणाम स्थानीय स्वास्थ्य विनियमन कोड में 650 mV से ऊपर ORP को शामिल करने के पक्ष में तर्क प्रस्तुत करते हैं।<ref>{{cite journal |title= Do Traditional Measures of Water Quality in Swimming Pools and Spas Correspond with Beneficial Oxidation Reduction Potential? |last1= Bastian |first1= Tiana|last2= Brondum|first2= Jack|pmc=2646482 |pmid=19320367 |volume=124 |year=2009 |journal=Public Health Rep |issue= 2 |pages=255–61|doi= 10.1177/003335490912400213 }}</ref>
[[हेन्नेपिन काउंटी]], [[मिनेसोटा]] में पारंपरिक भागों-प्रति संकेतन (पीपीएम) [[जल क्लोरीनीकरण]] रीडिंग और ओआरपी की तुलना करते हुए अध्ययन किया गया था। इस अध्ययन के परिणाम स्थानीय स्वास्थ्य विनियमन कोड में 650 mV से ऊपर ORP को सम्मिलित करने के पक्ष में तर्क प्रस्तुत करते हैं।<ref>{{cite journal |title= Do Traditional Measures of Water Quality in Swimming Pools and Spas Correspond with Beneficial Oxidation Reduction Potential? |last1= Bastian |first1= Tiana|last2= Brondum|first2= Jack|pmc=2646482 |pmid=19320367 |volume=124 |year=2009 |journal=Public Health Rep |issue= 2 |pages=255–61|doi= 10.1177/003335490912400213 }}</ref>


== भूविज्ञान ==
== भूविज्ञान ==
{{See also|पोरबैक्स आरेख}}
{{See also|पोरबैक्स आरेख}}
और<sub>h</sub>-pH (पौरबैक्स) आरेखों का उपयोग सामान्यतः खनिजों और भंग प्रजातियों के स्थिरता क्षेत्रों के आकलन के लिए खनन और भूविज्ञान में किया जाता है। उन स्थितियों के तहत जहां खनिज (ठोस) चरण को किसी तत्व का सबसे स्थिर रूप होने की भविष्यवाणी की जाती है, ये चित्र उस खनिज को दिखाते हैं। जैसा कि अनुमानित परिणाम थर्मोडायनामिक (संतुलन अवस्था में) मूल्यांकन से हैं, इन आरेखों का सावधानी से उपयोग किया जाना चाहिए। यद्यपि किसी खनिज के बनने या उसके घुलने की परिस्थितियों के सेट के तहत होने की भविष्यवाणी की जा सकती है, प्रक्रिया व्यावहारिक रूप से नगण्य हो सकती है क्योंकि इसकी दर बहुत धीमी है। नतीजतन, गतिज मूल्यांकन ही समय में आवश्यक हैं। फिर भी, सहज परिवर्तनों की दिशा और उनके पीछे प्रेरक शक्ति के परिमाण का मूल्यांकन करने के लिए संतुलन की स्थितियों का उपयोग किया जा सकता है।
और<sub>h</sub>-pH (पौरबैक्स) आरेखों का उपयोग सामान्यतः खनिजों और भंग प्रजातियों के स्थिरता क्षेत्रों के आकलन के लिए खनन और भूविज्ञान में किया जाता है। उन स्थितियों के तहत जहाँ खनिज (ठोस) चरण को किसी तत्व का सबसे स्थिर रूप होने की भविष्यवाणी की जाती है, ये चित्र उस खनिज को दिखाते हैं। जैसा कि अनुमानित परिणाम थर्मोडायनामिक (संतुलन अवस्था में) मूल्यांकन से हैं, इन आरेखों का सावधानी से उपयोग किया जाना चाहिए। यद्यपि किसी खनिज के बनने या उसके घुलने की परिस्थितियों के सेट के तहत होने की भविष्यवाणी की जा सकती है, प्रक्रिया व्यावहारिक रूप से नगण्य हो सकती है क्योंकि इसकी दर बहुत धीमी है। नतीजतन, गतिज मूल्यांकन ही समय में आवश्यक हैं। फिर भी, सहज परिवर्तनों की दिशा और उनके पीछे प्रेरक शक्ति के परिमाण का मूल्यांकन करने के लिए संतुलन की स्थितियों का उपयोग किया जा सकता है।


== यह भी देखें ==
== यह भी देखें ==
Line 130: Line 130:
* [[मानक इलेक्ट्रोड क्षमता]]
* [[मानक इलेक्ट्रोड क्षमता]]
* [[मानक इलेक्ट्रोड क्षमता की तालिका]]
* [[मानक इलेक्ट्रोड क्षमता की तालिका]]
* [[जैव रसायन में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी की क्षमता की तालिका]]
* [[जैव रसायन में महत्वपूर्ण अर्ध-प्रतिक्रियाओं के लिए मानक कमी की क्षमता की तालिका|जैव रसायन में महत्वपूर्ण अर्ध-अभिक्रियाओं के लिए मानक कमी की क्षमता की तालिका]]


== संदर्भ ==
== संदर्भ ==

Revision as of 04:20, 27 July 2023

उपापचयन विभव (जिसे आक्सीकरण/अपचयन विभव ओआरपी, pe, , अथवा के रूप में भी जाना जाता है) रासायनिक प्रजाति के इलेक्ट्रोड से इलेक्ट्रॉन को प्राप्त करने अथवा इलेक्ट्रॉनों को लुप्त करने की प्रवृत्ति का माप है और इस प्रकार यह क्रमशः कम अथवा ऑक्सीकृत हो जाता है। उपापचयन विभव वाल्ट (V) में व्यक्त किया जाता है। प्रत्येक प्रजाति का अपना आंतरिक उपापचयन विभव होता है; उदाहरण के लिए, अपचयन विभव जितना अधिक धनात्मक होगा (विद्युत्-रसायन में सामान्य औपचारिकता के कारण अपचयन विभव का अधिक उपयोग किया जाता है), इलेक्ट्रॉनों के लिए प्रजातियों की आत्मीयता और कम होने की प्रवृत्ति उतनी ही अधिक होगी।

मापन और व्याख्या

जलीय विलयनों में, उपापचयन विभव किसी अभिक्रिया में इलेक्ट्रॉनों को प्राप्त करने अथवा लुप्त करने के समाधान की प्रवृत्ति का माप है। किसी अन्य अणु की तुलना में उच्च (अधिक धनात्मक) अपचयन विभव वाले समाधान में इस अन्य अणु से इलेक्ट्रॉनों को प्राप्त करने की प्रवृत्ति होगी (अर्थात इस अन्य अणु को ऑक्सीकरण विधि द्वारा कम किया जा सकता है) और कम (अधिक ऋणात्मक) अपचयन विभव वाले समाधान में अन्य पदार्थों के लिए इलेक्ट्रॉन को त्यागने की प्रवृत्ति होगी (अन्य पदार्थ को कम करके ऑक्सीकरण किया जाएगा)। यद्यपि पूर्ण विभवों को त्रुटिहीन रूप से मापना लगभग असंभव होता है तथा अपचयन विभवों को संदर्भ इलेक्ट्रोड के सापेक्ष परिभाषित किया जाता है। जलीय विलयनों के अपचयन विभव का निर्धारण विलयन के संपर्क में अक्रिय संवेदन इलेक्ट्रोड और सॉल्ट ब्रिज द्वारा विलयन से संयोजित स्थिर संदर्भ इलेक्ट्रोड के मध्य संभावित अंतर को मापकर किया जाता है।[1]

संवेदन इलेक्ट्रोड संदर्भ अर्ध सेल से इलेक्ट्रॉन स्थानांतरण के लिए मंच के रूप में कार्य करता है; यह सामान्यतः प्लैटिनम से बना होता है, यद्यपि स्वर्ण और ग्रेफाइट का भी उपयोग किया जा सकता है। संदर्भ अर्ध सेल में ज्ञात विभव का रेडॉक्स मानक होता है। मानक हाइड्रोजन इलेक्ट्रोड (एसएचई) वह संदर्भ है जिससे सभी मानक रेडॉक्स विभवों को निर्धारित किया जाता है, और इसे 0.0 वी का आरबिटरेरी अर्ध सेल विभव प्रदान किया गया है। यद्यपि, यह नियमित प्रयोगशाला उपयोग के लिए सूक्ष्म और अव्यवहारिक है। इसलिए, अन्य अधिक स्थिर संदर्भ इलेक्ट्रोड जैसे सिल्वर क्लोराइड इलेक्ट्रोड और संतृप्त कैलोमेल इलेक्ट्रोड (एससीई) सामान्यतः उनके अधिक विश्वसनीय प्रदर्शन के कारण उपयोग किए जाते हैं।

यद्यपि जलीय विलयनों में रेडॉक्स विभव का माप अपेक्षाकृत सरल होता है, विभिन्न कारक इसकी व्याख्या को सीमित करते हैं, जिनमें समाधान तापमान और पीएच, प्रतिवर्ती अभिक्रिया, मंद इलेक्ट्रोड कैनेटीक्स, असंतुलन, कई रेडॉक्स युग्म की उपस्थिति, इलेक्ट्रोड विषाक्तता, छोटी विनिमय धाराएँ और अक्रिय रेडॉक्स युग्म सम्मिलित हैं। परिणामस्वरूप, व्यावहारिक माप संभवतः ही कभी गणना किए गए मानों से युग्मित होते हैं। तत्पश्चात, संभावित माप में कमी उनके पूर्ण मान (जैसे प्रक्रिया नियंत्रण और अनुमापन) को निर्धारित करने के अतिरिक्त प्रणाली में परिवर्तन के निरीक्षण में विश्लेषणात्मक उपकरण के रूप में उपयोगी सिद्ध हुआ है।

स्पष्टीकरण

जिस प्रकार हाइड्रोजन आयन की सांद्रता जलीय विलयन की अम्लता अथवा पीएच को निर्धारित करती है, उसी प्रकार रासायनिक प्रजाति और इलेक्ट्रोड के मध्य इलेक्ट्रॉन स्थानांतरित की प्रवृत्ति इलेक्ट्रोड युग्म के रेडॉक्स विभव को निर्धारित करती है। पीएच की भाँति, रेडॉक्स विभव दर्शाता है कि इलेक्ट्रॉनों को समाधान में अथवा प्रजातियों से कितनी सरलता से स्थानांतरित किया जाता है। रेडॉक्स विभव ऑक्सीकरण अथवा अपचयन के लिए उपलब्ध इलेक्ट्रॉनों की मात्रा के अतिरिक्त इलेक्ट्रॉनों को त्यागने अथवा प्राप्त करने के लिए रासायनिक प्रजातियों की विशिष्ट स्थिति के अंतर्गत क्षमता को दर्शाता है।

pe की अवधारणा का उपयोग पौरबैक्स आरेखों के साथ किया जाता है। pe अविमीय संख्या है और इसे EH से निम्नलिखित संबंध द्वारा सरलता से जोड़ा जा सकता है:

जहाँ, बोल्ट्ज़मान स्थिरांक है, R के साथ गैस स्थिरांक (8.314 J⋅K−1⋅mol−1), T, केल्विन में थर्मोडायनामिक तापमान (298.15 K = 25 °C = 77 °F), और F, फैराडे स्थिरांक (96 485 कूलम्ब/मोल of e) है। लैम्ब्डा, λ = ln(10) ≈ 2.3026 है।

वास्तव में, को समाधान में मुक्त इलेक्ट्रॉन एकाग्रता के ऋणात्मक लघुगणक के रूप में परिभाषित किया गया है, और रेडॉक्स विभव के सीधे आनुपातिक होता है।[1][2] कभी-कभी के अतिरिक्त का उपयोग अपचयन विभव की इकाई के रूप में किया जाता है, उदाहरण के लिए, पर्यावरण रसायन विज्ञान में इसका उपयोग किया जाता है।[1] यदि कोई हाइड्रोजन के को शून्य पर सामान्यीकृत करता है, तो उसे कक्ष के तापमान पर संबंध प्राप्त होता है। रेडॉक्स विभव का अध्ययन करने के लिए यह धारणा उपयोगी है, यद्यपि थर्मल संतुलन में मुक्त इलेक्ट्रॉनों की पूर्ण एकाग्रता के अतिरिक्त इलेक्ट्रॉनों का स्थानांतरण, सामान्यतः रेडॉक्स विभव के सम्बन्ध में विचार करता है। यद्यपि, सैद्धांतिक रूप से, दो दृष्टिकोण समतुल्य हैं।

इसके विपरीत, कोई पीएच के अनुरूप विभव को विलेय और पीएच तटस्थ (न्यूट्रल) पानी के मध्य विभवान्तर के रूप में परिभाषित कर सकता है, जिसे पोरस मेम्ब्रेन (जो हाइड्रोजन आयनों के लिए पारगम्य है) द्वारा पृथक किया गया है। इस प्रकार के विभवान्तर वास्तव में जैविक झिल्लियों पर अम्लता के अंतर द्वारा उत्पन्न होते हैं। यह विभव (जहाँ पीएच तटस्थ (न्यूट्रल) पानी 0 V पर सेट है) रेडॉक्स विभव के अनुरूप है (जहाँ मानकीकृत हाइड्रोजन समाधान 0 V पर सेट है), किन्तु हाइड्रोजन आयनों के अतिरिक्त, इलेक्ट्रॉनों को रेडॉक्स स्थिति में स्थानांतरित किया जाता है। पीएच और रेडॉक्स विभव दोनों ही विलयन के गुण होते हैं, न कि स्वयं तत्वों अथवा रासायनिक यौगिकों के, और सांद्रता, तापमान आदि पर निर्भर करते हैं।

नीचे दी गई तालिका में कुछ अपचयन विभव दर्शाए गए हैं, जिनके चिन्ह को परिवर्तित करके ऑक्सीकरण विभव में परिवर्तित किया जा सकता है। अपचायक ऑक्सीकरण एजेंटों को इलेक्ट्रॉनों का दान (या कम) करता है, जिनके सम्बन्ध में कहा जाता है कि वे रेड्यूसर द्वारा "कम किए जाते हैं"। रिड्यूसर तब दृढ़ होता है जब उसमें अधिक ऋणात्मक अपचयन विभव होता है और अशक्त तब होता है जब उसमें अधिक धनात्मक अपचयन विभव होता है। अपचयन विभव जितना अधिक धनात्मक होगा, प्रजातियों के इलेक्ट्रॉनों के प्रति आकर्षण और कम होने की प्रवृत्ति उतनी ही अधिक होगी। निम्न तालिका 25 डिग्री सेल्सियस पर संकेतित अपचायक का अपचयन विभव प्रदान करती है। उदाहरण के लिए, सोडियम (Na) धातु, क्रोमियम (Cr) धातु, क्यूप्रस (Cu+) आयन और क्लोराइड (Cl) आयन के मध्य, यह Na धातु है जो सबसे प्रबल अपचायक है जबकि Cl आयन सबसे निर्बल है; जिसे भिन्न रूप से कहा कहा गया है, Na+ आयन इस सारिणी में सबसे निर्बल ऑक्सीकरण एजेंट है जबकि Cl2 अणु सबसे प्रबल होता है।

Reduction potentials of various reactions[3] v
Oxidizing agent Reducing agent Reduction
Potential (V)
Li+ + e Li −3.04
Na+ + e Na −2.71
Mg2+ + 2 e Mg −2.38
Al3+ + 3 e Al −1.66
2 H2O (l) + 2 e H2 (g) + 2 OH −0.83
Cr3+ + 3 e Cr −0.74
Fe2+ + 2 e Fe −0.44
2 H+ + 2 e H2 0.00
Sn4+ + 2 e Sn2+ +0.15
Cu2+ + e Cu+ +0.16
Ag+ + e Ag +0.80
Br2 + 2 e 2 Br +1.07
Cl2 + 2 e 2 Cl +1.36
MnO4 + 8 H+ + 5 e Mn2+ + 4 H2O +1.49
F2 + 2 e 2 F +2.87

कुछ तत्व और यौगिक अपचायक अथवा ऑक्सीकारक दोनों हो सकते हैं। इस प्रकार हाइड्रोजन गैस जब अधातुओं के साथ अभिक्रिया करती है तो यह अपचायक एजेंट होती है और जब यह धातुओं के साथ अभिक्रिया करती है तो यह ऑक्सीकरण एजेंट होती है।

2 Li (s) + H2 (g) → 2 LiH (s)[lower-alpha 1]

हाइड्रोजन (जिसका अपचयन विभव 0.0 है) ऑक्सीकरण एजेंट के रूप में कार्य करता है क्योंकि यह अपचायक एजेंट लिथियम (जिसका अपचयन विभव -3.04 है) से इलेक्ट्रॉन दान स्वीकार करता है, जिसके कारण Li का ऑक्सीकरण किया जाता है और हाइड्रोजन का अपचयन किया जाता है।

H2 (g) + F2 (g) → 2 HF (g)[lower-alpha 2]

हाइड्रोजन अपचायक एजेंट के रूप में कार्य करता है क्योंकि यह अपने इलेक्ट्रॉनों को फ्लोरीन को दान करता है, जो फ्लोरीन को कम करने की अनुमति देता है।

मानक अपचयन विभव

मानक अपचयन विभव को मानक परिस्थितियों के अंतर्गत में मापा जाता है: T = 298.15 K (25 डिग्री सेल्सियस, अथवा 77 डिग्री फारेनहाइट), रासायनिक अभिक्रिया में भाग लेने वाले प्रत्येक आयन के लिए इकाई गतिविधि (रसायन विज्ञान) (a = 1) है तथा अभिक्रिया में भाग लेने वाली प्रत्येक गैस के लिए 1 एटीएम (1.013 बार) का आंशिक दबाव और धातुएँ अपनी शुद्ध अवस्था में होनी चाहिए। इस प्रकार, मानक अपचयन विभव संदर्भ इलेक्ट्रोड के रूप में उपयोग किए जाने वाले मानक हाइड्रोजन इलेक्ट्रोड (एसएचई) के सापेक्ष परिभाषित किया गया है, जिसे आरबिटरेरी रूप से 0.00 V का विभव दिया जाता है। यद्यपि, क्योंकि इन्हें रेडॉक्स विभव के रूप में भी संदर्भित किया जा सकता है तथा आईयूपीएसी द्वारा अपचयन विभव और ऑक्सीकरण विभव को प्राथमिकता दी जाती है। इस प्रकार दोनों को के साथ प्रतीक और द्वारा स्पष्ट रूप से पृथक किया जा सकता है।

अर्ध सेल

इलेक्ट्रॉन प्रवाह की दिशा का अनुमान लगाने के लिए विभिन्न अर्ध सेलों के सापेक्ष अभिक्रियाशीलता (रसायन विज्ञान) की तुलना की जा सकती है। उच्च का तात्पर्य यह है कि अपचयन होने की प्रवृत्ति अधिक है, जबकि कम होने का तात्पर्य यह है कि ऑक्सीकरण होने की प्रवृत्ति अधिक है।

कोई भी प्रणाली अथवा वातावरण जो सामान्य हाइड्रोजन इलेक्ट्रोड से इलेक्ट्रॉनों को स्वीकार करता है, अर्ध सेल है जिसे धनात्मक रेडॉक्स विभव के रूप में परिभाषित किया गया है; इस प्रकार हाइड्रोजन इलेक्ट्रोड को इलेक्ट्रॉन दान करने वाली किसी भी प्रणाली को ऋणात्मक रेडॉक्स विभव के रूप में परिभाषित किया गया है। को सामान्यतः वोल्ट (V) अथवा मिलीवोल्ट में व्यक्त किया जाता है। उच्च धनात्मक ऐसे वातावरण को दर्शाता है जो मुक्त ऑक्सीजन जैसी ऑक्सीकरण अभिक्रिया का समर्थन करता है। इसी प्रकार कम ऋणात्मक मुक्त धातुओं जैसे प्रबल अपचयन वातावरण को दर्शाता है।

कभी-कभी जब जलीय विलयन में विद्युत अपघटन किया जाता है, तो विलेय के अतिरिक्त पानी ऑक्सीकृत अथवा कम हो जाता है। उदाहरण के लिए, यदि सोडियम क्लोराइड के जलीय विलयन का विद्युत विश्लेषण किया जाता है, तो पानी को कैथोड पर कम करके H2(g) और OH− आयन का उत्पादन किया जा सकता है, Na+ को Na(s) में कम करने के अतिरिक्त, जिस प्रकार पानी की अनुपस्थिति में होता है। यह उपस्थित प्रत्येक प्रजाति का संभावित क्षय है जो यह निर्धारित करेगा कि कौन सी प्रजाति ऑक्सीकृत अथवा अपचयित हो जाएगी।

यदि कोई किसी अभिक्रिया के लिए इलेक्ट्रोड और विद्युत-अपघटक के मध्य वास्तविक विभव को जानता है, तो पूर्ण संभावित क्षय निर्धारित किया जा सकता है। भूतल ध्रुवीकरण मापन के साथ हस्तक्षेप करता है, किन्तु विभिन्न स्रोत 4.4 V से 4.6 V (विद्युत-अपघटक धनात्मक है) के मानक हाइड्रोजन इलेक्ट्रोड के लिए अनुमानित क्षमता देते हैं।

अर्ध-सेल समीकरणों को संयोजित किया जा सकता है यदि ऑक्सीकरण के अनुरूप समीकरण को परिवर्तित कर दिया जाए जिससे रिडक्टेंट द्वारा दिए गए प्रत्येक इलेक्ट्रॉन को ऑक्सीडेंट द्वारा स्वीकार किया जा सके। इस प्रकार, वैश्विक संयुक्त समीकरण में अब इलेक्ट्रॉन नहीं होते हैं।

नर्नस्ट समीकरण

किसी विलयन के और pH, नर्नस्ट समीकरण द्वारा संबंधित होते हैं, जैसा कि सामान्यतः पौरबैक्स आरेख (pH plot) द्वारा दर्शाया जाता है। अर्ध सेल समीकरण के लिए, पारंपरिक रूप से अपचयन अभिक्रिया के रूप में लिखा जाता है (अर्थात, बाईं ओर ऑक्सीडेंट द्वारा इलेक्ट्रॉनों को स्वीकार किया जाता है):

अर्ध सेल मानक अपचयन विभव द्वारा दिया गया है

जहाँ मानक गिब्स मुक्त ऊर्जा परिवर्तन है, z सम्मिलित इलेक्ट्रॉनों की संख्या है, और F फैराडे स्थिरांक है। नर्नस्ट समीकरण pH और से संबंधित है:

जहाँ कर्ली कोष्ठक गतिविधियों (रसायन विज्ञान) की ओर संकेत करते हैं, और घातांक पारंपरिक रूप से दर्शाये जाते हैं।
यह समीकरण वोल्ट (पीएच की कोई इकाई नहीं है) के स्लोप के साथ pH के फलन के रूप में के लिए सरल रेखा का समीकरण है।

यह समीकरण उच्च pH मान पर कम की भविष्यवाणी करता है। यह O2 के H2O अथवा OH में अपचयन के लिए और H+ के H2 में अपचयन के लिए देखा जाता है:

O2 + 4 H+ + 4 e ⇌ 2 H2O
O2 + 2 H2O + 4 e ⇌ 4 OH
2 H+ + 2 e ⇌ H2

केंद्रीय रेडॉक्स-सक्रिय परमाणु, ऑक्साइड आयनों के साथ ऑक्सीजन को सम्मिलित करने वाली अधिकांश (यदि सभी नहीं) अपचयन अभिक्रियाओं में केंद्रीय परमाणु अपचयित होने पर ऑक्साइड आयन (O2−
) अधिक मात्रा में मुक्त हो जाते हैं। प्रत्येक ऑक्साइड आयन के अम्ल-क्षार निराकरण में 2  H+ अथवा 1, H2O अणु का उपयोग निम्नानुसार होता है:

O2−
+ 2 H+
H
2
O
O2−
+ H
2
O
⇌ 2 OH

यही कारण है कि प्रोटॉन सदैव अपचयन अभिक्रियाओं के बाईं ओर अभिकर्मक के रूप में लगे रहते हैं जैसा कि सामान्यतः मानक अपचयन विभव (डेटा पृष्ठ) की तालिका में देखा जा सकता है।

यदि, अपचयन अभिक्रियाओं के अत्यधिक दुर्लभ उदाहरणों में, H+ अपचयन अभिक्रिया द्वारा गठित उत्पाद थे और इस प्रकार समीकरण के दाईं ओर दिखाई दे रहे थे, तो रेखा का स्लोप व्युत्क्रम होगा और इस प्रकार (उच्च उच्च pH पर) धनात्मक होगा।

इसका उदाहरण मैग्नेटाइट का रिडक्टिव विघटन होगा (Fe3O4Fe2O3·FeO 2 के साथ Fe3+
और 1 Fe2+
) जिससे 3 HFeO
2 (aq)
बनता है (जिसमें घुला हुआ लोहा, Fe(II), द्विसंयोजक है और Fe(III) की तुलना में अत्यधिक घुलनशील है), जबकि H+ निकलता है:[4]

Fe
3
O
4
+ 2 H
2
O
+ 2 e 3 HFeO
2
+ H+

जहाँ:

Eh = −1.1819 − 0.0885 log [HFeO
2
]3 + 0.0296 pH

ध्यान दें कि रेखा का स्लोप 0.0296 ऊपर दिए गए -0.05916 मान का -1/2 है, क्योंकि h/z = −1/2 है। यह भी ध्यान दें कि मान -0.0885, -0.05916 × 3/2 से युग्मित होता है।

जैव रसायन

कई एंजाइम अभिक्रियाएं ऑक्सीकरण-कमी अभिक्रियाएं होती हैं, जिसमें यौगिक ऑक्सीकरण होता है और दूसरा यौगिक कम हो जाता है। किसी जीव की ऑक्सीकरण-अपचयन अभिक्रियाओं को पूरा करने की क्षमता पर्यावरण की ऑक्सीकरण-अपचयन अवस्था या इसकी अपचयन क्षमता पर निर्भर करती है ().

सख्ती से एरोबियन आम तौर पर धनात्मक पर सक्रिय होते हैं मूल्य, जबकि सख्त अवायवीय सामान्यतः नकारात्मक पर सक्रिय होते हैं मान। रेडॉक्स पोषक तत्वों, विशेष रूप से धातु आयनों की घुलनशीलता को प्रभावित करता है।[5] ऐसे जीव हैं जो अपने चयापचय को अपने वातावरण में समायोजित कर सकते हैं, जैसे वैकल्पिक अवायवीय। वैकल्पिक एनारोबेस धनात्मक ई पर सक्रिय हो सकते हैंhमान, और नकारात्मक ई परhनाइट्रेट्स और सल्फेट्स जैसे ऑक्सीजन युक्त अकार्बनिक यौगिकों की उपस्थिति में मूल्य।

जैव रसायन में, स्पष्ट मानक कमी क्षमता, या औपचारिक क्षमता, (, प्राइम के साथ नोट किया गया' मार्क इन सुपरस्क्रिप्ट) जैविक और इंट्रा-सेलुलर तरल पदार्थों के पीएच 7 के करीब पीएच 7 पर गणना की जाती है, यदि किसी जैव रासायनिक रेडॉक्स अभिक्रिया संभव है तो अधिक आसानी से आकलन करने के लिए उपयोग किया जाता है। उन्हें सामान्य मानक कटौती क्षमता के साथ भ्रमित नहीं होना चाहिए () मानक शर्तों के तहत निर्धारित (T = 298.15 K = 25 °C = 77 °F; Pgas = 1 atm = 1.013 bar) प्रत्येक विघटित प्रजाति की सांद्रता को 1 M के रूप में लिया जा रहा है, और इस प्रकार [H+] = 1 M and pH = 0.

पर्यावरण रसायन

पर्यावरण रसायन विज्ञान के क्षेत्र में, कमी की क्षमता का उपयोग यह निर्धारित करने के लिए किया जाता है कि पानी या मिट्टी में ऑक्सीकरण या कम करने की स्थिति प्रचलित है, और पौरबैक्स आरेख, जैसे भंग धातुएं। पानी में पीई मान -12 से 25 तक होता है; वे स्तर जहाँ पानी स्वयं कम या ऑक्सीकृत हो जाता है, क्रमशः।[1]

प्राकृतिक प्रणालियों में कमी की क्षमता अक्सर पानी के स्थिरता क्षेत्र की सीमाओं में से के पास तुलनात्मक रूप से होती है। वातित सतही जल, नदियों, झीलों, महासागरों, वर्षा जल और अम्ल खान जल में सामान्यतः ऑक्सीकरण की स्थिति (धनात्मक क्षमता) होती है। वायु आपूर्ति की सीमाओं वाले स्थानों में, जैसे जलमग्न मिट्टी, दलदल और समुद्री तलछट, कम करने की स्थिति (नकारात्मक क्षमता) आदर्श हैं। मध्यवर्ती मान दुर्लभ होते हैं और सामान्यतः अस्थायी स्थिति होती है जो सिस्टम में उच्च या निम्न पीई मानों पर चलती है।[1]

पर्यावरणीय स्थितियों में, बड़ी संख्या में प्रजातियों के मध्य जटिल गैर-संतुलन की स्थिति होना आम बात है, जिसका अर्थ है कि कमी क्षमता का सटीक और सटीक माप करना अक्सर संभव नहीं होता है। यद्यपि, सामान्यतः अनुमानित मूल्य प्राप्त करना संभव है और शर्तों को ऑक्सीकरण या कम करने वाले शासन के रूप में परिभाषित करना संभव है।[1]

मिट्टी में दो मुख्य रेडॉक्स घटक होते हैं: 1) अकार्बनिक रेडॉक्स सिस्टम (मुख्य रूप से Fe और Mn के ऑक्स/लाल यौगिक) और पानी के अर्क में माप; 2) प्रत्यक्ष विधि द्वारा सभी माइक्रोबियल और रूट घटकों और माप के साथ प्राकृतिक मिट्टी के नमूने।[6]

पानी की गुणवत्ता

ऑक्सीडो-रिडक्शन पोटेंशिअल (ORP) का उपयोग कीटाणुशोधन क्षमता के लिए ल-मूल्य माप के लाभ के साथ पानी की गुणवत्ता की निगरानी करने वाली प्रणालियों के लिए किया जा सकता है, जो लागू खुराक के अतिरिक्त कीटाणुनाशक की प्रभावी गतिविधि को दर्शाता है।[7] उदाहरण के लिए, ई. कोलाई, साल्मोनेला, लिस्टेरिया और अन्य रोगजनकों का जीवित रहने का समय 30 सेकंड से कम होता है जब ORP 665 mV से ऊपर होता है, जबकि ORP 485 mV से कम होने पर 300 सेकंड से अधिक होता है।[7]

हेन्नेपिन काउंटी, मिनेसोटा में पारंपरिक भागों-प्रति संकेतन (पीपीएम) जल क्लोरीनीकरण रीडिंग और ओआरपी की तुलना करते हुए अध्ययन किया गया था। इस अध्ययन के परिणाम स्थानीय स्वास्थ्य विनियमन कोड में 650 mV से ऊपर ORP को सम्मिलित करने के पक्ष में तर्क प्रस्तुत करते हैं।[8]

भूविज्ञान

औरh-pH (पौरबैक्स) आरेखों का उपयोग सामान्यतः खनिजों और भंग प्रजातियों के स्थिरता क्षेत्रों के आकलन के लिए खनन और भूविज्ञान में किया जाता है। उन स्थितियों के तहत जहाँ खनिज (ठोस) चरण को किसी तत्व का सबसे स्थिर रूप होने की भविष्यवाणी की जाती है, ये चित्र उस खनिज को दिखाते हैं। जैसा कि अनुमानित परिणाम थर्मोडायनामिक (संतुलन अवस्था में) मूल्यांकन से हैं, इन आरेखों का सावधानी से उपयोग किया जाना चाहिए। यद्यपि किसी खनिज के बनने या उसके घुलने की परिस्थितियों के सेट के तहत होने की भविष्यवाणी की जा सकती है, प्रक्रिया व्यावहारिक रूप से नगण्य हो सकती है क्योंकि इसकी दर बहुत धीमी है। नतीजतन, गतिज मूल्यांकन ही समय में आवश्यक हैं। फिर भी, सहज परिवर्तनों की दिशा और उनके पीछे प्रेरक शक्ति के परिमाण का मूल्यांकन करने के लिए संतुलन की स्थितियों का उपयोग किया जा सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 vanLoon, Gary; Duffy, Stephen (2011). पर्यावरण रसायन विज्ञान - (* गैरी वालेस) एक वैश्विक परिप्रेक्ष्य (3rd ed.). Oxford University Press. pp. 235–248. ISBN 978-0-19-922886-7.
  2. Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd Ed., John Wiley & Sons, New York.
  3. "Standard Electrode Potentials". hyperphysics.phy-astr.gsu.edu. Retrieved 29 March 2018.
  4. Garrels, R. M.; Christ, C. L. (1990). खनिज, समाधान और संतुलन. London: Jones and Bartlett.
  5. Chuan, M.; Liu, G. Shu. J. (1996). "Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH". Water, Air, & Soil Pollution. 90 (3–4): 543–556. Bibcode:1996WASP...90..543C. doi:10.1007/BF00282668. S2CID 93256604.
  6. हसन ओ एट अल। (2016)। मृदा रेडॉक्स क्षमता में व्यावहारिक सुधार (ईh) मिट्टी के गुणों के लक्षण वर्णन के लिए माप। पारंपरिक और संरक्षण कृषि फसल प्रणालियों की तुलना के लिए आवेदन। एनालिटिका चिमिका एक्टा 906, 98–109।
  7. 7.0 7.1 Trevor V. Suslow, 2004. Oxidation-Reduction Potential for Water Disinfection Monitoring, Control, and Documentation, University of California Davis, http://anrcatalog.ucdavis.edu/pdf/8149.pdf
  8. Bastian, Tiana; Brondum, Jack (2009). "Do Traditional Measures of Water Quality in Swimming Pools and Spas Correspond with Beneficial Oxidation Reduction Potential?". Public Health Rep. 124 (2): 255–61. doi:10.1177/003335490912400213. PMC 2646482. PMID 19320367.


बाहरी संबंध


टिप्पणियाँ

  1. Half reactions: 2 Li (s) → 2 Li+ (s) + 2 e combined along with: H2 (g) → 2 H+ (g) + 2 e
  2. Half reactions: H2 (g) → 2 H+ (g) + 2 e combined along with: F2 (g) + 2 e → 2 F (g)


अतिरिक्त नोट्स

Onishi, j; Kondo W; Uchiyama Y (1960). "मसूड़े और जीभ की सतहों पर और इंटरडेंटल स्पेस में प्राप्त ऑक्सीकरण-कमी क्षमता पर प्रारंभिक रिपोर्ट।". Bull Tokyo Med Dent Univ (7): 161.

बाहरी संबंध