उष्णकटिबंधीय ज्यामिति: Difference between revisions

From Vigyanwiki
Line 55: Line 55:


=== परिभाषाएँ ===
=== परिभाषाएँ ===
एक्स के लिए [[बीजगणितीय टोरस]] में एक बीजगणितीय विविधता <math>(K^{\times})^n</math>, X की उष्णकटिबंधीय किस्म या X का उष्णकटिबंधीयकरण, निरूपित <math>\operatorname{Trop}(X)</math>, का एक उपसमुच्चय है <math>\R^n</math> जिसे कई तरह से परिभाषित किया जा सकता है। इन परिभाषाओं की समानता को उष्णकटिबंधीय ज्यामिति के मौलिक प्रमेय के रूप में जाना जाता है।<ref name=Maclagan />
X के लिए [[बीजगणितीय टोरस]] में एक बीजगणितीय विविधता <math>(K^{\times})^n</math>, X की उष्णकटिबंधीय किस्म या X का उष्णकटिबंधीयकरण, निरूपित <math>\operatorname{Trop}(X)</math>, का एक उपसमुच्चय है <math>\R^n</math> जिसे कई तरह से परिभाषित किया जा सकता है। इन परिभाषाओं की तुल्यता को उष्णकटिबंधीय ज्यामिति के मौलिक प्रमेय के रूप में संदर्भित किया जाता है।<ref name=Maclagan />
==== उष्णकटिबंधीय हाइपरसर्फ्स का चौराहा ====
==== उष्णकटिबंधीय हाइपरसर्फ्स का प्रतिच्छेदन ====
होने देना <math>\mathrm{I}(X)</math> लॉरेंट बहुपदों का आदर्श बनें जो एक्स में गायब हो जाते हैं <math>K[x_1^{\pm 1},\ldots ,x_n^{\pm 1}]</math>. परिभाषित करना
होने देना <math>\mathrm{I}(X)</math> लॉरेंट बहुपदों का आदर्श बनें जो एक्स में गायब हो जाते हैं <math>K[x_1^{\pm 1},\ldots ,x_n^{\pm 1}]</math>. परिभाषित करना
:<math>\operatorname{Trop}(X) = \bigcap_{f \in \mathrm{I}(X)} \mathrm{V}(\operatorname{Trop}(f)) \subseteq \R^n. </math>
:<math>\operatorname{Trop}(X) = \bigcap_{f \in \mathrm{I}(X)} \mathrm{V}(\operatorname{Trop}(f)) \subseteq \R^n. </math>
जब एक्स एक हाइपरसफेस है, तो इसका गायब होने वाला आदर्श <math>\mathrm{I}(X)</math> एक लॉरेंट बहुपद एफ और उष्णकटिबंधीय विविधता द्वारा उत्पन्न एक [[प्रमुख आदर्श]] है <math>\operatorname{Trop}(X)</math> ठीक उष्णकटिबंधीय हाइपरसफेस है <math>\mathrm{V}(\operatorname{Trop}(f))</math>.
जब X एक हाइपरसफेस है, तो इसका गायब होने वाला आदर्श <math>\mathrm{I}(X)</math> एक लॉरेंट बहुपद एफ और उष्णकटिबंधीय विविधता द्वारा उत्पन्न एक [[प्रमुख आदर्श]] है <math>\operatorname{Trop}(X)</math> ठीक उष्णकटिबंधीय हाइपरसफेस है <math>\mathrm{V}(\operatorname{Trop}(f))</math>.


प्रत्येक उष्णकटिबंधीय किस्म उष्णकटिबंधीय हाइपरसर्फ्स की एक सीमित संख्या का प्रतिच्छेदन है। बहुपदों का परिमित समुच्चय <math>\{f_1,\ldots,f_r\}\subseteq \mathrm{I}(X)</math> X के लिए उष्णकटिबंधीय आधार कहा जाता है यदि <math>\operatorname{Trop}(X)</math> की उष्णकटिबंधीय हाइपरसर्फफेस का प्रतिच्छेदन है <math>\operatorname{Trop}(f_1),\ldots,\operatorname{Trop}(f_r)</math>. सामान्य तौर पर, का एक जनरेटिंग सेट <math>\mathrm{I}(X)</math> उष्णकटिबंधीय आधार बनाने के लिए पर्याप्त नहीं है। एक उष्णकटिबंधीय हाइपरसर्फ्स की एक परिमित संख्या के प्रतिच्छेदन को एक उष्णकटिबंधीय विविधता कहा जाता है और सामान्य तौर पर एक उष्णकटिबंधीय किस्म नहीं है।<ref name=Maclagan />
प्रत्येक उष्णकटिबंधीय किस्म उष्णकटिबंधीय हाइपरसर्फ्स की एक सीमित संख्या का प्रतिच्छेदन है। बहुपदों का परिमित समुच्चय <math>\{f_1,\ldots,f_r\}\subseteq \mathrm{I}(X)</math> X के लिए उष्णकटिबंधीय आधार कहा जाता है यदि <math>\operatorname{Trop}(X)</math> की उष्णकटिबंधीय हाइपरसर्फफेस का प्रतिच्छेदन है <math>\operatorname{Trop}(f_1),\ldots,\operatorname{Trop}(f_r)</math>. सामान्य तौर पर, का एक जनरेटिंग सेट <math>\mathrm{I}(X)</math> उष्णकटिबंधीय आधार बनाने के लिए पर्याप्त नहीं है। एक उष्णकटिबंधीय हाइपरसर्फ्स की एक परिमित संख्या के प्रतिच्छेदन को एक उष्णकटिबंधीय विविधता कहा जाता है और सामान्य तौर पर एक उष्णकटिबंधीय किस्म नहीं है।<ref name=Maclagan />
 
==== ''प्रारंभिक'' आदर्श ====
 
==== प्रारंभिक आदर्श ====
एक वेक्टर चुनना <math>\mathbf{w}</math> में <math>\R^n</math> के मोनोमियल शब्दों से एक मानचित्र को परिभाषित करता है <math>K[x_1^{\pm 1},\ldots ,x_n^{\pm 1}]</math> प्रति <math>\R</math> m को टर्म भेजकर <math>\operatorname{Trop}(m)(\mathbf{w})</math>. एक लॉरेंट बहुपद के लिए <math>f = m_1 + \cdots + m_s</math>, शब्दों के योग के रूप में f के प्रारंभिक रूप को परिभाषित करें <math>m_i</math> जिसके लिए च <math>\operatorname{Trop}(m_i)(\mathbf{w})</math> न्यूनतम है। आदर्श के लिए <math>\mathrm{I}(X)</math>, इसके संबंध में इसके प्रारंभिक आदर्श को परिभाषित करें <math>\mathbf{w}</math> होना
एक वेक्टर चुनना <math>\mathbf{w}</math> में <math>\R^n</math> के मोनोमियल शब्दों से एक मानचित्र को परिभाषित करता है <math>K[x_1^{\pm 1},\ldots ,x_n^{\pm 1}]</math> प्रति <math>\R</math> m को टर्म भेजकर <math>\operatorname{Trop}(m)(\mathbf{w})</math>. एक लॉरेंट बहुपद के लिए <math>f = m_1 + \cdots + m_s</math>, शब्दों के योग के रूप में f के प्रारंभिक रूप को परिभाषित करें <math>m_i</math> जिसके लिए च <math>\operatorname{Trop}(m_i)(\mathbf{w})</math> न्यूनतम है। आदर्श के लिए <math>\mathrm{I}(X)</math>, इसके संबंध में इसके प्रारंभिक आदर्श को परिभाषित करें <math>\mathbf{w}</math> होना
:<math>\operatorname{in}_{\mathbf{w}}\mathrm{I}(X) = (\operatorname{in}_{\mathbf{w}}(f) : f \in \mathrm{I}(X)).</math>
:<math>\operatorname{in}_{\mathbf{w}}\mathrm{I}(X) = (\operatorname{in}_{\mathbf{w}}(f) : f \in \mathrm{I}(X)).</math>
Line 80: Line 78:
यह परिभाषा दर्शाती है <math>\operatorname{Trop}(X)</math> गैर-आर्किमिडीयन [[अमीबा (गणित)]] एक बीजगणितीय रूप से बंद क्षेत्र [[गैर-आर्किमिडीयन क्षेत्र]] K पर है।<ref>{{cite book | last=Mikhalkin | first=Grigory | chapter=Amoebas of algebraic varieties and tropical geometry | editor1-last=Donaldson | editor1-first=Simon | editor1-link=Simon Donaldson | editor2-first=Yakov | editor2-last=Eliashberg | editor2-link=Yakov Eliashberg | editor3-first=Mikhael | editor3-last=Gromov | editor3-link=Mikhail Leonidovich Gromov | title=ज्यामिति के विभिन्न चेहरे| location=New York, NY | publisher=Kluwer Academic/Plenum Publishers | series=International Mathematical Series | volume=3 | pages=257–300 | year=2004 | isbn=978-0-306-48657-9 | zbl=1072.14013 }}</ref>
यह परिभाषा दर्शाती है <math>\operatorname{Trop}(X)</math> गैर-आर्किमिडीयन [[अमीबा (गणित)]] एक बीजगणितीय रूप से बंद क्षेत्र [[गैर-आर्किमिडीयन क्षेत्र]] K पर है।<ref>{{cite book | last=Mikhalkin | first=Grigory | chapter=Amoebas of algebraic varieties and tropical geometry | editor1-last=Donaldson | editor1-first=Simon | editor1-link=Simon Donaldson | editor2-first=Yakov | editor2-last=Eliashberg | editor2-link=Yakov Eliashberg | editor3-first=Mikhael | editor3-last=Gromov | editor3-link=Mikhail Leonidovich Gromov | title=ज्यामिति के विभिन्न चेहरे| location=New York, NY | publisher=Kluwer Academic/Plenum Publishers | series=International Mathematical Series | volume=3 | pages=257–300 | year=2004 | isbn=978-0-306-48657-9 | zbl=1072.14013 }}</ref>
यदि X एक किस्म से अधिक है <math>\Complex</math>, <math>\operatorname{Trop}(X)</math> अमीबा की सीमित वस्तु के रूप में माना जा सकता है <math>\operatorname{Log}_t(X)</math> क्योंकि लघुगणक मानचित्र का आधार t अनंत तक जाता है।<ref>{{citation | first=Eric | last=Katz |author-link=Eric Katz| title=What is Tropical Geometry? | journal=[[Notices of the American Mathematical Society]] | volume=64 | issue=4 | pages=380–382 | url=https://www.ams.org/publications/journals/notices/201704/rnoti-p380.pdf |doi=10.1090/noti1507| year=2017 | doi-access=free }}</ref>
यदि X एक किस्म से अधिक है <math>\Complex</math>, <math>\operatorname{Trop}(X)</math> अमीबा की सीमित वस्तु के रूप में माना जा सकता है <math>\operatorname{Log}_t(X)</math> क्योंकि लघुगणक मानचित्र का आधार t अनंत तक जाता है।<ref>{{citation | first=Eric | last=Katz |author-link=Eric Katz| title=What is Tropical Geometry? | journal=[[Notices of the American Mathematical Society]] | volume=64 | issue=4 | pages=380–382 | url=https://www.ams.org/publications/journals/notices/201704/rnoti-p380.pdf |doi=10.1090/noti1507| year=2017 | doi-access=free }}</ref>
==== बहुफलकीय परिसर ====
==== बहुफलकीय परिसर ====
निम्नलिखित विशेषता बीजीय किस्मों और उष्णकटिबंधीयकरण के संदर्भ के बिना आंतरिक रूप से उष्णकटिबंधीय किस्मों का वर्णन करती है।
निम्नलिखित विशेषता बीजीय किस्मों और उष्णकटिबंधीयकरण के संदर्भ के बिना आंतरिक रूप से उष्णकटिबंधीय किस्मों का वर्णन करती है।
एक सेट वी <math>\R^n</math> एक अप्रासंगिक उष्णकटिबंधीय किस्म है अगर यह शुद्ध आयाम d के भारित [[बहुफलकीय परिसर]] का समर्थन है जो शून्य-तनाव की स्थिति को संतुष्ट करता है और कोडिमेंशन एक में जुड़ा हुआ है। जब d एक होता है, तो शून्य-तनाव की स्थिति का अर्थ है कि प्रत्येक शीर्ष के चारों ओर, किनारों के बाहर जाने वाली दिशाओं का भारित-योग शून्य के बराबर होता है। उच्च आयाम के लिए, इसके बजाय आयाम के प्रत्येक सेल के चारों ओर रकम ली जाती है <math>d-1</math> सेल के एफ़िन स्पैन को बाहर निकालने के बाद।<ref name=SpeyerSturmfels2009/>  वह गुण जो V कोडिमेंशन one से जुड़ा है, इसका मतलब है कि आयाम d कोशिकाओं पर स्थित किन्हीं दो बिंदुओं के लिए, उन्हें जोड़ने वाला एक रास्ता है जो इससे कम आयाम वाले किसी भी सेल से नहीं गुजरता है <math>d-1</math>.<ref>{{citation| first1=Dustin | last1=Cartwright | first2=Sam | last2=Payne | title=Connectivity of tropicalizations | journal=Mathematical Research Letters | volume=19 | issue=5 | year=2012 | pages=1089–1095 | doi=10.4310/MRL.2012.v19.n5.a10 | arxiv=1204.6589 | bibcode=2012arXiv1204.6589C | s2cid=51767353 }}</ref>
एक सेट वी <math>\R^n</math> एक अप्रासंगिक उष्णकटिबंधीय किस्म है अगर यह शुद्ध आयाम d के भारित [[बहुफलकीय परिसर]] का समर्थन है जो शून्य-तनाव की स्थिति को संतुष्ट करता है और कोडिमेंशन एक में जुड़ा हुआ है। जब d एक होता है, तो शून्य-तनाव की स्थिति का अर्थ है कि प्रत्येक शीर्ष के चारों ओर, किनारों के बाहर जाने वाली दिशाओं का भारित-योग शून्य के बराबर होता है। उच्च आयाम के लिए, इसके बजाय आयाम के प्रत्येक सेल के चारों ओर रकम ली जाती है <math>d-1</math> सेल के एफ़िन स्पैन को बाहर निकालने के बाद।<ref name=SpeyerSturmfels2009/>  वह गुण जो V कोडिमेंशन one से जुड़ा है, इसका मतलब है कि आयाम d कोशिकाओं पर स्थित किन्हीं दो बिंदुओं के लिए, उन्हें जोड़ने वाला एक रास्ता है जो इससे कम आयाम वाले किसी भी सेल से नहीं गुजरता है <math>d-1</math>.<ref>{{citation| first1=Dustin | last1=Cartwright | first2=Sam | last2=Payne | title=Connectivity of tropicalizations | journal=Mathematical Research Letters | volume=19 | issue=5 | year=2012 | pages=1089–1095 | doi=10.4310/MRL.2012.v19.n5.a10 | arxiv=1204.6589 | bibcode=2012arXiv1204.6589C | s2cid=51767353 }}</ref>
=== उष्णकटिबंधीय वक्र ===
=== उष्णकटिबंधीय वक्र ===
उष्णकटिबंधीय वक्रों का अध्ययन (आयाम एक की उष्णकटिबंधीय किस्में) विशेष रूप से अच्छी तरह से विकसित है और [[ग्राफ सिद्धांत]] से दृढ़ता से संबंधित है। उदाहरण के लिए, उष्णकटिबंधीय वक्रों के विभाजक (बीजगणितीय ज्यामिति) का सिद्धांत उष्णकटिबंधीय वक्रों से जुड़े ग्राफों पर [[चिप फायरिंग खेल]] से संबंधित है।<ref>{{Cite journal|date=2013-09-01|title=उष्णकटिबंधीय वक्रों पर विभाजकों की श्रेणी|journal=[[Journal of Combinatorial Theory|Journal of Combinatorial Theory, Series A]]| language=en|volume=120|issue=7|pages=1521–1538|doi=10.1016/j.jcta.2013.05.002|issn=0097-3165|last1=Hladký|first1=Jan|last2=Králʼ|first2=Daniel|last3=Norine|first3=Serguei|arxiv=0709.4485|s2cid=3045053}}</ref>
उष्णकटिबंधीय वक्रों का अध्ययन (आयाम एक की उष्णकटिबंधीय किस्में) विशेष रूप से अच्छी तरह से विकसित है और [[ग्राफ सिद्धांत]] से दृढ़ता से संबंधित है। उदाहरण के लिए, उष्णकटिबंधीय वक्रों के विभाजक (बीजगणितीय ज्यामिति) का सिद्धांत उष्णकटिबंधीय वक्रों से जुड़े ग्राफों पर [[चिप फायरिंग खेल]] से संबंधित है।<ref>{{Cite journal|date=2013-09-01|title=उष्णकटिबंधीय वक्रों पर विभाजकों की श्रेणी|journal=[[Journal of Combinatorial Theory|Journal of Combinatorial Theory, Series A]]| language=en|volume=120|issue=7|pages=1521–1538|doi=10.1016/j.jcta.2013.05.002|issn=0097-3165|last1=Hladký|first1=Jan|last2=Králʼ|first2=Daniel|last3=Norine|first3=Serguei|arxiv=0709.4485|s2cid=3045053}}</ref>
Line 100: Line 94:
2007 में वित्तीय संकट के दौरान [[बैंक ऑफ इंग्लैंड]] द्वारा उपयोग की जाने वाली नीलामियों के [[पॉल क्लेम्परर]] के डिजाइन में एक उष्णकटिबंधीय रेखा दिखाई दी।<ref>{{Cite web|url = https://www.economics.ox.ac.uk/news/how-geometry-came-to-the-rescue-during-th |title = बैंकिंग संकट के दौरान ज्यामिति बचाव में कैसे आई|access-date = 24 March 2014|website = Department of Economics, University of Oxford}}</ref> योशिनोरी शियोज़ावा ने उपोष्णकटिबंधीय बीजगणित को अधिकतम-बार या न्यूनतम-समय सेमिरिंग (अधिकतम-प्लस और न्यूनतम-प्लस के बजाय) के रूप में परिभाषित किया। उन्होंने पाया कि रिकार्डियन व्यापार सिद्धांत (इनपुट व्यापार के बिना अंतर्राष्ट्रीय व्यापार) की व्याख्या उपोष्णकटिबंधीय उत्तल बीजगणित के रूप में की जा सकती है।<ref>{{Cite journal |doi = 10.1007/s40844-015-0012-3|title = अंतर्राष्ट्रीय व्यापार सिद्धांत और विदेशी बीजगणित|url=https://www.researchgate.net/publication/280646264 |journal = Evolutionary and Institutional Economics Review|volume = 12|pages = 177–212|year = 2015|last1 = Shiozawa|first1 = Yoshinori|s2cid = 155827635 }} This is a digest of Y. Shiozawa, "[https://www.researchgate.net/publication/236020268 Subtropical Convex Geometry as the Ricardian Theory of International Trade]" draft paper.</ref> रेक्टीफायर (तंत्रिका नेटवर्क) के साथ फीडफॉरवर्ड तंत्रिका नेटवर्क की जटिलता का विश्लेषण करने के लिए उष्णकटिबंधीय ज्यामिति का भी उपयोग किया गया है।<ref>{{cite conference|last1=Zhang|first1=Liwen|author-link1=|last2=Naitzat|first2=Gregory|author-link2=|last3=Lim|first3=Lek-Heng|author3-link=Lek-Heng Lim|date=2018|title=गहरे तंत्रिका नेटवर्क की उष्णकटिबंधीय ज्यामिति|url=http://proceedings.mlr.press/v80/zhang18i.html|conference=35th International Conference on Machine Learning|location=|publisher=|pages=5824–5832|id=|book-title=Proceedings of the 35th International Conference on Machine Learning}}</ref>
2007 में वित्तीय संकट के दौरान [[बैंक ऑफ इंग्लैंड]] द्वारा उपयोग की जाने वाली नीलामियों के [[पॉल क्लेम्परर]] के डिजाइन में एक उष्णकटिबंधीय रेखा दिखाई दी।<ref>{{Cite web|url = https://www.economics.ox.ac.uk/news/how-geometry-came-to-the-rescue-during-th |title = बैंकिंग संकट के दौरान ज्यामिति बचाव में कैसे आई|access-date = 24 March 2014|website = Department of Economics, University of Oxford}}</ref> योशिनोरी शियोज़ावा ने उपोष्णकटिबंधीय बीजगणित को अधिकतम-बार या न्यूनतम-समय सेमिरिंग (अधिकतम-प्लस और न्यूनतम-प्लस के बजाय) के रूप में परिभाषित किया। उन्होंने पाया कि रिकार्डियन व्यापार सिद्धांत (इनपुट व्यापार के बिना अंतर्राष्ट्रीय व्यापार) की व्याख्या उपोष्णकटिबंधीय उत्तल बीजगणित के रूप में की जा सकती है।<ref>{{Cite journal |doi = 10.1007/s40844-015-0012-3|title = अंतर्राष्ट्रीय व्यापार सिद्धांत और विदेशी बीजगणित|url=https://www.researchgate.net/publication/280646264 |journal = Evolutionary and Institutional Economics Review|volume = 12|pages = 177–212|year = 2015|last1 = Shiozawa|first1 = Yoshinori|s2cid = 155827635 }} This is a digest of Y. Shiozawa, "[https://www.researchgate.net/publication/236020268 Subtropical Convex Geometry as the Ricardian Theory of International Trade]" draft paper.</ref> रेक्टीफायर (तंत्रिका नेटवर्क) के साथ फीडफॉरवर्ड तंत्रिका नेटवर्क की जटिलता का विश्लेषण करने के लिए उष्णकटिबंधीय ज्यामिति का भी उपयोग किया गया है।<ref>{{cite conference|last1=Zhang|first1=Liwen|author-link1=|last2=Naitzat|first2=Gregory|author-link2=|last3=Lim|first3=Lek-Heng|author3-link=Lek-Heng Lim|date=2018|title=गहरे तंत्रिका नेटवर्क की उष्णकटिबंधीय ज्यामिति|url=http://proceedings.mlr.press/v80/zhang18i.html|conference=35th International Conference on Machine Learning|location=|publisher=|pages=5824–5832|id=|book-title=Proceedings of the 35th International Conference on Machine Learning}}</ref>
इसके अलावा, उदाहरण के लिए जॉब शेड्यूलिंग, स्थान विश्लेषण, परिवहन नेटवर्क, निर्णय लेने और असतत घटना गतिशील प्रणालियों में उत्पन्न होने वाली कई अनुकूलन समस्याओं को उष्णकटिबंधीय ज्यामिति के ढांचे में तैयार और हल किया जा सकता है।<ref>{{cite book |last= Krivulin |first= Nikolai |arxiv=1408.0313 |chapter= Tropical optimization problems |year=2014 |title=अर्थशास्त्र और अनुकूलन में प्रगति: एल. वी. कांटोरोविच की स्मृति को समर्पित एकत्रित वैज्ञानिक अध्ययन|pages=195–214 |publisher=Nova Science Publishers |location=New York |isbn=978-1-63117-073-7 |editor1=Leon A. Petrosyan |editor2=David W. K. Yeung |editor3=Joseph V. Romanovsky}}</ref> एबेल-जैकोबी मानचित्र के एक उष्णकटिबंधीय समकक्ष को क्रिस्टल डिजाइन पर लागू किया जा सकता है।<ref>{{cite book |author-link=Toshikazu Sunada|last=Sunada |first=T. |year=2012 |title=सामयिक क्रिस्टलोग्राफी: असतत ज्यामितीय विश्लेषण की ओर एक दृश्य के साथ|series=Surveys and Tutorials in the Applied Mathematical Sciences |volume=6 |publisher=Springer Japan |isbn=9784431541769}}</ref> एक [[भारित परिमित-राज्य ट्रांसड्यूसर]] में वजन अक्सर एक उष्णकटिबंधीय सेमिरिंग होने की आवश्यकता होती है। उष्णकटिबंधीय ज्यामिति [[स्व-संगठित आलोचना]]त्मकता दिखा सकती है।<ref>{{Cite journal|last1=Kalinin|first1=N.|last2=Guzmán-Sáenz|first2=A.|last3=Prieto|first3=Y.|last4=Shkolnikov|first4=M.|last5=Kalinina|first5=V.|last6=Lupercio|first6=E.|date=2018-08-15|title=उष्णकटिबंधीय ज्यामिति के लेंस के माध्यम से स्व-संगठित आलोचना और पैटर्न का उद्भव|journal=[[Proceedings of the National Academy of Sciences of the United States of America]]| volume=115|issue=35|language=en|pages=E8135–E8142|doi=10.1073/pnas.1805847115|issn=0027-8424|pmid=30111541|pmc=6126730|arxiv=1806.09153|bibcode=2018arXiv180609153K|doi-access=free}}</ref>
इसके अलावा, उदाहरण के लिए जॉब शेड्यूलिंग, स्थान विश्लेषण, परिवहन नेटवर्क, निर्णय लेने और असतत घटना गतिशील प्रणालियों में उत्पन्न होने वाली कई अनुकूलन समस्याओं को उष्णकटिबंधीय ज्यामिति के ढांचे में तैयार और हल किया जा सकता है।<ref>{{cite book |last= Krivulin |first= Nikolai |arxiv=1408.0313 |chapter= Tropical optimization problems |year=2014 |title=अर्थशास्त्र और अनुकूलन में प्रगति: एल. वी. कांटोरोविच की स्मृति को समर्पित एकत्रित वैज्ञानिक अध्ययन|pages=195–214 |publisher=Nova Science Publishers |location=New York |isbn=978-1-63117-073-7 |editor1=Leon A. Petrosyan |editor2=David W. K. Yeung |editor3=Joseph V. Romanovsky}}</ref> एबेल-जैकोबी मानचित्र के एक उष्णकटिबंधीय समकक्ष को क्रिस्टल डिजाइन पर लागू किया जा सकता है।<ref>{{cite book |author-link=Toshikazu Sunada|last=Sunada |first=T. |year=2012 |title=सामयिक क्रिस्टलोग्राफी: असतत ज्यामितीय विश्लेषण की ओर एक दृश्य के साथ|series=Surveys and Tutorials in the Applied Mathematical Sciences |volume=6 |publisher=Springer Japan |isbn=9784431541769}}</ref> एक [[भारित परिमित-राज्य ट्रांसड्यूसर]] में वजन अक्सर एक उष्णकटिबंधीय सेमिरिंग होने की आवश्यकता होती है। उष्णकटिबंधीय ज्यामिति [[स्व-संगठित आलोचना]]त्मकता दिखा सकती है।<ref>{{Cite journal|last1=Kalinin|first1=N.|last2=Guzmán-Sáenz|first2=A.|last3=Prieto|first3=Y.|last4=Shkolnikov|first4=M.|last5=Kalinina|first5=V.|last6=Lupercio|first6=E.|date=2018-08-15|title=उष्णकटिबंधीय ज्यामिति के लेंस के माध्यम से स्व-संगठित आलोचना और पैटर्न का उद्भव|journal=[[Proceedings of the National Academy of Sciences of the United States of America]]| volume=115|issue=35|language=en|pages=E8135–E8142|doi=10.1073/pnas.1805847115|issn=0027-8424|pmid=30111541|pmc=6126730|arxiv=1806.09153|bibcode=2018arXiv180609153K|doi-access=free}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[उष्णकटिबंधीय विश्लेषण]]
* [[उष्णकटिबंधीय विश्लेषण]]

Revision as of 17:01, 13 December 2022

गणित में, उष्णकटिबंधीय ज्यामिति बहुपदों और उनके बीजगणितीय ज्यामिति गुणों का अध्ययन है जब जोड़ को न्यूनीकरण से बदल दिया जाता है और गुणन को साधारण जोड़ से बदल दिया जाता है:

उदाहरण के लिए, क्लासिकल बहुपद बन जाएगा . इस तरह के बहुपद और उनके समाधान में अनुकूलन समस्याओं में महत्वपूर्ण अनुप्रयोग हैं, उदाहरण के लिए, ट्रेनों के नेटवर्क के लिए प्रस्थान समय को अनुकूलित करने की समस्या।

उष्णकटिबंधीय ज्यामिति एक प्रकार की बीजगणितीय ज्यामिति है जिसमें बहुपद रेखांकन टुकड़े-टुकड़े रेखीय जाल के समान होते हैं, और जिसमें संख्याएँ एक क्षेत्र के बजाय उष्णकटिबंधीय सेमिरिंग से संबंधित होती हैं। क्योंकि शास्त्रीय और उष्णकटिबंधीय ज्यामिति निकट से संबंधित हैं, परिणाम और विधियों को उनके बीच परिवर्तित किया जा सकता है। बीजगणितीय किस्मों को एक उष्णकटिबंधीय समकक्ष के लिए मैप किया जा सकता है और, चूंकि यह प्रक्रिया अभी भी मूल विविधता के बारे में कुछ ज्यामितीय जानकारी को बरकरार रखती है, इसका उपयोग बीजगणितीय ज्यामिति से शास्त्रीय परिणामों को साबित करने और सामान्य बनाने के लिए किया जा सकता है। उष्णकटिबंधीय ज्यामिति।[1]

इतिहास

विभिन्न क्षेत्रों में काम कर रहे गणितज्ञों द्वारा एक ही अंकन का उपयोग करके उष्णकटिबंधीय विश्लेषण के मूल विचारों को स्वतंत्र रूप से विकसित किया गया था।[2] उष्णकटिबंधीय ज्यामिति के केंद्रीय विचार पहले के कई कार्यों में विभिन्न रूपों में प्रकट हुए। उदाहरण के लिए, विक्टर पावलोविच मैस्लोव ने एकीकरण की प्रक्रिया का एक उष्णकटिबंधीय संस्करण पेश किया। उन्होंने यह भी देखा कि लीजेंड्रे परिवर्तन और हैमिल्टन-जैकोबी समीकरण के समाधान उष्णकटिबंधीय अर्थों में रैखिक संचालन हैं।[3] हालाँकि, 1990 के दशक के उत्तरार्ध से ही सिद्धांत की मूल परिभाषाओं को समेकित करने का प्रयास किया गया है। यह गणितीय गणनात्मक ज्यामिति के लिए अपने आवेदन से प्रेरित था, जिसमें मैक्सिम कोंटेसेविच [4] के विचार और ग्रिगोरी मिखाल्किन[5] के काम शामिल थे।

विशेषण उष्णकटिबंधीय फ्रांसीसी गणितज्ञों द्वारा हंगरी में जन्मे ब्राज़िल के कंप्यूटर वैज्ञानिक इमरे साइमन के सम्मान में गढ़ा गया था, जिन्होंने मैदान पर लिखा था। जीन-एरिक पिन सिक्के का श्रेय डोमिनिक पेरिन को देते हैं,[6] जबकि साइमन स्वयं इस शब्द का श्रेय क्रिश्चियन चोफ्रूट को देते हैं।[7]

बीजगणित पृष्ठभूमि

उष्णकटिबंधीय ज्यामिति उष्णकटिबंधीय सेमिरिंग पर आधारित है। अधिकतम या न्यूनतम सम्मेलन के आधार पर इसे दो तरीकों से परिभाषित किया गया है।

मिनि ट्रॉपिकल सेमीरिंग सेमीरिंग है , संचालन के साथ:

संचालन तथा क्रमशः उष्णकटिबंधीय जोड़ और उष्णकटिबंधीय गुणन के रूप में जाना जाता है। के लिए पहचान तत्व है , और पहचान तत्व के लिए 0 है।

इसी प्रकार, अधिकतम उष्णकटिबंधीय सेमिरिंग सेमिरिंग है , संचालन के साथ:

के लिए पहचान तत्व है , और पहचान तत्व के लिए 0 है।

ये सेमी-रिंग्स आइसोमॉर्फिक हैं, निषेध के तहत , और सामान्य तौर पर उनमें से एक को चुना जाता है और इसे केवल एक ट्रॉपिकल सेमी-रिंग कहा जाता है। सम्मेलन लेखकों और उपक्षेत्रों के बीच भिन्न होते हैं: कुछ न्यूनतम सम्मेलन का उपयोग करते हैं और अन्य अधिकतम सम्मेलन का उपयोग करते हैं।

ट्रॉपिकल सेमिरिंग ऑपरेशंस मॉडल यह है कि कैसेमूल्यांकन (बीजगणित) एक मूल्यवान क्षेत्र में जोड़ और गुणा के तहत व्यवहार करता है।

उष्णकटिबंधीय ज्यामिति (न्यूनतम सम्मेलन के साथ) में आने वाले कुछ सामान्य मूल्यवान क्षेत्र हैं:

  • या तुच्छ मूल्यांकन के साथ, सभी के लिए .
  • या p-adic मूल्यांकन के साथ इसका विस्तार, ए और बी कोप्राइम से पी के लिए।
  • लॉरेंट श्रृंखला का क्षेत्र (पूर्णांक शक्तियाँ), या (जटिल) प्यूसेक्स श्रृंखला का क्षेत्र , श्रृंखला में प्रदर्शित होने वाले t के सबसे छोटे घातांक के मूल्यांकन के साथ।

उष्णकटिबंधीय बहुपद

उष्ण कटिबंधीय बहुपद एक फलन है इसे मोनोमियल की परिमित संख्या के उष्णकटिबंधीय योग के रूप में व्यक्त किया जा सकता है। एक मोनोमियल शब्द एक स्थिर और चर का एक उष्णकटिबंधीय उत्पाद (और/या भागफल) है . इस प्रकार एक उष्णकटिबंधीय बहुपद F, आफिन परिवर्तन के परिमित संग्रह का न्यूनतम है | आफिन -रैखिक कार्य जिसमें चर में पूर्णांक गुणांक होते हैं, इसलिए यह अवतल कार्य, निरंतर कार्य और टुकड़ों में रेखीय।[8]

लॉरेंट बहुपद में एक बहुपद f दिया गया है जहाँ K एक महत्वपूर्ण क्षेत्र है, f का उष्णकटिबंधीयकरण, निरूपित , उनके उष्णकटिबंधीय समकक्षों द्वारा गुणन और योग को प्रतिस्थापित करके f से प्राप्त उष्णकटिबंधीय बहुपद है और K में प्रत्येक स्थिरांक के मूल्यांकन से प्राप्त होता है। यानी यदि

फिर

बिंदुओं का वह समुच्चय जहां एक उष्णकटिबंधीय बहुपद F अविभेद्य है, उससे संबंधित उष्णकटिबंधीय अतिसतह कहलाता है, जिसे निरूपित किया जाता है (बहुपद के बीजगणितीय प्रकार के अनुरूप)। समान रूप से, बिंदुओं का वह समूह है जहां F की शर्तों में न्यूनतम को कम से कम दो बार प्राप्त किया जाता है। कब एक लॉरेंट बहुपद f के लिए, यह बाद का लक्षण वर्णन इस तथ्य को दर्शाता है कि किसी भी समाधान पर , के किसी भी समाधान पर, f की शर्तों का न्यूनतम मूल्यांकन उनके लिए कम से कम दो बार हासिल किया जाना चाहिए। सभी को रद्द करने के लिए।[9]

उष्णकटिबंधीय किस्में

परिभाषाएँ

X के लिए बीजगणितीय टोरस में एक बीजगणितीय विविधता , X की उष्णकटिबंधीय किस्म या X का उष्णकटिबंधीयकरण, निरूपित , का एक उपसमुच्चय है जिसे कई तरह से परिभाषित किया जा सकता है। इन परिभाषाओं की तुल्यता को उष्णकटिबंधीय ज्यामिति के मौलिक प्रमेय के रूप में संदर्भित किया जाता है।[9]

उष्णकटिबंधीय हाइपरसर्फ्स का प्रतिच्छेदन

होने देना लॉरेंट बहुपदों का आदर्श बनें जो एक्स में गायब हो जाते हैं . परिभाषित करना

जब X एक हाइपरसफेस है, तो इसका गायब होने वाला आदर्श एक लॉरेंट बहुपद एफ और उष्णकटिबंधीय विविधता द्वारा उत्पन्न एक प्रमुख आदर्श है ठीक उष्णकटिबंधीय हाइपरसफेस है .

प्रत्येक उष्णकटिबंधीय किस्म उष्णकटिबंधीय हाइपरसर्फ्स की एक सीमित संख्या का प्रतिच्छेदन है। बहुपदों का परिमित समुच्चय X के लिए उष्णकटिबंधीय आधार कहा जाता है यदि की उष्णकटिबंधीय हाइपरसर्फफेस का प्रतिच्छेदन है . सामान्य तौर पर, का एक जनरेटिंग सेट उष्णकटिबंधीय आधार बनाने के लिए पर्याप्त नहीं है। एक उष्णकटिबंधीय हाइपरसर्फ्स की एक परिमित संख्या के प्रतिच्छेदन को एक उष्णकटिबंधीय विविधता कहा जाता है और सामान्य तौर पर एक उष्णकटिबंधीय किस्म नहीं है।[9]

प्रारंभिक आदर्श

एक वेक्टर चुनना में के मोनोमियल शब्दों से एक मानचित्र को परिभाषित करता है प्रति m को टर्म भेजकर . एक लॉरेंट बहुपद के लिए , शब्दों के योग के रूप में f के प्रारंभिक रूप को परिभाषित करें जिसके लिए च न्यूनतम है। आदर्श के लिए , इसके संबंध में इसके प्रारंभिक आदर्श को परिभाषित करें होना

फिर परिभाषित करें

चूंकि हम लॉरेंट रिंग में काम कर रहे हैं, यह वज़न वैक्टर के सेट के समान है जिसके लिए एक मोनोमियल शामिल नहीं है।

जब K का तुच्छ मूल्यांकन होता है, का प्रारंभिक आदर्श है मोनोमियल ऑर्डर # वेट ऑर्डर के संबंध में वेट वेक्टर द्वारा दिया गया . यह इस प्रकार है कि ग्रोबनेर के प्रशंसक का उपप्रशंसक है .

मूल्यांकन मानचित्र की छवि

मान लीजिए कि X एक फ़ील्ड K पर वैल्यूएशन v के साथ एक किस्म है जिसकी छवि सघन है (उदाहरण के लिए प्यूसेक्स श्रृंखला का एक क्षेत्र)। समन्वय-वार कार्य करके, वी बीजगणितीय टोरस से मानचित्र को परिभाषित करता है प्रति . फिर परिभाषित करें

जहां ओवरलाइन यूक्लिडियन टोपोलॉजी में क्लोजर (गणित) को इंगित करता है। यदि K का मूल्यांकन सघन नहीं है , तो उपरोक्त परिभाषा को अंगूठियों के परिवर्तन द्वारा अनुकूलित किया जा सकता है # स्केलर्स को बड़े क्षेत्र में विस्तारित किया जा सकता है जिसमें घने मूल्यांकन होता है।

यह परिभाषा दर्शाती है गैर-आर्किमिडीयन अमीबा (गणित) एक बीजगणितीय रूप से बंद क्षेत्र गैर-आर्किमिडीयन क्षेत्र K पर है।[10] यदि X एक किस्म से अधिक है , अमीबा की सीमित वस्तु के रूप में माना जा सकता है क्योंकि लघुगणक मानचित्र का आधार t अनंत तक जाता है।[11]

बहुफलकीय परिसर

निम्नलिखित विशेषता बीजीय किस्मों और उष्णकटिबंधीयकरण के संदर्भ के बिना आंतरिक रूप से उष्णकटिबंधीय किस्मों का वर्णन करती है। एक सेट वी एक अप्रासंगिक उष्णकटिबंधीय किस्म है अगर यह शुद्ध आयाम d के भारित बहुफलकीय परिसर का समर्थन है जो शून्य-तनाव की स्थिति को संतुष्ट करता है और कोडिमेंशन एक में जुड़ा हुआ है। जब d एक होता है, तो शून्य-तनाव की स्थिति का अर्थ है कि प्रत्येक शीर्ष के चारों ओर, किनारों के बाहर जाने वाली दिशाओं का भारित-योग शून्य के बराबर होता है। उच्च आयाम के लिए, इसके बजाय आयाम के प्रत्येक सेल के चारों ओर रकम ली जाती है सेल के एफ़िन स्पैन को बाहर निकालने के बाद।[8] वह गुण जो V कोडिमेंशन one से जुड़ा है, इसका मतलब है कि आयाम d कोशिकाओं पर स्थित किन्हीं दो बिंदुओं के लिए, उन्हें जोड़ने वाला एक रास्ता है जो इससे कम आयाम वाले किसी भी सेल से नहीं गुजरता है .[12]

उष्णकटिबंधीय वक्र

उष्णकटिबंधीय वक्रों का अध्ययन (आयाम एक की उष्णकटिबंधीय किस्में) विशेष रूप से अच्छी तरह से विकसित है और ग्राफ सिद्धांत से दृढ़ता से संबंधित है। उदाहरण के लिए, उष्णकटिबंधीय वक्रों के विभाजक (बीजगणितीय ज्यामिति) का सिद्धांत उष्णकटिबंधीय वक्रों से जुड़े ग्राफों पर चिप फायरिंग खेल से संबंधित है।[13] बीजगणितीय ज्यामिति के कई शास्त्रीय प्रमेयों में उष्णकटिबंधीय ज्यामिति में समकक्ष हैं, जिनमें निम्न शामिल हैं:

ओलेग मैन ने होमोटॉपी # आइसोटोपी तक विमान में डिग्री 7 के वास्तविक वक्रों को वर्गीकृत करने के लिए उष्णकटिबंधीय वक्रों का उपयोग किया। पैचवर्किंग की उनकी विधि किसी दिए गए समस्थानिक वर्ग के उष्णकटिबंधीय वक्र से वास्तविक वक्र बनाने की प्रक्रिया प्रदान करती है।

अनुप्रयोग

2007 में वित्तीय संकट के दौरान बैंक ऑफ इंग्लैंड द्वारा उपयोग की जाने वाली नीलामियों के पॉल क्लेम्परर के डिजाइन में एक उष्णकटिबंधीय रेखा दिखाई दी।[17] योशिनोरी शियोज़ावा ने उपोष्णकटिबंधीय बीजगणित को अधिकतम-बार या न्यूनतम-समय सेमिरिंग (अधिकतम-प्लस और न्यूनतम-प्लस के बजाय) के रूप में परिभाषित किया। उन्होंने पाया कि रिकार्डियन व्यापार सिद्धांत (इनपुट व्यापार के बिना अंतर्राष्ट्रीय व्यापार) की व्याख्या उपोष्णकटिबंधीय उत्तल बीजगणित के रूप में की जा सकती है।[18] रेक्टीफायर (तंत्रिका नेटवर्क) के साथ फीडफॉरवर्ड तंत्रिका नेटवर्क की जटिलता का विश्लेषण करने के लिए उष्णकटिबंधीय ज्यामिति का भी उपयोग किया गया है।[19] इसके अलावा, उदाहरण के लिए जॉब शेड्यूलिंग, स्थान विश्लेषण, परिवहन नेटवर्क, निर्णय लेने और असतत घटना गतिशील प्रणालियों में उत्पन्न होने वाली कई अनुकूलन समस्याओं को उष्णकटिबंधीय ज्यामिति के ढांचे में तैयार और हल किया जा सकता है।[20] एबेल-जैकोबी मानचित्र के एक उष्णकटिबंधीय समकक्ष को क्रिस्टल डिजाइन पर लागू किया जा सकता है।[21] एक भारित परिमित-राज्य ट्रांसड्यूसर में वजन अक्सर एक उष्णकटिबंधीय सेमिरिंग होने की आवश्यकता होती है। उष्णकटिबंधीय ज्यामिति स्व-संगठित आलोचनात्मकता दिखा सकती है।[22]

यह भी देखें

टिप्पणियाँ

  1. Hartnett, Kevin. "Tinkertoy मॉडल नई ज्यामितीय अंतर्दृष्टि उत्पन्न करते हैं". Quanta Magazine. Retrieved 2018-12-12.
  2. See Cuninghame-Green, Raymond A. (1979). Minimax algebra. ISBN 978-3-540-09113-4 {{cite book}}: |journal= ignored (help) and references therein.
  3. Maslov, Victor (1987). "अनुकूलन समस्याओं के लिए एक नए अध्यारोपण सिद्धांत पर". Russian Mathematical Surveys. 42:3 (3): 43–54. Bibcode:1987RuMaS..42...43M. doi:10.1070/RM1987v042n03ABEH001439.
  4. Kontsevich, Maxim; Soibelman, Yan (2000-11-07). "होमोलॉजिकल मिरर समरूपता और टोरस फ़िब्रेशन". arXiv:math/0011041.
  5. Mikhalkin, Grigory (2005). "R2 में परिगणनात्मक उष्णकटिबंधीय बीजगणितीय ज्यामिति" (PDF). Journal of the American Mathematical Society. 18 (2): 313–377. arXiv:math/0312530. doi:10.1090/S0894-0347-05-00477-7.
  6. Pin, Jean-Eric (1998). "Tropical semirings" (PDF). In Gunawardena, J. (ed.). अक्षमता. Publications of the Newton Institute. Vol. 11. Cambridge University Press. pp. 50–69. doi:10.1017/CBO9780511662508.004. ISBN 9780511662508.
  7. Simon, Imre (1988). "Recognizable sets with multiplicities in the tropical semiring". कंप्यूटर विज्ञान 1988 की गणितीय नींव. Lecture Notes in Computer Science. Vol. 324. pp. 107–120. doi:10.1007/BFb0017135. ISBN 978-3-540-50110-7.
  8. 8.0 8.1 Speyer, David; Sturmfels, Bernd (2009), "Tropical mathematics" (PDF), Mathematics Magazine, 82 (3): 163–173, doi:10.1080/0025570X.2009.11953615, S2CID 15278805
  9. 9.0 9.1 9.2 Maclagan, Diane; Sturmfels, Bernd (2015). उष्णकटिबंधीय ज्यामिति का परिचय. American Mathematical Society. ISBN 9780821851982.
  10. Mikhalkin, Grigory (2004). "Amoebas of algebraic varieties and tropical geometry". In Donaldson, Simon; Eliashberg, Yakov; Gromov, Mikhael (eds.). ज्यामिति के विभिन्न चेहरे. International Mathematical Series. Vol. 3. New York, NY: Kluwer Academic/Plenum Publishers. pp. 257–300. ISBN 978-0-306-48657-9. Zbl 1072.14013.
  11. Katz, Eric (2017), "What is Tropical Geometry?" (PDF), Notices of the American Mathematical Society, 64 (4): 380–382, doi:10.1090/noti1507
  12. Cartwright, Dustin; Payne, Sam (2012), "Connectivity of tropicalizations", Mathematical Research Letters, 19 (5): 1089–1095, arXiv:1204.6589, Bibcode:2012arXiv1204.6589C, doi:10.4310/MRL.2012.v19.n5.a10, S2CID 51767353
  13. Hladký, Jan; Králʼ, Daniel; Norine, Serguei (2013-09-01). "उष्णकटिबंधीय वक्रों पर विभाजकों की श्रेणी". Journal of Combinatorial Theory, Series A (in English). 120 (7): 1521–1538. arXiv:0709.4485. doi:10.1016/j.jcta.2013.05.002. ISSN 0097-3165. S2CID 3045053.
  14. Tabera, Luis Felipe (2005-01-01). "उष्णकटिबंधीय रचनात्मक पप्पस प्रमेय". International Mathematics Research Notices (in English). 2005 (39): 2373–2389. arXiv:math/0409126. doi:10.1155/IMRN.2005.2373. ISSN 1073-7928.
  15. Kerber, Michael; Gathmann, Andreas (2008-05-01). "उष्णकटिबंधीय ज्यामिति में एक रीमैन-रोच प्रमेय". Mathematische Zeitschrift (in English). 259 (1): 217–230. arXiv:math/0612129. doi:10.1007/s00209-007-0222-4. ISSN 1432-1823. S2CID 15239772.
  16. Chan, Melody; Sturmfels, Bernd (2013). "Elliptic curves in honeycomb form". In Brugallé, Erwan (ed.). ट्रॉपिकल ज्योमेट्री के बीजगणितीय और दहनशील पहलू। ट्रॉपिकल ज्योमेट्री पर सीआईईएम वर्कशॉप पर आधारित प्रोसीडिंग्स, इंटरनेशनल सेंटर फॉर मैथमैटिकल मीटिंग्स (सीआईईएम), कास्त्रो उर्डियल्स, स्पेन, 12-16 दिसंबर, 2011. Contemporary Mathematics. Vol. 589. Providence, RI: American Mathematical Society. pp. 87–107. arXiv:1203.2356. Bibcode:2012arXiv1203.2356C. ISBN 978-0-8218-9146-9. Zbl 1312.14142.
  17. "बैंकिंग संकट के दौरान ज्यामिति बचाव में कैसे आई". Department of Economics, University of Oxford. Retrieved 24 March 2014.
  18. Shiozawa, Yoshinori (2015). "अंतर्राष्ट्रीय व्यापार सिद्धांत और विदेशी बीजगणित". Evolutionary and Institutional Economics Review. 12: 177–212. doi:10.1007/s40844-015-0012-3. S2CID 155827635. This is a digest of Y. Shiozawa, "Subtropical Convex Geometry as the Ricardian Theory of International Trade" draft paper.
  19. Zhang, Liwen; Naitzat, Gregory; Lim, Lek-Heng (2018). "गहरे तंत्रिका नेटवर्क की उष्णकटिबंधीय ज्यामिति". Proceedings of the 35th International Conference on Machine Learning. 35th International Conference on Machine Learning. pp. 5824–5832.
  20. Krivulin, Nikolai (2014). "Tropical optimization problems". In Leon A. Petrosyan; David W. K. Yeung; Joseph V. Romanovsky (eds.). अर्थशास्त्र और अनुकूलन में प्रगति: एल. वी. कांटोरोविच की स्मृति को समर्पित एकत्रित वैज्ञानिक अध्ययन. New York: Nova Science Publishers. pp. 195–214. arXiv:1408.0313. ISBN 978-1-63117-073-7.
  21. Sunada, T. (2012). सामयिक क्रिस्टलोग्राफी: असतत ज्यामितीय विश्लेषण की ओर एक दृश्य के साथ. Surveys and Tutorials in the Applied Mathematical Sciences. Vol. 6. Springer Japan. ISBN 9784431541769.
  22. Kalinin, N.; Guzmán-Sáenz, A.; Prieto, Y.; Shkolnikov, M.; Kalinina, V.; Lupercio, E. (2018-08-15). "उष्णकटिबंधीय ज्यामिति के लेंस के माध्यम से स्व-संगठित आलोचना और पैटर्न का उद्भव". Proceedings of the National Academy of Sciences of the United States of America (in English). 115 (35): E8135–E8142. arXiv:1806.09153. Bibcode:2018arXiv180609153K. doi:10.1073/pnas.1805847115. ISSN 0027-8424. PMC 6126730. PMID 30111541.


संदर्भ


अग्रिम पठन


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • टुकड़ावार रैखिक कई गुना
  • लेजेंड्रे परिवर्तन
  • पी-एडिक वैल्यूएशन
  • टुकड़ा-वार रैखिक कार्य
  • एफ़िन परिवर्तन
  • अवतल समारोह
  • बीजगणितीय किस्म
  • समापन (गणित)
  • बीजीय रूप से बंद क्षेत्र
  • भाजक (बीजीय ज्यामिति)
  • नीलामी
  • शुद्ध करनेवाला (तंत्रिका नेटवर्क)

बाहरी संबंध