आवर्ती फलन: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:
{{Redirect2|एक आवधिक|गैर आवधिक}}
{{Redirect2|एक आवधिक|गैर आवधिक}}


एक आवर्ती फलन एक ऐसा फलन है जो नियमित अंतराल पर अपने मूल्यों को दोहराता है। उदाहरण के लिए, <math>2\pi</math> [[कांति]], के अंतरालों पर दोहराए जाने वाले त्रिकोणमितीय फलन आवर्ती फलन होते है। आवर्ती फलन का उपयोग पूरे विज्ञान में दोलनों, तरंगों और अन्य घटनाओं का वर्णन करने के लिए किया जाता है। कोई भी फलन जो आवर्त नहीं है, अनावर्ती कहलाता है।
एक आवर्ती फलन एक ऐसा फलन है जो नियमित अंतराल पर अपने मूल्यों को दोहराता है। उदाहरण के लिए, <math>2\pi</math> [[कांति|रेडियन]], के अंतरालों पर दोहराए जाने वाले त्रिकोणमितीय फलन आवर्ती फलन होते है। आवर्ती फलन का उपयोग पूरे विज्ञान में दोलनों, तरंगों और अन्य घटनाओं का वर्णन करने के लिए किया जाता है। कोई भी फलन जो आवर्त नहीं है, अनावर्ती कहलाता है।




Line 10: Line 10:


== परिभाषा ==
== परिभाषा ==
एएक फलन {{math|<var>f</var>}} को आवर्त कहा जाता है यदि, कुछ अशून्य स्थिरांक {{math|<var>P</var>}}, के लिए, यह स्थिति है कि
एक फलन {{math|<var>f</var>}} को आवर्त कहा जाता है यदि, कुछ अशून्य स्थिरांक {{math|<var>P</var>}}, के लिए, यह स्थिति है कि


:<math>f(x+P) = f(x) </math>
:<math>f(x+P) = f(x) </math>
सभी मानों के लिए  x के प्रभाव क्षेत्र में, एक शून्येतर स्थिरांक {{mvar|P}} जिसके लिए यह स्थिति है, उसे फलन का आवर्त कहते हैं। अगर कम से कम सकारात्मक मौजूद है<ref>For some functions, like a [[constant function]] or the [[Dirichlet function]] (the [[indicator function]] of the [[rational number]]s), a least positive period may not exist (the [[infimum]] of all positive periods {{math|<var>P</var>}} being zero).</ref> इस गुण के साथ स्थिर {{math|<var>P</var>}}, इसे मौलिक अवधि कहा जाता है, आधारी आवर्तक, मूल अवधि, या प्रमुख अवधि भी कहा जाता है। अक्सर, किसी फ़ंक्शन की अवधि का उपयोग इसकी मौलिक अवधि के लिए किया जाता है। {{math|<var>P</var>}} अवधि के साथ एक फलन लंबाई {{math|<var>P</var>}} के अंतराल पर दोहराया जाता है, और इन अंतरालों को कभी-कभी फलन की अवधियों के रूप में भी संदर्भित किया जाता है।
सभी मानों के लिए  x के प्रभाव क्षेत्र में, एक शून्येतर स्थिरांक {{mvar|P}} जिसके लिए यह स्थिति है, उसे फलन का आवर्त कहते हैं। अगर कम से कम सकारात्मक उपस्थिति है<ref>For some functions, like a [[constant function]] or the [[Dirichlet function]] (the [[indicator function]] of the [[rational number]]s), a least positive period may not exist (the [[infimum]] of all positive periods {{math|<var>P</var>}} being zero).</ref> इस गुण के साथ स्थिर {{math|<var>P</var>}}, इसे मौलिक अवधि कहा जाता है, आधारी आवर्तक, मूल अवधि, या प्रमुख अवधि भी कहा जाता है। प्रायः किसी फलन की अवधि का उपयोग इसकी मौलिक अवधि के लिए किया जाता है। {{math|<var>P</var>}} अवधि के साथ एक फलन लंबाई {{math|<var>P</var>}} के अंतराल पर दोहराया जाता है, और इन अंतरालों को कभी-कभी फलन की अवधियों के रूप में भी संदर्भित किया जाता है।


ज्यामितीय रूप से, एक आवर्त फलन को एक ऐसे फलन के रूप में परिभाषित किया जा सकता है जिसका ग्राफ स्थानांतरीय समरूपता प्रदर्शित करता है, यदि {{math|<var>f</var>}} का ग्राफ {{math|<var>P</var>}} की दूरी के द्वारा {{math|<var>x</var>}}-दिशा [[अपरिवर्तनीय (गणित)|अपरिवर्तनीय]] के अधीन अचर रहता है तो फलन {{math|<var>f</var>}} आवर्ती होता है। आवर्तिता की इस परिभाषा को अन्य ज्यामितीय आकृतियों और पतिरूपो तक बढ़ाया जाता है, साथ ही उच्च  विमा के लिए सामान्यीकृत किया जा सकता है, जैसे कि तल के आवर्ती [[चौकोर]]। एक अनुक्रम को [[प्राकृतिक संख्याओं]] पर परिभाषित फ़ंक्शन के रूप में भी देखा जा सकता है, और [[आवर्ती]] [[अनुक्रम]] के लिए इन धारणाओं को तदनुसार परिभाषित किया जाता है।
ज्यामितीय रूप से, एक आवर्त फलन को एक ऐसे फलन के रूप में परिभाषित किया जा सकता है जिसका ग्राफ स्थानांतरीय समरूपता प्रदर्शित करता है, यदि {{math|<var>f</var>}} का ग्राफ {{math|<var>P</var>}} की दूरी के द्वारा {{math|<var>x</var>}}-दिशा [[अपरिवर्तनीय (गणित)|अपरिवर्तनीय]] के अधीन अचर रहता है तो फलन {{math|<var>f</var>}} आवर्ती होता है। आवर्तिता की इस परिभाषा को अन्य ज्यामितीय आकृतियों और पतिरूपो तक बढ़ाया जाता है, साथ ही उच्च  विमा के लिए सामान्यीकृत किया जा सकता है, जैसे कि तल के आवर्ती [[चौकोर]]। एक अनुक्रम को [[प्राकृतिक संख्याओं]] पर परिभाषित फलन के रूप में भी देखा जा सकता है, और [[आवर्ती]] [[अनुक्रम]] के लिए इन धारणाओं को तदनुसार परिभाषित किया जाता है।
== उदाहरण ==
== उदाहरण ==
[[Image:Sine.svg|thumb|right|350px|साइन फ़ंक्शन का एक ग्राफ़, दो पूर्ण अवधियों को दर्शाता है]]
[[Image:Sine.svg|thumb|right|350px|साइन फलन का एक ग्राफ़, दो पूर्ण अवधियों को दर्शाता है]]


=== वास्तविक संख्या उदाहरण ===
=== वास्तविक संख्या उदाहरण ===
Line 48: Line 48:


==== डबल-आवर्ती कार्य ====
==== डबल-आवर्ती कार्य ====
एक फलन जिसका प्रभाव क्षेत्र सम्मिश्र संख्या है, और ये स्थिर न होकर दो समानुपातिक अवधि की होती है। और इस संदर्भ में दीर्घवृत्त फलन ऐसे फलन हैं जो एक दूसरे के वास्तविक गुणकों से मेल नहीं खाते।
एक फलन जिसका प्रभाव क्षेत्र सम्मिश्र संख्या है, और ये स्थिर न होकर दो समानुपातिक अवधि की होती है। और इस संदर्भ में दीर्घवृत्त फलन ऐसे फलन हैं जो एक दूसरे के वास्तविक गुणकों से समानता नहीं रखते।


== गुण ==
== गुण ==
Line 66: Line 66:


=== आवधिक विरुद्ध फलन ===
=== आवधिक विरुद्ध फलन ===
आवर्ती फलन का एक उपसेट आवधिकविरुद्ध फलन का है।{{cn|date=June 2022}} यह एक फलन है <math>f</math> ऐसा है कि <math>f(x+P) = -f(x)</math> सभी के लिए <math> x</math>. उदाहरण के लिए, साइन और कोसाइन फ़ंक्शन हैं <math>\pi</math> आवधिकविरुद्ध और <math>2\pi</math>-आवर्ती है। जबकि एक <math> P</math> आवधिकविरुद्ध फलन है <math> 2P</math>-आवर्ती फलन का [[बातचीत (तर्क)|(तर्क)]] आवश्यक रूप से सत्य नहीं है।
आवर्ती फलन का एक उपसेट आवधिकविरुद्ध फलन का है।{{cn|date=June 2022}} यह एक फलन है <math>f</math> ऐसा है कि <math>f(x+P) = -f(x)</math> सभी के लिए <math> x</math>. उदाहरण के लिए, साइन और कोसाइन फलन हैं <math>\pi</math> आवधिकविरुद्ध और <math>2\pi</math>-आवर्ती है। जबकि एक <math> P</math> आवधिकविरुद्ध फलन है <math> 2P</math>-आवर्ती फलन का [[बातचीत (तर्क)|(तर्क)]] आवश्यक रूप से सत्य नहीं है।


=== बलोच-आवर्ती फलन ===
=== बलोच-आवर्ती फलन ===
Line 89: Line 89:
* लघु त्रय के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 {{frac|6|5}} {{frac|3|2}}] एलसीडी 10 है इसलिए टी = {{frac|10|f}}.
* लघु त्रय के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 {{frac|6|5}} {{frac|3|2}}] एलसीडी 10 है इसलिए टी = {{frac|10|f}}.


यदि कोई भी सामान्य भाजक मौजूद नहीं है, उदाहरण के लिए यदि उपरोक्त तत्वों में से एक अपरिमेय है, तो तरंग आवर्ती नहीं होगी।<ref>{{Cite web |url=https://www.ece.rice.edu/~srs1/files/Lec6.pdf |title=संग्रहीत प्रति|access-date=2018-03-24 |archive-date=2019-08-25 |archive-url=https://web.archive.org/web/20190825162000/https://www.ece.rice.edu/~srs1/files/Lec6.pdf |url-status=dead }}</ref>
यदि कोई भी सामान्य भाजक उपस्थिति नहीं है, उदाहरण के लिए यदि उपरोक्त तत्वों में से एक अपरिमेय है, तो तरंग आवर्ती नहीं होगी।<ref>{{Cite web |url=https://www.ece.rice.edu/~srs1/files/Lec6.pdf |title=संग्रहीत प्रति|access-date=2018-03-24 |archive-date=2019-08-25 |archive-url=https://web.archive.org/web/20190825162000/https://www.ece.rice.edu/~srs1/files/Lec6.pdf |url-status=dead }}</ref>





Revision as of 16:59, 1 December 2022

एक आवर्ती फलन एक ऐसा फलन है जो नियमित अंतराल पर अपने मूल्यों को दोहराता है। उदाहरण के लिए, रेडियन, के अंतरालों पर दोहराए जाने वाले त्रिकोणमितीय फलन आवर्ती फलन होते है। आवर्ती फलन का उपयोग पूरे विज्ञान में दोलनों, तरंगों और अन्य घटनाओं का वर्णन करने के लिए किया जाता है। कोई भी फलन जो आवर्त नहीं है, अनावर्ती कहलाता है।


अवधि के साथ एक आवर्ती कार्य का एक उदाहरण

परिभाषा

एक फलन f को आवर्त कहा जाता है यदि, कुछ अशून्य स्थिरांक P, के लिए, यह स्थिति है कि

सभी मानों के लिए  x के प्रभाव क्षेत्र में, एक शून्येतर स्थिरांक P जिसके लिए यह स्थिति है, उसे फलन का आवर्त कहते हैं। अगर कम से कम सकारात्मक उपस्थिति है[1] इस गुण के साथ स्थिर P, इसे मौलिक अवधि कहा जाता है, आधारी आवर्तक, मूल अवधि, या प्रमुख अवधि भी कहा जाता है। प्रायः किसी फलन की अवधि का उपयोग इसकी मौलिक अवधि के लिए किया जाता है। P अवधि के साथ एक फलन लंबाई P के अंतराल पर दोहराया जाता है, और इन अंतरालों को कभी-कभी फलन की अवधियों के रूप में भी संदर्भित किया जाता है।

ज्यामितीय रूप से, एक आवर्त फलन को एक ऐसे फलन के रूप में परिभाषित किया जा सकता है जिसका ग्राफ स्थानांतरीय समरूपता प्रदर्शित करता है, यदि f का ग्राफ P की दूरी के द्वारा x-दिशा अपरिवर्तनीय के अधीन अचर रहता है तो फलन f आवर्ती होता है। आवर्तिता की इस परिभाषा को अन्य ज्यामितीय आकृतियों और पतिरूपो तक बढ़ाया जाता है, साथ ही उच्च  विमा के लिए सामान्यीकृत किया जा सकता है, जैसे कि तल के आवर्ती चौकोर। एक अनुक्रम को प्राकृतिक संख्याओं पर परिभाषित फलन के रूप में भी देखा जा सकता है, और आवर्ती अनुक्रम के लिए इन धारणाओं को तदनुसार परिभाषित किया जाता है।

उदाहरण

साइन फलन का एक ग्राफ़, दो पूर्ण अवधियों को दर्शाता है

वास्तविक संख्या उदाहरण

साइन फलन अवधि के साथ आवर्ती है, क्योंकि

के सभी मूल्यों के लिए . यह फलन लंबाई के अंतराल पर दोहराता है, दाईं ओर का ग्राफ दर्शाता है।

उदाहरण के लिए घड़ी की सूइयाँ या चन्द्रमा की कलाएँ आवर्ती व्यवहार को दर्शाती हैं।  आवर्ती गति वह गति है जिसमें प्रणाली की स्थितिओं को आवर्ती फलन के रूप में अभिव्यक्त किया जाता है, सभी समान अवधि के साथ।

वास्तविक संख्याओं या पूर्णांकों पर एक फलन के लिए, इसका मतलब है कि किसी फलन का पूरा ग्राफ़ एक विशेष भाग की प्रतियों से बनाया जा सकता है, नियमित अंतराल पर दोहराया जाता है।

आवर्ती फलन का एक सरल उदाहरण फलन है, जो इसके तर्क का आंशिक भाग देता है। इसकी अवधि 1 है। विशेष रूप से,

फलन का ग्राफ आरादंती तरंग है।

एक प्लॉट तथा ,;दोनों फलन अवधि के साथ आवर्ती हैं .

त्रिकोणमितीय फलन साइन और कोसाइन अवधि के साथ सामान्य आवर्ती फलन हैं, दाईं ओर की आकृति दर्शाती है। फूरियर श्रृंखला का विषय इस विवेचन की जांच करता है कि एक यादृच्छिक आवर्ती फलन मिलान अवधियों के साथ त्रिकोणमितीय फलन का योग है।

ऊपर दी गई परिभाषा के अनुसार, कुछ विदेशी फलन, उदाहरण के लिए डिरिचलेट फलन भी आवर्ती होते हैं, डिरिचलेट फलन के सदर्भ में, कोई भी शून्येतर परिमेय संख्या एक आवर्त है।

जटिल संख्या उदाहरण

जटिल विश्लेषण का उपयोग करके हमारे पास सामान्य अवधि का कार्य होता है

चूँकि कोज्या और ज्या दोनों फलन आवर्त के साथ आवर्ती होते हैं , जटिल घातांक कोसाइन और साइन तरंगों से बना है। इसका अर्थ है कि यूलर के सूत्र में यह गुण है कि यदि फलन की अवधि है, तो


डबल-आवर्ती कार्य

एक फलन जिसका प्रभाव क्षेत्र सम्मिश्र संख्या है, और ये स्थिर न होकर दो समानुपातिक अवधि की होती है। और इस संदर्भ में दीर्घवृत्त फलन ऐसे फलन हैं जो एक दूसरे के वास्तविक गुणकों से समानता नहीं रखते।

गुण

आवर्ती फलन कई बार मान ले सकते हैं। अधिक विशेष रूप से, यदि कोई फलन अवधि के साथ आवर्ती है, तो के प्रभाव क्षेत्र में और सभी सकारात्मक पूर्णांक , के लिए होते है।

यदि अवधि के साथ एक फलन है , फिर , जहाँ पे एक गैर-शून्य वास्तविक संख्या है जैसे कि के अधिकार क्षेत्र में है , अवधि के साथ आवर्ती है . उदाहरण के लिए, अवधि है इसलिए अवधि होगी .

कुछ आवर्ती फलन को फूरियर श्रृंखला द्वारा वर्णित किया जाता है। उदाहरण के लिए, L2 फलन का कार्य करता है, कार्लसन के प्रमेय में कहा गया है कि उनके पास लगभग हर जगह अभिसरण फूरियर श्रृंखला एक बिंदुवार (लेबेस्गु) माप है। फूरियर श्रृंखला का उपयोग केवल आवर्ती कार्यों के लिए या सीमित (सघन) अंतराल पर कार्यों के लिए किया जा सकता है। यदि अवधि के साथ एक आवर्ती फलन है, जिसे फूरियर श्रृंखला द्वारा वर्णित किया जाता है, और श्रृंखला के गुणांकों को लंबाई .के अंतराल पर समाकल द्वारा वर्णित किया जा सकता है।

कोई भी फलन जिसमें समान अवधि के साथ केवल आवर्ती फलन होते हैं, और आवर्ती भी अवधि के बराबर या छोटे होते है।

  • जोड़, घटाव, गुणा और आवर्ती फलन का विभाजन है।
  • एक शक्ति या एक आवर्ती फलन की सक्रिय सहायता करना बशर्ते कि यह सभी के लिए परिभाषित हो।

सामान्यीकरण

आवधिक विरुद्ध फलन

आवर्ती फलन का एक उपसेट आवधिकविरुद्ध फलन का है।[citation needed] यह एक फलन है ऐसा है कि सभी के लिए . उदाहरण के लिए, साइन और कोसाइन फलन हैं आवधिकविरुद्ध और -आवर्ती है। जबकि एक आवधिकविरुद्ध फलन है -आवर्ती फलन का (तर्क) आवश्यक रूप से सत्य नहीं है।

बलोच-आवर्ती फलन

बलोच के प्रमेय और फ्लॉकेट सिद्धांत के संदर्भ में एक और सामान्यीकरण सामने आता है, जो विभिन्न आवर्ती अंतर समीकरणों के समाधान को नियंत्रित करता है। इस संदर्भ में, किसी एक विमीय में विशिष्ट रूप से प्रपत्र का एक कार्य होता है।

जहाँ पे एक वास्तविक या जटिल संख्या है (बलोच तरंग सदिश या फ्लॉकेट घातांक)। इस संदर्भ में इस प्ररूप के फलन को कभी-कभी बलोच आवर्ती कहा जाता है। एक आवधिक फलन की विशेष स्थिति है, और एक आवधिकविरुद्ध फलन विशेष स्थिति है, जब भी तर्कसंगत है, फलन आवर्ती है।

डोमेन के रूप में भाग स्थान

संकेत प्रक्रमण में आप अभ्यास का सामना करते हैं, फूरियर श्रृंखला आवर्ती फलन का प्रतिनिधित्व करती है और फूरियर श्रृंखला घुमाव प्रमेयों को संतुष्ट करती है। अर्थात फूरियर श्रृंखला का घुमाव, प्रस्तुत आवर्ती फलन के गुणन से मेल खाती है जो इसके विपरीत है, लेकिन आवर्ती फलन को सामान्य परिभाषा के साथ नहीं जोड़ा जा सकता है, चूंकि सम्मिलित समाकल अलग हो जाते हैं। एक संभावित तरीका एक सीमित लेकिन आवर्ती डोमेन पर आवर्ती फलन को परिभाषित करता है। इसके लिए आप भागफल स्थान (रैखिक बीजगणित) की धारणा का उपयोग कर सकते हैं।

.

यदि प्रत्येक तत्व में समान भिन्नात्मक भाग साझा करने वाली वास्तविक संख्याओं का एक तुल्यता वर्ग है। इस प्रकार एक फलन पसंद है 1-आवर्ती फलन का प्रतिनिधित्व करते है।

अवधि की गणना

परतदार आवृत्तियों से युक्त एक वास्तविक तरंग पर विचार करें, जो एक सेट में मौलिक आवृत्तियों के अनुपात के रूप में व्यक्त किया जाता है, f: F = 1⁄f [f1 f2 f3 ... fN जहां सभी गैर-शून्य तत्व ≥1 सेट का कम से कम एक अवयव 1 है। अवधि T ज्ञात करने के लिए पहले सेट में सभी तत्वों का लघुत्तम उभयनिष्ठ भाजक ज्ञात करते है। तो अवधि को T = LCD⁄f. के रूप में पाया जा सकता है विचार करें कि एक साधारण साइन वक्र के लिए, T = 1f. इसलिए, एलसीडी को आवर्ती गुणक के रूप में देखा जा सकता है।

  • पश्चिमी प्रमुख पैमाने के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 98 54 43 32 53 158] एलसीडी 24 है इसलिए टी = 24f.
  • एक प्रमुख त्रय के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 54 32] एलसीडी 4 है इसलिए टी = 4f.
  • लघु त्रय के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 65 32] एलसीडी 10 है इसलिए टी = 10f.

यदि कोई भी सामान्य भाजक उपस्थिति नहीं है, उदाहरण के लिए यदि उपरोक्त तत्वों में से एक अपरिमेय है, तो तरंग आवर्ती नहीं होगी।[2]


यह भी देखें

  • लगभग आवधिक फलन
  • आयाम
  • निरंतर तरंग
  • निश्चित गतिविधि
  • डबल फूरियर क्षेत्र विधि
  • डबल आवर्ती फलान
  • (फूरियर रूपांतरण) समान दूरी वाले डेटा में आवर्तिता की गणना के लिए
  • आवृत्ति
  • आवृत्ति स्पेक्ट्रम
  • कम से कम वर्गों असमान स्थान वाले आंकड़े में आवर्तिता की गणना के लिए वर्णक्रमीय विश्लेषण
  • आवर्ती अनुक्रम
  • आवर्ती योग
  • आवर्ती यात्रा तरंग
  • अर्ध आवर्ती फलन
  • मौसमी
  • धर्मनिरपेक्ष भिन्नता
  • तरंग लंबाई
  • आवर्ती कार्यों की सूची


संदर्भ

  1. For some functions, like a constant function or the Dirichlet function (the indicator function of the rational numbers), a least positive period may not exist (the infimum of all positive periods P being zero).
  2. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2019-08-25. Retrieved 2018-03-24.
  • Ekeland, Ivar (1990). "One". Convexity methods in Hamiltonian mechanics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Vol. 19. Berlin: Springer-Verlag. pp. x+247. ISBN 3-540-50613-6. MR 1051888.


बाहरी संबंध