आवर्ती फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 36: Line 36:
[[Image:Sine cosine plot.svg|300px|right|thumb|का एक प्लॉट <math>f(x) = \sin(x)</math> तथा <math>g(x) = \cos(x)</math>; दोनों कार्य अवधि के साथ आवर्ती  हैं <math>2\pi</math>.]]त्रिकोणमितीय फलन साइन और कोसाइन अवधि के साथ सामान्य आवर्ती फलन हैं, <math>2\pi</math> दाईं ओर की आकृति दर्शाती है। फूरियर श्रृंखला का विषय इस विवेचन की जांच करता है कि एक यादृच्छिक आवर्ती फलन मिलान अवधियों के साथ त्रिकोणमितीय फलन का योग है।
[[Image:Sine cosine plot.svg|300px|right|thumb|का एक प्लॉट <math>f(x) = \sin(x)</math> तथा <math>g(x) = \cos(x)</math>; दोनों कार्य अवधि के साथ आवर्ती  हैं <math>2\pi</math>.]]त्रिकोणमितीय फलन साइन और कोसाइन अवधि के साथ सामान्य आवर्ती फलन हैं, <math>2\pi</math> दाईं ओर की आकृति दर्शाती है। फूरियर श्रृंखला का विषय इस विवेचन की जांच करता है कि एक यादृच्छिक आवर्ती फलन मिलान अवधियों के साथ त्रिकोणमितीय फलन का योग है।


ऊपर दी गई परिभाषा के अनुसार, कुछ विदेशी फलन, उदाहरण के लिए [[डिरिचलेट समारोह]] भी आवर्ती होते हैं; डिरिचलेट फलन के मामले में, कोई भी शून्येतर परिमेय संख्या एक आवर्त है।
ऊपर दी गई परिभाषा के अनुसार, कुछ विदेशी फलन, उदाहरण के लिए [[डिरिचलेट समारोह|डिरिचलेट फलन]] भी आवर्ती होते हैं, डिरिचलेट फलन के सदर्भ में, कोई भी शून्येतर परिमेय संख्या एक आवर्त है।


=== जटिल संख्या उदाहरण ===
=== जटिल संख्या उदाहरण ===
[[जटिल विश्लेषण]] का उपयोग करके हमारे पास सामान्य अवधि का कार्य है:
[[जटिल विश्लेषण]] का उपयोग करके हमारे पास सामान्य अवधि का कार्य होता है


:<math>e^{ikx} = \cos kx + i\,\sin kx.</math>
:<math>e^{ikx} = \cos kx + i\,\sin kx.</math>
चूँकि कोज्या और ज्या दोनों फलन आवर्त के साथ आवर्ती होते हैं <math>2\pi</math>, जटिल घातांक कोसाइन और साइन तरंगों से बना है। इसका अर्थ है कि यूलर के सूत्र (ऊपर) में यह गुण है कि यदि <math>L</math> समारोह की अवधि है, तो
चूँकि कोज्या और ज्या दोनों फलन आवर्त के साथ आवर्ती होते हैं <math>2\pi</math>, जटिल घातांक कोसाइन और साइन तरंगों से बना है। इसका अर्थ है कि यूलर के सूत्र में यह गुण है कि यदि <math>L</math> फलन की अवधि है, तो


:<math>L = \frac{2\pi}{k}.</math>
:<math>L = \frac{2\pi}{k}.</math>
Line 48: Line 48:


==== डबल-आवर्ती  कार्य ====
==== डबल-आवर्ती  कार्य ====
एक फ़ंक्शन जिसका डोमेन सम्मिश्र संख्या है, स्थिर न होकर दो समानुपातिक अवधि हो सकती है। अण्डाकार कार्य ऐसे कार्य हैं। (इस संदर्भ में असंगत का मतलब एक दूसरे के वास्तविक गुणक नहीं हैं।)
एक फलन जिसका प्रभाव क्षेत्र सम्मिश्र संख्या है, और ये स्थिर न होकर दो समानुपातिक अवधि की होती है। और इस संदर्भ में दीर्घवृत्त फलन ऐसे फलन हैं जो एक दूसरे के वास्तविक गुणकों से मेल नहीं खाते।


== गुण ==
== गुण ==
<!-- '''periodicity with period zero''' ''P'' ''' greater than zero if !-->
<!-- '''periodicity with period zero''' ''P'' ''' greater than zero if !-->
आवर्ती कार्य कई बार मान ले सकते हैं। अधिक विशेष रूप से, यदि कोई फ़ंक्शन <math>f</math> अवधि के साथ आवर्ती है <math>P</math>, तो सभी के लिए <math>x</math> के अधिकार क्षेत्र में <math>f</math> और सभी सकारात्मक पूर्णांक <math>n</math>,
आवर्ती फलन कई बार मान ले सकते हैं। अधिक विशेष रूप से, यदि कोई फलन <math>f</math> अवधि के साथ आवर्ती <math>P</math> है, तो <math>f</math> के प्रभाव क्षेत्र में <math>x</math> और सभी सकारात्मक पूर्णांक <math>n</math>, के लिए होते है।


: <math>f(x + nP) = f(x)</math>
: <math>f(x + nP) = f(x)</math>
यदि <math>f(x)</math> अवधि के साथ एक कार्य है <math>P</math>, फिर <math>f(ax)</math>, कहाँ पे <math>a</math> एक गैर-शून्य वास्तविक संख्या है जैसे कि <math>ax</math> के अधिकार क्षेत्र में है <math>f</math>, अवधि के साथ आवर्ती है <math display="inline">\frac{P}{a}</math>. उदाहरण के लिए, <math>f(x) = \sin(x)</math> अवधि है <math>2 \pi</math> इसलिए <math>\sin(5x)</math> अवधि होगी <math display="inline">\frac{2\pi}{5}</math>.
यदि <math>f(x)</math> अवधि के साथ एक फलन है <math>P</math>, फिर <math>f(ax)</math>, जहाँ पे <math>a</math> एक गैर-शून्य वास्तविक संख्या है जैसे कि <math>ax</math> के अधिकार क्षेत्र में है <math>f</math>, अवधि के साथ आवर्ती है <math display="inline">\frac{P}{a}</math>. उदाहरण के लिए, <math>f(x) = \sin(x)</math> अवधि है <math>2 \pi</math> इसलिए <math>\sin(5x)</math> अवधि होगी <math display="inline">\frac{2\pi}{5}</math>.


कुछ आवर्ती कार्यों को फूरियर श्रृंखला द्वारा वर्णित किया जा सकता है। उदाहरण के लिए, एलपी स्पेस | एल के लिए<sup>2</sup> कार्य करता है, कार्लसन के प्रमेय में कहा गया है कि उनके पास [[लगभग हर जगह अभिसरण]] फूरियर श्रृंखला एक [[बिंदुवार]] (लेबेस्गु माप) है। फूरियर श्रृंखला का उपयोग केवल आवर्ती  कार्यों के लिए या सीमित (कॉम्पैक्ट) अंतराल पर कार्यों के लिए किया जा सकता है। यदि <math>f</math> अवधि के साथ एक आवर्ती कार्य है <math>P</math> जिसे फूरियर श्रृंखला द्वारा वर्णित किया जा सकता है, श्रृंखला के गुणांकों को लंबाई के अंतराल पर एक अभिन्न द्वारा वर्णित किया जा सकता है <math>P</math>.
कुछ आवर्ती फलन को फूरियर श्रृंखला द्वारा वर्णित किया जाता है। उदाहरण के लिए, ''L''<sup>2</sup> फलन का कार्य करता है, कार्लसन के प्रमेय में कहा गया है कि उनके पास [[लगभग हर जगह अभिसरण]] फूरियर श्रृंखला एक [[बिंदुवार]] (लेबेस्गु) माप है। फूरियर श्रृंखला का उपयोग केवल आवर्ती  कार्यों के लिए या सीमित (सघन) अंतराल पर कार्यों के लिए किया जा सकता है। यदि <math>f</math> अवधि के साथ एक आवर्ती फलन <math>P</math> है, जिसे फूरियर श्रृंखला द्वारा वर्णित किया जाता है, और श्रृंखला के गुणांकों को लंबाई <math>P</math>.के अंतराल पर समाकल द्वारा वर्णित किया जा सकता है।


कोई भी कार्य जिसमें समान अवधि के साथ केवल आवर्ती कार्य होते हैं, वह भी आवर्ती  होता है (अवधि बराबर या छोटी के साथ), जिसमें शामिल हैं:
कोई भी फलन जिसमें समान अवधि के साथ केवल आवर्ती फलन होते हैं, और आवर्ती भी अवधि के बराबर या छोटे होते है।
* जोड़, घटाव, गुणा और आवर्ती कार्यों का विभाजन, और
* जोड़, घटाव, गुणा और आवर्ती फलन का विभाजन है।
* किसी आवर्ती फलन की शक्ति या जड़ लेना (बशर्ते यह सभी के लिए परिभाषित हो <math>x</math>).
*एक शक्ति या एक आवर्ती फलन की सक्रिय सहायता करना बशर्ते कि यह सभी <math>x</math> के लिए परिभाषित हो।


== सामान्यीकरण ==
== सामान्यीकरण ==


=== एंटीपीरियोडिक फ़ंक्शन ===
=== आवधिकविरुद्ध फलन ===
आवर्ती कार्यों का एक सबसेट एंटीपेरियोडिक कार्यों का है।{{cn|date=June 2022}} यह एक समारोह है <math>f</math> ऐसा है कि <math>f(x+P) = -f(x)</math> सभी के लिए <math> x</math>. उदाहरण के लिए, साइन और कोसाइन फ़ंक्शन हैं <math>\pi</math>-एंटीपीरियोडिक और <math>2\pi</math>-आवर्ती । जबकि एक <math> P</math>-एंटीपीरियोडिक फ़ंक्शन एक है <math> 2P</math>-आवर्ती कार्य, [[बातचीत (तर्क)]] जरूरी सच नहीं है।
आवर्ती फलन का एक उपसेट आवधिकविरुद्ध फलन का है।{{cn|date=June 2022}} यह एक फलन है <math>f</math> ऐसा है कि <math>f(x+P) = -f(x)</math> सभी के लिए <math> x</math>. उदाहरण के लिए, साइन और कोसाइन फ़ंक्शन हैं <math>\pi</math> आवधिकविरुद्ध और <math>2\pi</math>-आवर्ती। जबकि एक <math> P</math> आवधिकविरुद्ध फलन है <math> 2P</math>-आवर्ती फलन का [[बातचीत (तर्क)|(तर्क)]] आवश्यक रूप से सत्य नहीं है।


=== बलोच-आवर्ती कार्य ===
=== बलोच-आवर्ती फलन ===
बलोच के प्रमेय और [[फ्लॉकेट सिद्धांत]] के संदर्भ में एक और सामान्यीकरण प्रकट होता है, जो विभिन्न आवर्ती  अंतर समीकरणों के समाधान को नियंत्रित करता है। इस संदर्भ में, समाधान (एक आयाम में) विशिष्ट रूप से प्रपत्र का एक कार्य है
बलोच के प्रमेय और [[फ्लॉकेट सिद्धांत]] के संदर्भ में एक और सामान्यीकरण सामने आता है, जो विभिन्न आवर्ती  अंतर समीकरणों के समाधान को नियंत्रित करता है। इस संदर्भ में, किसी एक विमीय में विशिष्ट रूप से प्रपत्र का एक कार्य होता है।
:<math>f(x+P) = e^{ikP} f(x) ~,</math>
:<math>f(x+P) = e^{ikP} f(x) ~,</math>
कहाँ पे <math>k</math> एक वास्तविक या जटिल संख्या है (बलोच वेववेक्टर या फ्लॉकेट एक्सपोनेंट)। इस रूप के कार्यों को इस संदर्भ में कभी-कभी 'ब्लोच-आवर्ती ' कहा जाता है। एक आवर्ती कार्य विशेष मामला है <math>k=0</math>, और एक एंटीपीरियोडिक फ़ंक्शन विशेष मामला है <math>k=\pi/P</math>. जब भी <math>k P/ \pi</math> तर्कसंगत है, कार्य भी आवर्ती है।
जहाँ पे <math>k</math> एक वास्तविक या जटिल संख्या है (बलोच तरंग सदिश या फ्लॉकेट घातांक)। इस संदर्भ में इस प्ररूप के फलन को कभी-कभी बलोच आवर्ती कहा जाता है। एक आवधिक फलन की विशेष स्थिति <math>k=0</math> है, और एक आवधिकविरुद्ध फलन विशेष स्थिति <math>k=\pi/P</math> है, जब भी <math>k P/ \pi</math> तर्कसंगत है, फलन आवर्ती है।


=== डोमेन के रूप में भाग स्थान ===
=== डोमेन के रूप में भाग स्थान ===

Revision as of 14:09, 1 December 2022

एक आवर्ती फलन एक ऐसा फलन है जो नियमित अंतराल पर अपने मूल्यों को दोहराता है। उदाहरण के लिए, कांति, के अंतरालों पर दोहराए जाने वाले त्रिकोणमितीय फलन आवर्ती फलन होते है। आवर्ती फलन का उपयोग पूरे विज्ञान में दोलनों, तरंगों और अन्य घटनाओं का वर्णन करने के लिए किया जाता है। कोई भी फलन जो आवर्त नहीं है, अनावर्ती कहलाता है।


अवधि के साथ एक आवर्ती कार्य का एक उदाहरण

परिभाषा

एएक फलन f को आवर्त कहा जाता है यदि, कुछ अशून्य स्थिरांक P, के लिए, यह स्थिति है कि

सभी मानों के लिए  x के प्रभाव क्षेत्र में, एक शून्येतर स्थिरांक P जिसके लिए यह स्थिति है, उसे फलन का आवर्त कहते हैं। अगर कम से कम सकारात्मक मौजूद है[1] इस गुण के साथ स्थिर P, इसे मौलिक अवधि कहा जाता है, आधारी आवर्तक, मूल अवधि, या प्रमुख अवधि भी कहा जाता है। अक्सर, किसी फ़ंक्शन की अवधि का उपयोग इसकी मौलिक अवधि के लिए किया जाता है। P अवधि के साथ एक फलन लंबाई P के अंतराल पर दोहराया जाता है, और इन अंतरालों को कभी-कभी फलन की अवधियों के रूप में भी संदर्भित किया जाता है।

ज्यामितीय रूप से, एक आवर्त फलन को एक ऐसे फलन के रूप में परिभाषित किया जा सकता है जिसका ग्राफ स्थानांतरीय समरूपता प्रदर्शित करता है, यदि f का ग्राफ P की दूरी के द्वारा x-दिशा अपरिवर्तनीय के अधीन अचर रहता है तो फलन f आवर्ती होता है। आवर्तिता की इस परिभाषा को अन्य ज्यामितीय आकृतियों और पतिरूपो तक बढ़ाया जाता है, साथ ही उच्च  विमा के लिए सामान्यीकृत किया जा सकता है, जैसे कि तल के आवर्ती चौकोर। एक अनुक्रम को प्राकृतिक संख्याओं पर परिभाषित फ़ंक्शन के रूप में भी देखा जा सकता है, और आवर्ती अनुक्रम के लिए इन धारणाओं को तदनुसार परिभाषित किया जाता है।

उदाहरण

साइन फ़ंक्शन का एक ग्राफ़, दो पूर्ण अवधियों को दर्शाता है

वास्तविक संख्या उदाहरण

साइन फलन अवधि के साथ आवर्ती है, क्योंकि

के सभी मूल्यों के लिए . यह फलन लंबाई के अंतराल पर दोहराता है, दाईं ओर का ग्राफ दर्शाता है।

उदाहरण के लिए घड़ी की सूइयाँ या चन्द्रमा की कलाएँ आवर्ती व्यवहार को दर्शाती हैं।  आवर्ती गति वह गति है जिसमें प्रणाली की स्थितिओं को आवर्ती फलन के रूप में अभिव्यक्त किया जाता है, सभी समान अवधि के साथ।

वास्तविक संख्याओं या पूर्णांकों पर एक फलन के लिए, इसका मतलब है कि किसी फलन का पूरा ग्राफ़ एक विशेष भाग की प्रतियों से बनाया जा सकता है, नियमित अंतराल पर दोहराया जाता है।

आवर्ती फलन का एक सरल उदाहरण फलन है, जो इसके तर्क का आंशिक भाग देता है। इसकी अवधि 1 है। विशेष रूप से,

फलन का ग्राफ आरादंती तरंग है।

का एक प्लॉट तथा ; दोनों कार्य अवधि के साथ आवर्ती हैं .

त्रिकोणमितीय फलन साइन और कोसाइन अवधि के साथ सामान्य आवर्ती फलन हैं, दाईं ओर की आकृति दर्शाती है। फूरियर श्रृंखला का विषय इस विवेचन की जांच करता है कि एक यादृच्छिक आवर्ती फलन मिलान अवधियों के साथ त्रिकोणमितीय फलन का योग है।

ऊपर दी गई परिभाषा के अनुसार, कुछ विदेशी फलन, उदाहरण के लिए डिरिचलेट फलन भी आवर्ती होते हैं, डिरिचलेट फलन के सदर्भ में, कोई भी शून्येतर परिमेय संख्या एक आवर्त है।

जटिल संख्या उदाहरण

जटिल विश्लेषण का उपयोग करके हमारे पास सामान्य अवधि का कार्य होता है

चूँकि कोज्या और ज्या दोनों फलन आवर्त के साथ आवर्ती होते हैं , जटिल घातांक कोसाइन और साइन तरंगों से बना है। इसका अर्थ है कि यूलर के सूत्र में यह गुण है कि यदि फलन की अवधि है, तो


डबल-आवर्ती कार्य

एक फलन जिसका प्रभाव क्षेत्र सम्मिश्र संख्या है, और ये स्थिर न होकर दो समानुपातिक अवधि की होती है। और इस संदर्भ में दीर्घवृत्त फलन ऐसे फलन हैं जो एक दूसरे के वास्तविक गुणकों से मेल नहीं खाते।

गुण

आवर्ती फलन कई बार मान ले सकते हैं। अधिक विशेष रूप से, यदि कोई फलन अवधि के साथ आवर्ती है, तो के प्रभाव क्षेत्र में और सभी सकारात्मक पूर्णांक , के लिए होते है।

यदि अवधि के साथ एक फलन है , फिर , जहाँ पे एक गैर-शून्य वास्तविक संख्या है जैसे कि के अधिकार क्षेत्र में है , अवधि के साथ आवर्ती है . उदाहरण के लिए, अवधि है इसलिए अवधि होगी .

कुछ आवर्ती फलन को फूरियर श्रृंखला द्वारा वर्णित किया जाता है। उदाहरण के लिए, L2 फलन का कार्य करता है, कार्लसन के प्रमेय में कहा गया है कि उनके पास लगभग हर जगह अभिसरण फूरियर श्रृंखला एक बिंदुवार (लेबेस्गु) माप है। फूरियर श्रृंखला का उपयोग केवल आवर्ती कार्यों के लिए या सीमित (सघन) अंतराल पर कार्यों के लिए किया जा सकता है। यदि अवधि के साथ एक आवर्ती फलन है, जिसे फूरियर श्रृंखला द्वारा वर्णित किया जाता है, और श्रृंखला के गुणांकों को लंबाई .के अंतराल पर समाकल द्वारा वर्णित किया जा सकता है।

कोई भी फलन जिसमें समान अवधि के साथ केवल आवर्ती फलन होते हैं, और आवर्ती भी अवधि के बराबर या छोटे होते है।

  • जोड़, घटाव, गुणा और आवर्ती फलन का विभाजन है।
  • एक शक्ति या एक आवर्ती फलन की सक्रिय सहायता करना बशर्ते कि यह सभी के लिए परिभाषित हो।

सामान्यीकरण

आवधिकविरुद्ध फलन

आवर्ती फलन का एक उपसेट आवधिकविरुद्ध फलन का है।[citation needed] यह एक फलन है ऐसा है कि सभी के लिए . उदाहरण के लिए, साइन और कोसाइन फ़ंक्शन हैं आवधिकविरुद्ध और -आवर्ती। जबकि एक आवधिकविरुद्ध फलन है -आवर्ती फलन का (तर्क) आवश्यक रूप से सत्य नहीं है।

बलोच-आवर्ती फलन

बलोच के प्रमेय और फ्लॉकेट सिद्धांत के संदर्भ में एक और सामान्यीकरण सामने आता है, जो विभिन्न आवर्ती अंतर समीकरणों के समाधान को नियंत्रित करता है। इस संदर्भ में, किसी एक विमीय में विशिष्ट रूप से प्रपत्र का एक कार्य होता है।

जहाँ पे एक वास्तविक या जटिल संख्या है (बलोच तरंग सदिश या फ्लॉकेट घातांक)। इस संदर्भ में इस प्ररूप के फलन को कभी-कभी बलोच आवर्ती कहा जाता है। एक आवधिक फलन की विशेष स्थिति है, और एक आवधिकविरुद्ध फलन विशेष स्थिति है, जब भी तर्कसंगत है, फलन आवर्ती है।

डोमेन के रूप में भाग स्थान

संकेत का प्रक्रमण में आप समस्या का सामना करते हैं, कि फूरियर श्रृंखला आवर्ती कार्यों का प्रतिनिधित्व करती है और फूरियर श्रृंखला घुमाव प्रमेयों को संतुष्ट करती है (अर्थात फूरियर श्रृंखला का कनवल्शन, प्रस्तुत आवर्ती कार्य के गुणन से मेल खाती है और इसके विपरीत), लेकिन आवर्ती कार्यों को सामान्य परिभाषा के साथ नहीं जोड़ा जा सकता है, चूंकि शामिल इंटीग्रल अलग हो जाते हैं। एक संभावित तरीका एक सीमित लेकिन आवर्ती डोमेन पर आवर्ती कार्य को परिभाषित करना है। इसके लिए आप भागफल स्थान (रैखिक बीजगणित) की धारणा का उपयोग कर सकते हैं:

.

यानी प्रत्येक तत्व में समान भिन्नात्मक भाग साझा करने वाली वास्तविक संख्याओं का एक तुल्यता वर्ग है। इस प्रकार एक समारोह पसंद है 1-आवर्ती फलन का निरूपण है।

अवधि की गणना

आरोपित आवृत्तियों से मिलकर एक वास्तविक तरंग पर विचार करें, एक सेट में मौलिक आवृत्ति के अनुपात के रूप में व्यक्त किया गया है, f: F = 1f [एफ1 f2 f3 ... एफN] जहां सभी गैर-शून्य तत्व ≥1 और सेट के कम से कम एक तत्व 1 है। अवधि, टी खोजने के लिए, पहले सेट में सभी तत्वों का कम से कम सामान्य भाजक खोजें। अवधि को टी = के रूप में पाया जा सकता है LCDf. विचार करें कि एक साधारण साइनसॉइड के लिए, T = 1f. इसलिए, एलसीडी को आवर्ती ता गुणक के रूप में देखा जा सकता है।

  • पश्चिमी प्रमुख पैमाने के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 98 54 43 32 53 158] एलसीडी 24 है इसलिए टी = 24f.
  • एक प्रमुख त्रय के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 54 32] एलसीडी 4 है इसलिए टी = 4f.
  • लघु त्रय के सभी नोटों का प्रतिनिधित्व करने वाले सेट के लिए: [1 65 32] एलसीडी 10 है इसलिए टी = 10f.

यदि कोई भी सामान्य भाजक मौजूद नहीं है, उदाहरण के लिए यदि उपरोक्त तत्वों में से एक अपरिमेय है, तो तरंग आवर्ती नहीं होगी।[2]


यह भी देखें


संदर्भ

  1. For some functions, like a constant function or the Dirichlet function (the indicator function of the rational numbers), a least positive period may not exist (the infimum of all positive periods P being zero).
  2. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2019-08-25. Retrieved 2018-03-24.
  • Ekeland, Ivar (1990). "One". Convexity methods in Hamiltonian mechanics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Vol. 19. Berlin: Springer-Verlag. pp. x+247. ISBN 3-540-50613-6. MR 1051888.


बाहरी संबंध