ऑपरेशन (गणित)

From Vigyanwiki
Revision as of 15:19, 18 February 2023 by alpha>Vaishaligautam
प्राथमिक अंकगणितीय संचालन:
  • +, प्लस (अतिरिक्त)
  • −, ऋण (घटाव)
  • ÷, ओबेलस (विभाजन)
  • ×, गुणा (गुणन)

गणित में, ऑपरेशन एक ऐसा फलन है जो शून्य या अधिक इनपुट मान (जिन्हें "संचालन" या "तर्क" भी कहा जाता है) को एक अच्छी तरह से परिभाषित आउटपुट मान पर ले जाता है। ऑपरेंड की संख्या ऑपरेशन की एरिटी है।

सबसे अधिक अध्ययन किए जाने वाले ऑपरेशन बाइनरी ऑपरेशन हैं (यानी, एरिटी 2 के ऑपरेशंस), जैसे कि जोड़ और गुणा, और यूनरी ऑपरेशंस (यानी, 1 के ऑपरेशंस), जैसे योगज प्रतिलोम और गुणात्मक प्रतिलोम। शून्य संक्रिया, या अशक्त संक्रिया, एक नियतांक (गणित) है।[1][2] मिश्रित उत्पाद arity 3 के संचालन का एक उदाहरण है, जिसे त्रिगुट संक्रिया भी कहा जाता है।

आम तौर पर, परिमित होने के लिए arity लिया जाता है। हालांकि, असीमित संचालन को कभी-कभी माना जाता है,[1] जिस मामले में परिमित arity के "सामान्य" संक्रियाओं को परिमित संक्रियाएँ कहा जाता है।

एक आंशिक ऑपरेशन को एक ऑपरेशन के समान ही परिभाषित किया जाता है, लेकिन एक फ़ंक्शन के स्थान पर एक आंशिक फ़ंक्शन के साथ परिभाषित किया जाता है।

ऑपरेशन के प्रकार

एक बाइनरी ऑपरेशन में दो तर्क होते हैं और , और परिणाम देता है .

ऑपरेशन के दो सामान्य प्रकार हैं: यूनरी ऑपरेशन और बाइनरी ऑपरेशन। एकात्मक संक्रियाओं में केवल एक मान शामिल होता है, जैसे कि निषेध और त्रिकोणमितीय कार्य।[3] दूसरी ओर, द्विआधारी संक्रियाएं दो मान लेती हैं, और इसमें जोड़, घटाव, गुणा, भाग और घातांक शामिल होते हैं।[4]

संक्रियाओं में संख्याओं के अलावा अन्य गणितीय वस्तुएँ शामिल हो सकती हैं। तार्किक मान सही और गलत तर्क संचालन का उपयोग करके जोड़ा जा सकता है, जैसे कि और, या, और नहीं। सदिशों को जोड़ा और घटाया जा सकता है।[5] फ़ंक्शन रचना ऑपरेशन का उपयोग करके घुमावों को जोड़ा जा सकता है, पहला घुमाव और फिर दूसरा। सेट पर संचालन में बाइनरी ऑपरेशंस यूनियन और चौराहे और पूरकता के यूनरी ऑपरेशन शामिल हैं।[6][7][8] कार्यों की संक्रियाओं में रचना और कनवल्शन शामिल हैं।[9][10]

संक्रियाओं को इसके डोमेन के हर संभावित मूल्य के लिए परिभाषित नहीं किया जा सकता है। उदाहरण के लिए, वास्तविक संख्याओं में शून्य से विभाजित नहीं किया जा सकता है[11] या ऋणात्मक संख्याओं का वर्गमूल नहीं लिया जा सकता है। वे मान जिनके लिए किसी संक्रिया को परिभाषित किया जाता है, एक समुच्चय होता है जिसे उसकी परिभाषा का डोमेन या सक्रिय डोमेन कहा जाता है। जिस सेट में उत्पादित मूल्य होते हैं उसे कोडोमेन कहा जाता है, लेकिन ऑपरेशन द्वारा प्राप्त वास्तविक मूल्यों का सेट इसकी परिभाषा, सक्रिय कोडोमेन, छवि या श्रेणी का कोडोमेन है।[12] उदाहरण के लिए, वास्तविक संख्या में, वर्गाकार संक्रिया केवल गैर-ऋणात्मक संख्याएँ उत्पन्न करती है; कोडोमेन वास्तविक संख्याओं का समुच्चय है, लेकिन श्रेणी गैर-ऋणात्मक संख्या है।

संक्रियाओं में असमान वस्तुएं शामिल हो सकती हैं: एक सदिश को एक अदिश (गणित) से गुणा करके दूसरा सदिश बनाया जा सकता है (एक ऑपरेशन जिसे स्केलर गुणन के रूप में जाना जाता है),[13] और दो सदिशों पर आंतरिक उत्पाद संचालन एक मात्रा उत्पन्न करता है जो स्केलर है।[14][15] एक ऑपरेशन में कुछ गुण हो सकते हैं या नहीं भी हो सकते हैं, उदाहरण के लिए यह साहचर्य, क्रमविनिमेय, एंटीकोम्यूटेटिव, आइडेम्पोटेंट, और इसी तरह हो सकता है।

संयुक्त मूल्यों को ऑपरेंड, तर्क या इनपुट कहा जाता है, और उत्पादित मूल्य को मूल्य, परिणाम या आउटपुट कहा जाता है। संचालन में कम या दो से अधिक इनपुट हो सकते हैं (शून्य इनपुट और असीम रूप से कई इनपुट[1] के मामले सहित)।

एक ऑपरेटर एक ऑपरेशन के समान है जिसमें यह प्रतीक या ऑपरेशन को निरूपित करने के लिए उपयोग की जाने वाली प्रक्रिया को संदर्भित करता है, इसलिए उनका दृष्टिकोण अलग है। उदाहरण के लिए, जब आप ऑपरेंड और परिणाम पर ध्यान केंद्रित करते हैं, तो अक्सर "जोड़ने का संचालन" या "जोड़ने का संचालन" के बारे में बात करता है, लेकिन प्रक्रिया पर ध्यान केंद्रित करते समय "अतिरिक्त ऑपरेटर" (शायद ही कभी "जोड़ने का ऑपरेटर") पर स्विच करता है , या अधिक प्रतीकात्मक दृष्टिकोण से, फलन +: X × XX.

परिभाषा

एक n-एरी ऑपरेशन ω से X1, …, Xn से Y एक फ़ंक्शन ω: X1 × … × Xn → Y है। सेट X1 × … × Xn को ऑपरेशन का डोमेन कहा जाता है, सेट Y को कोडोमेन कहा जाता है ऑपरेशन, और निश्चित गैर-ऋणात्मक पूर्णांक n (ऑपरेंड की संख्या) को ऑपरेशन की arity कहा जाता है। इस प्रकार एक एकरी संक्रिया में arity एक है, और एक द्विआधारी संक्रिया में arity दो है। एरीटी शून्य का एक ऑपरेशन, जिसे शून्य संचालन कहा जाता है, केवल कोडोमेन वाई का एक तत्व है। एक एन-एरी ऑपरेशन को एक (n + 1)-एरी संबंध के रूप में भी देखा जा सकता है जो इसके एन इनपुट डोमेन पर कुल है और अद्वितीय है इसका आउटपुट डोमेन।

एक n-एरी आंशिक ऑपरेशन ω से X1, …, Xn से Y एक आंशिक फलन ω: X1 × … × XnY है। एक n-एरी आंशिक ऑपरेशन को (n + 1)-ऐरी संबंध के रूप में भी देखा जा सकता है अपने आउटपुट डोमेन पर अद्वितीय है।

उपरोक्त वर्णन करता है कि आम तौर पर ऑपरेंड की परिमित संख्या (मान 'एन) का संदर्भ देते हुए, जिसे आमतौर पर एक परिमित ऑपरेशन कहा जाता है। ऐसे स्पष्ट विस्तार हैं जहां arity को अनंत क्रमिक संख्या या कार्डिनल संख्या के रूप में लिया जाता है,[1]या ऑपरेंड को अनुक्रमणित करने वाला एक मनमाना सेट भी। उपरोक्त वर्णन करता है कि आमतौर पर ऑपरेंड की परिमित संख्या (मान n) का संदर्भ देते हुए, जिसे आमतौर पर एक परिमित ऑपरेशन कहा जाता है। ऐसे स्पष्ट विस्तार हैं जहां arity को एक अनंत क्रमसूचक या कार्डिनल,[1] या यहां तक कि एक मनमाना सेट जो कि संकार्यों को अनुक्रमणित करता है, के रूप में लिया जाता है।

अक्सर, ऑपरेशन शब्द के प्रयोग का मतलब है कि फ़ंक्शन के डोमेन में कोडोमेन की शक्ति शामिल है (यानी कोडोमेन की एक या एक से अधिक प्रतियों का कार्टेशियन उत्पाद),[16] हालांकि यह किसी भी तरह से सार्वभौमिक नहीं है, जैसा कि डॉट उत्पाद का मामला, जहां सदिश को गुणा किया जाता है और परिणामस्वरूप एक स्केलर होता है। एक n-एरी संक्रिया ω: XnX एक आंतरिक संक्रिया कहलाती है। एक एन-एरी ऑपरेशन ω: Xi × S × Xni − 1X जहां 0 ≤ i < n को स्केलर सेट या ऑपरेटर सेट S द्वारा बाहरी ऑपरेशन कहा जाता है। विशेष रूप से बाइनरी ऑपरेशन के लिए, ω: S × XX को S द्वारा बाएँ-बाहरी संक्रिया कहा जाता है, और ω: X × SX को S द्वारा दाएँ-बाहरी संक्रिया कहा जाता है। बाहरी संक्रिया का एक उदाहरण अदिश गुणन है, जहां एक सदिश को एक अदिश से गुणा किया जाता है और परिणाम सदिश होता है।

एक n-एरी मल्टीफंक्शन या मल्टीऑपरेशन ω एक सेट के कार्टेशियन पावर से उस सेट के सबसेट के सेट में एक मैपिंग है, औपचारिक रूप से ω: XnP(X)[17]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 "Algebraic operation - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2019-12-10.
  2. DeMeo, William (August 26, 2010). "Universal Algebra Notes" (PDF). math.hawaii.edu. Retrieved 2019-12-09.
  3. Weisstein, Eric W. "Unary Operation". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  4. Weisstein, Eric W. "Binary Operation". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  5. Weisstein, Eric W. "वेक्टर". mathworld.wolfram.com (in English). Retrieved 2020-07-27. वेक्टरs can be added together (vector addition), subtracted (vector subtraction) ...
  6. Weisstein, Eric W. "मिलन". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  7. Weisstein, Eric W. "चौराहा". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  8. Weisstein, Eric W. "पूरक". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  9. Weisstein, Eric W. "संघटन". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  10. Weisstein, Eric W. "कनवल्शन". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  11. Weisstein, Eric W. "Division by Zero". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  12. Weisstein, Eric W. "कार्यक्षेत्र". mathworld.wolfram.com (in English). Retrieved 2020-08-08.
  13. Weisstein, Eric W. "Scalar Multiplication". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  14. Jain, P. K.; Ahmad, Khalil; Ahuja, Om P. (1995). Functional Analysis (in English). New Age International. ISBN 978-81-224-0801-0.
  15. Weisstein, Eric W. "Inner Product". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  16. Burris, S. N.; Sankappanavar, H. P. (1981). "Chapter II, Definition 1.1". A Course in Universal Algebra. Springer.
  17. Brunner, J.; Drescher, Th.; Pöschel, R.; Seidel, H. (Jan 1993). "Power algebras: clones and relations" (PDF). EIK (Elektronische Informationsverarbeitung und Kybernetik). 29: 293–302. Retrieved 2022-10-25.