Script error: The module returned a nil value. It is supposed to return an export table.
ज्यामिति में, ठोस कोण (प्रतीक: Ω)किसी विशेष बिंदु से दृष्टि क्षेत्र की मात्रा का माप है जो किसी दिए गए वस्तु को कवर करता है। अर्थात्, यह एक उपाय है कि उस बिंदु से देखने वाले पर्यवेक्षक को वस्तु कितनी बड़ी दिखाई देती है। जिस बिंदु से वस्तु को देखा जाता है उसे ठोस कोण का शीर्ष कहा जाता है, और कहा जाता है कि वस्तु उस बिंदु पर अपना ठोस कोण बनाती है।
अन्तरराष्ट्रीय मात्रक प्रणाली(एसआई) में, एक ठोस कोण को विमाहीन संख्या इकाई में व्यक्त किया जाता है जिसे स्टेरेडियन (प्रतीक: sr) कहा जाता है। स्टेरेडियन शीर्ष के चारों ओर इकाई क्षेत्र पर इकाई वृत्त से मेल खाता है, इसलिए वस्तु जो शीर्ष से सभी अर्धरखा को अवरुद्ध करती है, इकाई क्षेत्र के कुल सतह क्षेत्र के बराबर स्टेरेडियन की संख्या को कवर करेगी। ठोस कोणों को डिग्री, मिनट और सेकंड जैसे कोणीय उपायों के वर्गों में भी मापा जा सकता है।
पास की छोटी वस्तु दूर की बड़ी वस्तु के समान ठोस कोण अंतरित कर सकती है। उदाहरण के लिए, हालाँकि चंद्रमा सूर्य से बहुत छोटा है, यह पृथ्वी के बहुत करीब भी है। दरअसल, जैसा कि पृथ्वी पर किसी भी बिंदु से देखा जाता है, दोनों वस्तुओं में लगभग समान ठोस कोण और स्पष्ट आकार होता है। यह सूर्य ग्रहण के दौरान स्पष्ट होता है।
स्टेरेडियन में वस्तु का ठोस कोण इकाई क्षेत्र के खंड के क्षेत्रफल के बराबर होता है, जो शीर्ष पर केंद्रित होता है, जो कि वस्तु को कवर करता है। स्टेरेडियन में इकाई क्षेत्र के खंड का क्षेत्रफल देना रेडियन में इकाई वृत्त के चाप की लंबाई देने के समान है। जिस प्रकार रेडियन में समतलीय कोण एक चाप की लंबाई और उसकी त्रिज्या का अनुपात होता है, उसी तरह स्टेरेडियन में ठोस कोण किसी वस्तु द्वारा किसी गोले पर आच्छादित क्षेत्रफल का अनुपात उक्त त्रिज्या के वर्ग वृत्त द्वारा दिए गए क्षेत्रफल से होता है। सूत्र है
जहाँ A गोलाकार सतह क्षेत्र है और r विचारित गोले की त्रिज्या है।
ठोस कोण अक्सर खगोल शास्त्र, भौतिकी और विशेष रूप से खगोल भौतिकी में उपयोग किए जाते हैं। किसी वस्तु का ठोस कोण जो बहुत दूर है, क्षेत्रफल से वर्ग दूरी के अनुपात के अनुपात में होता है। यहाँ क्षेत्र का अर्थ वस्तु का वह क्षेत्र है जब उसे देखने की दिशा में प्रक्षेपित किया जाता है।
Error creating thumbnail:
एक गोले पर कोई भी क्षेत्र जो इसके त्रिज्या के वर्ग के क्षेत्रफल के बराबर है, जब इसके केंद्र से देखा जाता है, तो ठीक एक स्टेरेडियन अंतरित होता है।
एक गोले का ठोस कोण इसके आंतरिक भाग में किसी भी बिंदु 4π sr से मापा जाता है, और घन के केंद्र पर उसके फलक द्वारा अंतरित ठोस कोण उसका एक-छठा है, या 2π/3 sr है। ठोस कोणों को वर्ग डिग्री में भी मापा जा सकता है (1 sr = (180/π)2 वर्ग डिग्री), वर्ग मिनट और वर्ग सेकंड में, या गोले के अंशों में (1 sr = 1/4π आंशिक क्षेत्र), जिसे स्पैट (इकाई) (1 sp = 4π sr) के रूप में भी जाना जाता है।
गोलीय निर्देशांक में अवकल के लिए एक सूत्र है,
कहां θ अक्षांश (उत्तरी ध्रुव से कोण) है और φ देशांतर है।
एक यादृच्छिक उन्मुख सतहS के लिए एक बिंदु P पर अंतरित ठोस कोण सतह S के केंद्र P, के साथ इकाई क्षेत्र के प्रक्षेपण के ठोस कोण के बराबर है, जिसकी गणना सतह अभिन्न के रूप में की जा सकती है:
जहां के अनुरूप इकाई सदिश है , बिंदु P के संबंध में सतह dS के अतिसूक्ष्म क्षेत्र की स्थिति सदिश और जहाँ , dS को इकाई सामान्य सदिश का प्रतिनिधित्व करता है। यहां तक कि अगर इकाई क्षेत्र पर सतह S पर प्रक्षेपण समरूपी नहीं है, तो स्केलर उत्पाद है।
इस प्रकार कोई भीछोटे से पहलू द्वारा अंतरित ठोस कोण का अनुमान लगा सकता है जिसमें सपाट सतह क्षेत्र dS, अभिविन्यास , दर्शक से r दूरी इस प्रकार है:
छोटेθ के लिए जैसे किcos θ ≈ 1 − θ2/2 यह πθ2,एक वृत्त का क्षेत्रफल कम हो जाता है।
उपरोक्त गोलाकार निर्देशांक में इकाई सतह तत्व का उपयोग करके निम्नलिखित दोहरा अभिन्न की गणना करके पाया जाता है:
यह सूत्र बिना कलन के भी निकाला जा सकता है। 2200 साल पहले आर्किमिडीजने साबित किया कि एक गोलाकार टोपी का सतह क्षेत्र हमेशा एक वृत्त के क्षेत्रफल के बराबर होता है, जिसकी त्रिज्या गोलाकार टोपी के रिम से उस बिंदु तक की दूरी के बराबर होती है, जहां टोपी की समरूपता की धुरी टोपी को काटती है।[1] आरेख में इस त्रिज्या के रूप में दिया गया है
अतः एक इकाई गोले के लिए गोलाकार टोपी का ठोस कोण इस प्रकार दिया जाता है
जब θ = π/2, , गोलीय टोपी 2π ठोस कोण वाला अर्धगोला बन जाती है।
शंकु के पूरक का ठोस कोण है
यह आकाशीय गोले के उस भाग का ठोस कोण भी है जिसे अक्षांश θ पर स्थित एक खगोलीय प्रेक्षक पृथ्वी के घूर्णन के रूप में देख सकता है। भूमध्य रेखा पर सभी आकाशीय गोले दिखाई देते हैं; किसी भी ध्रुव पर, केवल आधा।
शंकु के अक्ष से कोण γ पर एक समतल द्वारा काटे गए गोलाकार टोपी के एक खंड द्वारा अंतरित ठोस कोण और शंकु के शीर्ष से गुजरते हुए सूत्र द्वारा गणना की जा सकती है[2]
उदाहरण के लिए, यदि γ = −θ, तो सूत्र उपरोक्त गोलाकार टोपी सूत्र में कम हो जाता है: पहला शब्द π,बन जाता है, और दूसरा π cos θ बन जाता है।
बता दें कि OABC एक चतुष्फलक का शीर्ष है जिसकी उत्पत्ति Oपर है और त्रिकोणीय फलक ABC द्वारा अंतरित है, जहां शीर्षों A, B और C की सदिश स्थितियाँ हैं। शीर्ष कोण θa परिभाषित करें कोण BOCहोना और तदनुसारθb, θc को परिभाषित करना। मान लीजिए कि उन समतलों के बीच द्वितल कोण हैं जिनमें चतुष्फलकीय फलक OAC और OBC होते हैं और , को परिभाषित करते हैं। त्रिकोणीय सतह एबीसी द्वारा अंतरित ठोस कोण Ω द्वारा दिया गया है
यह गोलाकार अतिरिक्त के सिद्धांत से अनुसरण करता है और यह इस तथ्य की ओर जाता है कि प्रमेय के अनुरूप एक प्रमेय है कि "प्लैनर त्रिकोण के आंतरिक कोणों का योग π, के बराबर है", के चार आंतरिक ठोस कोणों के योग के लिए एक चतुष्फलक इस प्रकार है:
जहां चतुष्फलकीय फलक OAB, OAC, OBC और ABC वाले किन्हीं भी दो तलों के बीच सभी छह द्वितल कोणों की श्रेणी में होते हैं।[3]
मूल O पर चतुष्फलक के ठोस कोण की गणना के लिए एक उपयोगी सूत्र जो विशुद्ध रूप से शीर्ष कोणों θa, θb, θc का एक कार्य है, ल'हुइलियर के प्रमेय द्वारा दिया गया है[4][5] जैसा
कहां
एक और दिलचस्प सूत्र में 3 आयामी अंतरिक्ष में शिखरों को वैक्टर के रूप में व्यक्त करना शामिल है। मान लीजिए शीर्षों A, B और C की सदिश स्थितियाँ हैं, और a, b, और c प्रत्येक सदिश (मूल-बिंदु दूरी) का परिमाण हैं। त्रिकोणीय सतह एबीसी द्वारा अंतरित ठोस कोण Ω है:[6][7]
कहां
तीन वैक्टरों के ट्रिपल उत्पाद को दर्शाता है और स्केलर उत्पाद को दर्शाता है।
नकारात्मक या गलत ठोस कोणों से बचने के लिए यहां सावधानी बरतनी चाहिए। संभावित त्रुटियों का एक स्रोत यह है कि स्केलर ट्रिपल उत्पाद नकारात्मक हो सकता है यदि a, b, c गलत निर्धारक है। कम्प्यूटिंग एक पर्याप्त समाधान है क्योंकि समीकरण का कोई अन्य भाग वाइंडिंग पर निर्भर नहीं करता है। दूसरा नुकसान तब होता है जब स्केलर ट्रिपल उत्पाद धनात्मक होता है लेकिन विभाजक ऋणात्मक होता है। इस मामले में एक नकारात्मक मान देता है जिसे πसे बढ़ाया जाना चाहिए।
पिरामिड
शीर्ष कोणa और b (पिरामिड के विपरीत दिशा के चेहरों को मापा गया डायहेड्रल कोण) के साथ चार-तरफा समकोणीय पिरामिड (ज्यामिति)का ठोस कोण है
यदि पिरामिड के आधार की दोनों ओर की लंबाई (α और β)और आधार आयत के केंद्र से पिरामिड के शीर्ष (गोले का केंद्र) तक की दूरी(d) ज्ञात हो, तो उपरोक्त समीकरण हो सकता है देने के लिए हेरफेर किया जाना
समकोण n-गोनल पिरामिड का ठोस कोण, जहाँ पिरामिड का आधार परिवृत्तr का एक नियमित nपक्षीय बहुभुज है, एक पिरामिड ऊँचाई h के साथ है
किनारों {s1, s2}, ... sn का प्रतिनिधित्व करने वाले इकाई वैक्टर के अनुक्रम द्वारा परिभाषित n पक्षीय आधार के साथ एक मनमाना पिरामिड का ठोस कोण कुशलता से गणना की जा सकती है:[2]
जहाँ कोष्ठक (* *) एक अदिश गुणनफल है और वर्गाकार कोष्ठक [* * *] त्रिगुणात्मक गुणनफल है, और i एक काल्पनिक इकाई है। सूचकांकों का चक्रण किया जाता है: s0 = sn और s1 = sn + 1। जटिल उत्पाद बहुभुज के प्रत्येक शीर्ष कोण से जुड़े चरण को जोड़ते हैं। हालांकि, का एक गुणक के ब्रांच कट में खो गया है और इसे अलग से ट्रैक किया जाना चाहिए। इसके अलावा, जटिल चरणों के चलने वाले उत्पाद को लगभग समांतर खंडों की सीमा में अंडरफ्लो से बचने के लिए कभी-कभी बढ़ाया जाना चाहिए।
अक्षांश-देशांतर आयत
ग्लोब पर एक अक्षांश-देशांतर आयत का ठोस कोण होता है
जहाँ φN और φS अक्षांशउत्तर और दक्षिण रेखाएँ हैं (भूमध्य रेखासे रेडियन में उत्तर की ओर बढ़ते कोण के साथ मापा जाता है), और θE और θW देशांतर की पूर्व और पश्चिम रेखाएँ हैं (जहाँ रेडियन में कोण पूर्व की ओर बढ़ता है)।[8] गणितीय रूप से, यह कोण ϕN − ϕS के एक चाप का प्रतिनिधित्व करता है जो θE − θWरेडियन द्वारा एक गोले के चारों ओर घूमता है। जब देशांतर 2π रेडियन तक फैला होता है और अक्षांश π रेडियन तक फैला होता है, तो ठोस कोण एक गोले का होता है।
अक्षांश-देशांतर आयत को आयताकार पिरामिड के ठोस कोण से भ्रमित नहीं होना चाहिए। एक आयताकार पिरामिड के सभी चार पक्ष बड़े वृत्त चाप में गोले की सतह को काटते हैं। अक्षांश-देशांतर आयत के साथ, देशांतर की केवल रेखाएँ ही वृहत वृत्त चाप होती हैं; अक्षांश रेखाएँ नहीं हैं।
आकाशीय पिंड
कोणीय व्यासकी परिभाषा का उपयोग करके, आकाशीय वस्तु के ठोस कोण के सूत्र को वस्तु की त्रिज्या, , और प्रेक्षक से वस्तु की दूरी के संदर्भ में परिभाषित किया जा सकता है।, :
सूर्य और चंद्रमा (पृथ्वी के संबंध में) के लिए उपयुक्त औसत मान डालने पर, सूर्य का औसत ठोस कोण 6.794×10-5 स्टेरेडियन और चंद्रमा का औसत ठोस कोण 6.418×10-5 स्टेरेडियन होता है। कुल खगोलीय क्षेत्र के संदर्भ में, सूर्य और चंद्रमा क्रमशः 0.0005406% (5.406 पीपीएम) और 0.0005107% (5.107 पीपीएम) के औसत भिन्नात्मक क्षेत्रों को घटाते हैं। चूँकि ये ठोस कोण लगभग समान आकार के होते हैं, ग्रहण के दौरान पृथ्वी और चंद्रमा के बीच की दूरी के आधार पर चंद्रमा पूर्ण और कुंडलाकार दोनों तरह के सौर ग्रहण का कारण बन सकता है।
यादृच्छिक आयामों में ठोस कोण
d -आयामी यूक्लिडियनस्पेस में यूनिट स्फीयर की पूर्ण (d − 1)-डायमेंशनल गोलाकार सतह द्वारा अंतरित ठोस कोण को किसी भी आयाम डी में परिभाषित किया जा सकता है। गोलाकार समरूपता के साथ गणना में अक्सर इस ठोस कोण कारक की आवश्यकता होती है। यह सूत्र द्वारा दिया गया है
कहां Γ गामा फ़ंक्शन है। जबd एक पूर्णांक होता है, तो गामा फ़ंक्शन की स्पष्ट रूप से गणना की जा सकती है।[9] यह इस प्रकार है कि
यह 4πr2 क्षेत्रफल की सतह से घिरे 3D गोले के लिए 4π स्टेरेडियन और2πr लंबाई की परिधि से घिरे 2D वृत्त के लिए 2π रेडियन के अपेक्षित परिणाम देता है। यह 1D मामले के लिए थोड़ा कम स्पष्ट 2 भी देता है, जिसमें मूल-केंद्रित 1D "गोला" अंतराल [−r, r] है और यह दो सीमित बिंदुओं से घिरा है।
यादृच्छिक में सदिश सूत्र का प्रतिरूप एओमोटो[10][11]और रिबांडो द्वारा स्वतंत्र रूप से प्राप्त किया गया था।[12] यह उन्हें अनंत बहुभिन्नरूपी टेलर श्रृंखला के रूप में व्यक्त करता है:
दिया गया d यूनिट वैक्टर कोण को परिभाषित करते हुए, V को उनके संयोजन से बनने वाले मैट्रिक्स को निरूपित करते हैं, इसलिए iवां स्तंभ है , और . चर एक बहुभिन्नरूपी बनाओ . एक सर्वांगसम पूर्णांक मल्टीएक्सपोनेंट के लिए परिभाषित करना . ध्यान दें कि यहाँ = गैर-ऋणात्मक पूर्णांक, या 0 से शुरू होने वाली प्राकृतिक संख्याएँ। अंकन के लिए चर का अर्थ है , इसी तरह एक्सपोनेंट्स के लिए .
इसलिए, शब्द का अर्थ है सभी पदों का योग जिसमें l या तो पहली या दूसरी अनुक्रमणिका के रूप में प्रकट होता है।
जहाँ यह श्रृंखला अभिसरण करती है, यह सदिशों द्वारा परिभाषित ठोस कोण में परिवर्तित हो जाती है।
↑Beck, M.; Robins, S.; Sam, S. V. (2010). "Positivity theorems for solid-angle polynomials". Contributions to Algebra and Geometry. 51 (2): 493–507. arXiv:0906.4031. Bibcode:2009arXiv0906.4031B.
Jaffey, A. H. (1954). "Solid angle subtended by a circular aperture at point and spread sources: formulas and some tables". Rev. Sci. Instrum. 25 (4): 349–354. Bibcode:1954RScI...25..349J. doi:10.1063/1.1771061.
Asvestas, John S..; Englund, David C. (1994). "Computing the solid angle subtended by a planar figure". Opt. Eng. 33 (12): 4055–4059. Bibcode:1994OptEn..33.4055A. doi:10.1117/12.183402. Erratum ibid. vol 50 (2011) page 059801.
Timus, D. M.; Prata, M. J.; Kalla, S. L.; Abbas, M. I.; Oner, F.; Galiano, E. (2007). "Some further analytical results on the solid angle subtended at a point by a circular disk using elliptic integrals". Nucl. Instrum. Methods Phys. Res. A. 580: 149–152. Bibcode:2007NIMPA.580..149T. doi:10.1016/j.nima.2007.05.055.
Arthur P. Norton, A Star Atlas, Gall and Inglis, Edinburgh, 1969.
M. G. Kendall, A Course in the Geometry of N Dimensions, No. 8 of Griffin's Statistical Monographs & Courses, ed. M. G. Kendall, Charles Griffin & Co. Ltd, London, 1961