3 डी प्रदर्शन
एक 3 डी डिस्प्ले एक प्रदर्शन उपकरण है जो दर्शक को गहराई से धारणा को व्यक्त करने में सक्षम है।कई 3 डी डिस्प्ले त्रिविम डिस्प्ले हैं, जो स्टीरियोप्सिस के माध्यम से एक सामान्य 3 डी प्रभाव उत्पन्न करते हैं, लेकिन आंखों के तनाव और दृश्य थकान का कारण बन सकते हैं।न्यूर 3 डी डिस्प्ले जैसे होलोग्राफिक प्रदर्शन और प्रकाश क्षेत्र प्रदर्शन प्रदर्शित सामग्री के लिए स्टीरियोप्सिस और सटीक फोकल लंबाई के संयोजन से अधिक यथार्थवादी 3 डी प्रभाव उत्पन्न करते हैं।इस तरह से नए 3 डी डिस्प्ले शास्त्रीय स्टीरियोस्कोपिक डिस्प्ले की तुलना में कम दृश्य थकान का कारण बनते हैं।
2021 तक, 3 डी डिस्प्ले का सबसे सामान्य प्रकार एक स्टेरोस्कोपी है, जो लगभग सभी आभासी वास्तविकता उपकरणों में उपयोग किए जाने वाले प्रदर्शन का प्रकार है।3 डी डिस्प्ले वीआर हेडसेट की तरह निकट-आंख डिस्प्ले हो सकता है, या वे 3 डी-सक्षम मोबाइल डिवाइस या 3 एक फिल्म को बुलाओ की तरह आंखों से दूर एक डिवाइस में हो सकते हैं।
"3 डी डिस्प्ले" शब्द का उपयोग एक वॉल्यूमेट्रिक डिस्प्ले को संदर्भित करने के लिए भी किया जा सकता है जो सामग्री उत्पन्न कर सकता है जिसे सभी कोणों से देखा जा सकता है।एक कंपनी जो वॉल्यूमेट्रिक डिस्प्ले का उत्पादन करती है वह है वोक्सन फोटोनिक्स ।
इतिहास
पहला 3 डी डिस्प्ले सर चार्ल्स व्हीटस्टोन द्वारा 1832 में बनाया गया था।[1] यह एक स्टीरियोस्कोपिक प्रदर्शन था जिसमें गहराई का प्रतिनिधित्व करने के लिए अल्पविकसित क्षमता थी।
स्टीरियोस्कोपिक डिस्प्ले
स्टीरियोस्कोपिक डिस्प्ले को सामान्य रूप से "स्टीरियो डिस्प्ले," "स्टीरियो 3 डी डिस्प्ले," "स्टीरियोस्कोपिक 3 डी डिस्प्ले," या कभी -कभी गलत तरीके से "3 डी डिस्प्ले" के रूप में जाना जाता है।
स्टीरियोस्कोपी डिस्प्ले की मूल तकनीक ऑफसेट छवियों को प्रस्तुत करना है जो बाईं और दाईं आंख में अलग से प्रदर्शित होते हैं।इन दोनों 2 डी ऑफसेट छवियों को तब मस्तिष्क में 3 डी गहराई की गहराई धारणा देने के लिए संयुक्त किया जाता है।यद्यपि 3 डी शब्द का सर्वव्यापी रूप से उपयोग किया जाता है, यह ध्यान रखना महत्वपूर्ण है कि दोहरी 2 डी छवियों की प्रस्तुति एक प्रकाश क्षेत्र को प्रदर्शित करने से अलग है, और तीन-आयामी स्थान में एक छवि को प्रदर्शित करने से भी अलग है।
वास्तविक 3 डी डिस्प्ले के लिए सबसे उल्लेखनीय अंतर यह है कि ऑब्जर्वर के सिर और आवास (आंख) को प्रदर्शित किए जा रहे 3 डी ऑब्जेक्ट्स के बारे में जानकारी नहीं बढ़ेगी।उदाहरण के लिए, होलोग्राफिक डिस्प्ले में ऐसी सीमाएं नहीं हैं।
यह 3 डी के रूप में दोहरी 2 डी छवियों को संदर्भित करने की क्षमता का एक ओवरस्टेटमेंट है।सटीक शब्द स्टीरियोस्कोपिक सामान्य मिथ्या 3 डी की तुलना में अधिक बोझिल है, जो कि कई दशकों के निर्विवाद दुरुपयोग के बाद उलझा हुआ है।यद्यपि अधिकांश स्टीरियोस्कोपिक डिस्प्ले वास्तविक 3 डी डिस्प्ले के रूप में अर्हता प्राप्त नहीं करते हैं, सभी वास्तविक 3 डी डिस्प्ले को प्रायः स्टीरियोस्कोपिक डिस्प्ले के रूप में भी संदर्भित किया जाता है क्योंकि वे स्टीरियोस्कोपिक होने के निचले मानदंडों को भी पूरा करते हैं।
1830 के दशक में सर चार्ल्स व्हीटस्टोन द्वारा वर्णित स्टीरियोप्सिस के सिद्धांतों के आधार पर, स्टीरियोस्कोपिक तकनीक दर्शक की बाईं और दाईं आंखों को एक अलग छवि प्रदान करती है।निम्नलिखित कुछ तकनीकी विवरण और कार्यप्रणाली हैं जो कुछ अधिक उल्लेखनीय स्टीरियोस्कोपिक प्रणालियों में कार्यरत हैं जिन्हें विकसित किया गया है।
साइड-बाय-साइड इमेज
पारंपरिक स्टीरियोस्कोपिक फोटोग्राफी में 2 डी छवियों की एक जोड़ी, एक स्टीरियोस्कोपी से प्रारंभ होने वाली 3 डी भ्रम उत्पन्न होता है।मस्तिष्क में गहराई की धारणा को बढ़ाने का सबसे आसान तरीका दर्शक की आंखों को दो अलग -अलग छवियों के साथ प्रदान करना है, एक ही वस्तु के दो परिप्रेक्ष्य (दृश्य) का प्रतिनिधित्व करते हैं, एक मामूली विचलन के साथ बिल्कुल परिप्रेक्ष्य के बराबर है कि दोनों आंखें स्वाभाविक रूप से दूरबीन में प्राप्त होती हैंदृष्टि।
यदि आंखों की प्रासंगिक और विकृति से बचा जाना है, तो दो 2 डी छवियों में से प्रत्येक को अधिमानतः दर्शक की प्रत्येक आंख को प्रस्तुत किया जाना चाहिए ताकि दर्शक द्वारा देखी गई अनंत दूरी पर कोई भी वस्तु उस आंख से माना जाना चाहिए जबकि यह सीधे आगे उन्मुख हो,दर्शक की आँखों को न तो पार किया जा रहा है और न ही विचलन।जब चित्र में अनंत दूरी पर कोई वस्तु नहीं होती है, जैसे कि एक क्षितिज या एक बादल, चित्रों को एक साथ करीब से एक साथ फैलाया जाना चाहिए।
साइड-बाय-साइड विधि बनाने के लिए बेहद सरल है, लेकिन ऑप्टिकल एड्स के बिना देखने के लिए यह मुश्किल या असुविधाजनक हो सकता है।
स्टीरियोस्कोप और स्टीरोग्राफिक कार्ड
एक स्टीरियोपॉर्पोस्कोप स्टिरोग्राफिक कार्ड देखने के लिए एक उपकरण है, जो ऐसे कार्ड हैं जिनमें दो अलग-अलग छवियां होती हैं जो तीन-आयामी छवि का भ्रम उत्पन्न करने के लिए एक साथ-साथ मुद्रित होती हैं।
पारदर्शिता दर्शक
एक पारदर्शी आधार पर मुद्रित स्टीरियो विचारों के जोड़े को प्रेषित प्रकाश द्वारा देखा जाता है।पारदर्शिता देखने का एक लाभ एक व्यापक, अधिक यथार्थवादी गतिशील रेंज#फोटोग्राफी के लिए अवसर है, जो एक अपारदर्शी आधार पर प्रिंट के साथ व्यावहारिक है;एक और यह है कि छवियों के बाद से एक व्यापक क्षेत्र प्रस्तुत किया जा सकता है, पीछे से रोशन किया जा रहा है, लेंस के बहुत करीब रखा जा सकता है।
फिल्म-आधारित स्टीरियोस्कोपिक पारदर्शिताओं को देखने की प्रथा कम से कम 1931 की प्रारंभ में है, जब TRU-VUE ने 35 मिमी प्रारूप के स्ट्रिप्स पर स्टीरियो व्यूज़ के मार्केट सेट करना प्रारंभ कर दिया था जो कि हाथ से पकड़े गए एक प्रकार का प्लास्टिक दर्शक के माध्यम से खिलाया गया था।1939 में, इस तकनीक की एक संशोधित और लघु भिन्नता, कार्डबोर्ड डिस्क को नियोजित करते हुए सात जोड़े छोटे कोडाक्रोम रंग फिल्म पारदर्शिताओं को देखें मास्टर के रूप में प्रस्तुत किया गया था।
हेड-माउंटेड डिस्प्ले
उपयोगकर्ता सामान्य रूप से दो छोटे एलसीडी या कार्बनिक प्रकाश-उत्सर्जक डायोड के साथ एक हेलमेट या चश्मा पहनता है, जो प्रत्येक आंख के लिए एक आवर्धक लेंस के साथ डिस्प्ले करता है।तकनीक का उपयोग स्टीरियो फिल्मों, छवियों या खेलों को दिखाने के लिए किया जा सकता है।हेड-माउंटेड डिस्प्ले को हेड-ट्रैकिंग उपकरणों के साथ भी जोड़ा जा सकता है, जिससे उपयोगकर्ता को अपने सिर को स्थानांतरित करके आभासी दुनिया के चारों ओर देखने की स्वीकृति मिलती है, एक अलग नियंत्रक की आवश्यकता को समाप्त कर दिया जाता है।
कंप्यूटर ग्राफिक्स में तेजी से प्रगति और वीडियो और अन्य उपकरणों के निरंतर लघुकरण के कारण ये उपकरण अधिक उचित कीमत पर उपलब्ध होने लगे हैं।हेड-माउंटेड या पहनने योग्य चश्मे का उपयोग वास्तविक दुनिया के दृश्य पर लगाए गए एक सी-थ्रू छवि को देखने के लिए किया जा सकता है, जिसे संवर्धित वास्तविकता कहा जाता है।यह आंशिक रूप से चिंतनशील दर्पण के माध्यम से वीडियो छवियों को प्रतिबिंबित करके किया जाता है।वास्तविक दुनिया को आंशिक दर्पण के माध्यम से देखा जा सकता है।
होलोग्राफिक-वेवगाइड या वेवगाइड-आधारित ऑप्टिक्स में हाल ही में एक विकास एक स्टीरियोस्कोपिक छवियों को भारी परावर्तक दर्पण के उपयोग के बिना वास्तविक दुनिया पर आरोपित करने की स्वीकृति देता है।[2][3]
हेड-माउंटेड प्रक्षेपण डिस्प्ले
हेड-माउंटेड प्रोजेक्शन डिस्प्ले (एचएमपीडी) हेड-माउंटेड डिस्प्ले के समान है, लेकिन एक पुनर्मिलन -पत्रक पर अनुमानित और प्रदर्शित होने वाली छवियों के साथ, हेड-माउंटेड डिस्प्ले पर इस तकनीक का लाभ यह है कि आवास (आंख) और vergence मुद्दों पर नहीं।सुधारात्मक नेत्र लेंस के साथ फिक्सिंग की आवश्यकता है।छवि पीढ़ी के लिए, PICO पिको प्रोजेक्टर | PICO-Projectors का उपयोग LCD या ऑर्गेनिक लाइट-एमिटिंग डायोड स्क्रीन के अतिरिक्त किया जाता है।[4][5]
Anagliph
एक एनाग्लिफ़ में, दो छवियों को दो फिल्टर, एक लाल और एक सियान के माध्यम से एक योजक रंग सेटिंग में आरोपित किया जाता है।एक घटाव रंग सेटिंग में, दो छवियों को सफेद कागज पर एक ही पूरक रंग ों में मुद्रित किया जाता है।प्रत्येक आंख में रंगीन फिल्टर के साथ चश्मा फ़िल्टर रंग को रद्द करके और पूरक रंग काले रंग का प्रतिपादन करके उपयुक्त छवि को अलग करता है। एक क्षतिपूर्ति तकनीक, जिसे सामान्य रूप से एनाक्रोम के रूप में जाना जाता है, तकनीक से जुड़े पेटेंट किए गए चश्मे में थोड़ा अधिक पारदर्शी सियान फिल्टर का उपयोग करता है।प्रक्रिया कम लंबन के लिए विशिष्ट एनाग्लिफ़ छवि को पुनः कॉन्फ़िगर करती है।
एनाग्लिफ़ के सामान्य लाल और सियान फिल्टर प्रणाली का एक विकल्प रंगकोड 3-डी है, जो एक पेटेंट एनाग्लिफ़ प्रणाली है, जिसका आविष्कार एनटीएससी टेलीविजन मानक के साथ संयोजन में एक एनाग्लिफ़ छवि प्रस्तुत करने के लिए किया गया था, जिसमें लाल चैनल प्रायः समझौता किया जाता है।कलरकोड पीले और गहरे नीले रंग के ऑन-स्क्रीन के पूरक रंगों का उपयोग करता है, और चश्मा के लेंस के रंग एम्बर और गहरे नीले रंग के होते हैं।
ध्रुवीकरण प्रणाली
एक स्टीरियोस्कोपिक चित्र प्रस्तुत करने के लिए, दो छवियों को अलग -अलग ध्रुवीकरण फ़िल्टर के माध्यम से एक ही स्क्रीन पर सुपरिंपोज किया जाता है।दर्शक चश्मा पहनता है जिसमें ध्रुवीकरण फिल्टर की एक जोड़ी भी अलग -अलग होती है (गोलाकार ध्रुवीकरण के साथ दक्षिणावर्त/वामावर्त या 90 डिग्री कोण पर, सामान्य रूप से 45 और 135 डिग्री,[6] रैखिक ध्रुवीकरण के साथ)।जैसा कि प्रत्येक फ़िल्टर केवल उस प्रकाश से गुजरता है जो समान रूप से ध्रुवीकृत होता है और प्रकाश को अलग -अलग ध्रुवीकृत करता है, प्रत्येक आंख एक अलग छवि देखती है।इसका उपयोग दोनों आंखों में एक ही दृश्य को प्रस्तुत करके तीन आयामी प्रभाव का उत्पादन करने के लिए किया जाता है, लेकिन थोड़ा अलग दृष्टिकोण से दर्शाया गया है।इसके अतिरिक्त, चूंकि दोनों लेंसों में एक ही रंग होता है, एक प्रमुख आंख वाले लोग, जहां एक आंख का अधिक उपयोग किया जाता है, रंगों को ठीक से देखने में सक्षम होते हैं, पहले दो रंगों के पृथक्करण से नकारात्मक।
परिपत्र ध्रुवीकरण का रैखिक ध्रुवीकरण पर एक फायदा है, जिसमें दर्शक को अपने सिर को सीधा करने की आवश्यकता नहीं है और ध्रुवीकरण के लिए स्क्रीन के साथ ठीक से काम करने के लिए गठबंधन किया जाता है।रैखिक ध्रुवीकरण के साथ, चश्मे के बग़ल में मोड़ने के कारण सिल्वर स्क्रीन फिल्टर के साथ संरेखण से बाहर जाने का कारण बनता है, जिससे छवि फीका हो जाता है और प्रत्येक आंख के लिए विपरीत फ्रेम को अधिक आसानी से देखने के लिए।परिपत्र ध्रुवीकरण के लिए, ध्रुवीकरण प्रभाव इस बात की परवाह किए बिना काम करता है कि दर्शक के सिर को स्क्रीन के साथ कैसे गठबंधन किया जाता है जैसे कि टिल्टेड बग़ल में, या यहां तक कि उल्टा भी।बाईं आंख अभी भी केवल इसके लिए इच्छित छवि को देखेगी, और इसके विपरीत, बिना लुप्त होती या क्रॉसस्टॉक के।
एक साधारण मोशन पिक्चर स्क्रीन से परिलक्षित ध्रुवीकृत प्रकाश सामान्य रूप से इसके अधिकांश ध्रुवीकरण को खो देता है।तो एक महंगी चांदी की स्क्रीन या नगण्य ध्रुवीकरण हानि के साथ एल्युमिनेटाइज्ड स्क्रीन का उपयोग किया जाना है।सभी प्रकार के ध्रुवीकरण के परिणामस्वरूप गैर-3 डी छवियों की तुलना में प्रदर्शित छवि और खराब विपरीत का एक कालापन होगा।लैंप से प्रकाश सामान्य रूप से ध्रुवीकरण के एक यादृच्छिक संग्रह के रूप में उत्सर्जित किया जाता है, जबकि एक ध्रुवीकरण फिल्टर केवल प्रकाश का एक अंश पारित करता है।नतीजतन, स्क्रीन छवि गहरा है। इस अंधेरे को प्रोजेक्टर लाइट स्रोत की चमक बढ़ाकर मुआवजा दिया जा सकता है। यदि प्रारंभिक ध्रुवीकरण फ़िल्टर को दीपक और छवि पीढ़ी तत्व के बीच डाला जाता है, तो छवि तत्व को हड़ताली प्रकाश तीव्रता ध्रुवीकरण फ़िल्टर के बिना सामान्य से अधिक नहीं है, और स्क्रीन पर प्रेषित समग्र छवि विपरीत प्रभावित नहीं होता है।
ग्रहण विधि
ग्रहण विधि के साथ, एक शटर प्रत्येक उपयुक्त आंख से प्रकाश को रोकता है जब स्क्रीन पर कन्वर्स्ट आई की छवि का अनुमान लगाया जाता है।डिस्प्ले बाएं और दाएं छवियों के बीच वैकल्पिक होता है, और स्क्रीन पर छवियों के साथ सिंक्रनाइज़ेशन में चश्मा या दर्शक में शटर को खोलता और बंद कर देता है।यह टीवीव्यू प्रणाली का आधार था जिसका उपयोग 1922 में संक्षेप में किया गया था।[7][8] ग्रहण विधि पर एक भिन्नता का उपयोग एलसीडी शटर ग्लास में किया जाता है। वैकल्पिक-फ्रेम अनुक्रमण की अवधारणा का उपयोग करके सिनेमा, टेलीविजन या कंप्यूटर स्क्रीन पर छवियों के साथ सिंक्रनाइज़ेशन में प्रकाश के माध्यम से तरल स्फ़टिक वाले चश्मे।यह NVIDIA, XPAND 3D और पहले IMAX प्रणाली द्वारा उपयोग की जाने वाली विधि है।इस पद्धति का एक दोष प्रत्येक व्यक्ति को महंगा, इलेक्ट्रॉनिक चश्मा पहनने के लिए देखने की आवश्यकता है जिसे वायरलेस सिग्नल या संलग्न तार का उपयोग करके डिस्प्ले प्रणाली के साथ सिंक्रनाइज़ किया जाना चाहिए।शटर-ग्लास अधिकांश ध्रुवीकृत चश्मे की तुलना में भारी होते हैं, हालांकि लाइटर मॉडल कुछ धूप के चश्मे या डीलक्स ध्रुवीकृत चश्मे की तुलना में भारी नहीं होते हैं।[9] हालांकि इन प्रणालियों को अनुमानित छवियों के लिए सिल्वर स्क्रीन की आवश्यकता नहीं होती है।
लिक्विड क्रिस्टल लाइट वाल्व दो ध्रुवीकरण फिल्टर के बीच प्रकाश को घुमाकर काम करते हैं।इन आंतरिक ध्रुवीकरणों के कारण, एलसीडी शटर-ग्लास किसी भी एलसीडी, प्लाज्मा, या प्रोजेक्टर छवि स्रोत की प्रदर्शन छवि को काला कर देता है, जिसका परिणाम यह है कि छवियां डिमर दिखाई देती हैं और इसके विपरीत सामान्य गैर-3 डी देखने की तुलना में कम है।यह जरूरी नहीं कि एक उपयोग समस्या हो;कुछ प्रकार के डिस्प्ले के लिए जो पहले से ही गरीब भूरे रंग के काले स्तर के साथ बहुत उज्ज्वल हैं, एलसीडी शटर ग्लास वास्तव में छवि गुणवत्ता में सुधार कर सकते हैं।
हस्तक्षेप फ़िल्टर प्रौद्योगिकी
डॉल्बी 3 डी दाईं आंख के लिए लाल, हरे और नीले रंग की विशिष्ट तरंग दैर्ध्य का उपयोग करता है, और बाईं आंख के लिए लाल, हरे और नीले रंग के विभिन्न तरंग दैर्ध्य।बहुत विशिष्ट तरंग दैर्ध्य को फ़िल्टर करने वाले चश्मा पहनने वाले को 3 डी छवि देखने की स्वीकृति देते हैं।यह तकनीक Reald जैसे ध्रुवीकृत प्रणालियों के लिए आवश्यक महंगी चांदी स्क्रीन को समाप्त करती है, जो थिएटरों में सबसे सामान्य 3D डिस्प्ले प्रणाली है।हालांकि, यह ध्रुवीकृत प्रणालियों की तुलना में बहुत अधिक महंगे चश्मे की आवश्यकता होती है।इसे स्पेक्ट्रल कॉम्ब फ़िल्टरिंग या वेवलेंथ मल्टीप्लेक्स विज़ुअलाइज़ेशन के रूप में भी जाना जाता है
हाल ही में प्रारंभ की गई ओमेगा 3 डी/पैनविज़न 3 डी प्रणाली भी इस तकनीक का उपयोग करता है, हालांकि कंघी के लिए एक व्यापक स्पेक्ट्रम और अधिक दांतों के साथ (ओमेगा/पैनविज़न प्रणाली में प्रत्येक आंख के लिए 5)।प्रति आंख अधिक वर्णक्रमीय बैंड का उपयोग डॉल्बी प्रणाली द्वारा आवश्यक छवि को रंगीन प्रक्रिया की आवश्यकता को समाप्त करता है।समान रूप से आंखों के बीच दृश्यमान स्पेक्ट्रम को विभाजित करने से दर्शक को अधिक आराम का अनुभव मिलता है क्योंकि प्रकाश ऊर्जा और रंग संतुलन लगभग 50-50 है।डॉल्बी प्रणाली की तरह, ओमेगा प्रणाली का उपयोग सफेद या चांदी की स्क्रीन के साथ किया जा सकता है।लेकिन इसका उपयोग या तो फिल्म या डिजिटल प्रोजेक्टर के साथ किया जा सकता है, डॉल्बी फिल्टर के विपरीत, जो केवल डिजिटल प्रणाली पर डॉल्बी द्वारा प्रदान किए गए रंग सही प्रोसेसर के साथ एक डिजिटल प्रणाली पर उपयोग किया जाता है।ओमेगा/पैनविज़न प्रणाली यह भी दावा करता है कि उनके चश्मे डॉल्बी द्वारा उपयोग किए जाने वाले लोगों की तुलना में निर्माण करने के लिए सस्ते हैं।[10] जून 2012 में, ओमेगा 3 डी/पैनविज़न 3 डी प्रणाली को डीपीवीओ नाटकीय द्वारा बंद कर दिया गया था, जिन्होंने इसे पैनविज़न की ओर से विपणन किया, जो कि वैश्विक आर्थिक और 3 डी बाजार की स्थितियों का हवाला देते हुए।[citation needed]
यद्यपि DPVO ने अपने व्यवसाय संचालन को भंग कर दिया, लेकिन ओमेगा ऑप्टिकल गैर-नाटकीय बाजारों में 3 डी प्रणाली को बढ़ावा देना और बेचना जारी रखता है।ओमेगा ऑप्टिकल के 3 डी प्रणाली में प्रोजेक्शन फिल्टर और 3 डी ग्लास सम्मिलित हैं। निष्क्रिय स्टीरियोस्कोपिक 3 डी प्रणाली के अतिरिक्त, ओमेगा ऑप्टिकल ने एनाग्लिफ़ 3 डी ग्लास को बढ़ाया है। ओमेगा के लाल/सियान एनाग्लिफ़ ग्लास जटिल धातु ऑक्साइड पतली फिल्म कोटिंग्स और उच्च गुणवत्ता वाले ग्लास ऑप्टिक्स का उपयोग करते हैं।
ऑटोस्टेरोस्कोपी
इस विधि में, स्टीरियोस्कोपिक छवि को देखने के लिए चश्मा आवश्यक नहीं है।लेंटिकुलर लेंस और लंबन बैरियर टेक्नोलॉजीज में एक ही शीट पर दो (या अधिक) छवियां सम्मिलित होती हैं, संकीर्ण, बारी -बारी से स्ट्रिप्स में, और एक स्क्रीन का उपयोग करते हुए जो या तो दो छवियों के स्ट्रिप्स में से एक को अवरुद्ध करता है (लंबन बाधा ओं के स्थिति में) या समान रूप से उपयोग करता है संकीर्ण लेंस छवि के स्ट्रिप्स को मोड़ने के लिए और इसे पूरी छवि को भरने के लिए प्रकट होते हैं (लेंटिकुलर प्रिंट के स्थिति में)। स्टीरियोस्कोपिक प्रभाव का उत्पादन करने के लिए, व्यक्ति को परिनियोजित किया जाना चाहिए ताकि एक आंख दो छवियों में से एक को देखे और दूसरा दूसरे को देखता हो। मल्टीव्यू ऑटो-स्टेरेस्कोपी के ऑप्टिकल सिद्धांतों को एक सदी से अधिक समय से जाना जाता है।[11]
दोनों छवियों को एक उच्च-लाभ, नालीदार स्क्रीन पर प्रस्तुत किया जाता है जो तीव्र कोणों पर प्रकाश को दर्शाता है। स्टीरियोस्कोपिक छवि को देखने के लिए, दर्शक को एक बहुत ही संकीर्ण कोण के अंदर बैठना चाहिए जो स्क्रीन के लगभग लंबवत है, दर्शकों के आकार को सीमित करता है।1940 से 1948 तक रूस में कई शॉर्ट्स की नाटकीय प्रस्तुति के लिए लेंटिकुलर का उपयोग किया गया था[12] और 1946 में फीचर-लंबाई वाली फिल्म रॉबिन्सन क्रूसो के लिए[13]
हालांकि नाटकीय प्रस्तुतियों में इसका उपयोग सीमित रहा है, लेकिन लेंटिकुलर का उपयोग व्यापक रूप से विभिन्न प्रकार की नवीनता वस्तुओं के लिए किया गया है और यहां तक कि शौकिया 3 डी फोटोग्राफी में भी उपयोग किया गया है।[14][15] हाल के उपयोग में 2009 में जारी किए गए आलोचनार डिस्प्ले के साथ Fujifilm Finepix Real 3D डी सम्मिलित है।
अन्य
फुफ्विच प्रभाव एक मनो परस्पर है जिसमें: विकट: दृश्य के क्षेत्र में किसी वस्तु की पार्श्व गति को दृश्य कॉर्टेक्स द्वारा एक गहराई घटक के रूप में व्याख्या की जाती है, दो आंखों के बीच सिग्नल टाइमिंग में एक सापेक्ष अंतर के कारण।
PRISM (ऑप्टिक्स) चश्मा क्रॉस-व्यूइंग को आसान बनाने के साथ-साथ अधिक/अंडर-व्यूइंग संभव बनाता है, उदाहरणों में KMQ दर्शक सम्मिलित हैं।
वॉल्यूमेट्रिक डिस्प्ले
वॉल्यूमेट्रिक डिस्प्ले एक वॉल्यूम के अंदर प्रकाश के बिंदुओं को प्रदर्शित करने के लिए कुछ भौतिक तंत्र का उपयोग करते हैं।इस तरह के डिस्प्ले पिक्सेल के अतिरिक्त स्वर का उपयोग करते हैं। वॉल्यूमेट्रिक डिस्प्ले में मल्टीप्लेनर डिस्प्ले सम्मिलित हैं, जिनमें कई डिस्प्ले प्लेन स्टैक किए गए हैं, और पैनल डिस्प्ले को घूर्णन करते हैं, जहां एक घूर्णन पैनल एक वॉल्यूम को बाहर निकालता है।
अन्य तकनीकों को एक उपकरण के ऊपर हवा में प्रकाश डॉट्स प्रोजेक्ट करने के लिए विकसित किया गया है।एक इन्फ्रारेड लेजर अंतरिक्ष में गंतव्य पर केंद्रित होता है, जो प्लाज्मा के एक छोटे से बुलबुले को उत्पन्न करता है जो दृश्यमान प्रकाश का उत्सर्जन करता है।
प्रकाश क्षेत्र प्रदर्शन
एक प्रकाश क्षेत्र प्रदर्शन प्रदर्शन की सतह पर एक प्रकाश क्षेत्र को पुनः बनाने की कोशिश करता है।एक 2 डी डिस्प्ले के विपरीत जो प्रत्येक पिक्सेल पर एक अलग रंग दिखाता है, एक प्रकाश क्षेत्र प्रदर्शन प्रत्येक दिशा के लिए प्रत्येक पिक्सेल पर एक अलग रंग दिखाता है जो प्रकाश किरण का उत्सर्जन करता है।इस तरह, विभिन्न पदों से आँखें प्रदर्शन पर अलग -अलग चित्र देखेंगे, लंबन बनाएंगे और इस प्रकार 3 डी की भावना उत्पन्न करेंगे।एक प्रकाश क्षेत्र का प्रदर्शन एक कांच की खिड़की की तरह होता है, लोग कांच के पीछे 3 डी ऑब्जेक्ट देखते हैं, इसके बावजूद कि वे सभी प्रकाश किरणों को देखते हैं जो ग्लास से (के माध्यम से) आते हैं।
होलोग्राफिक डिस्प्ले
होलोग्राफिक डिस्प्ले एक डिस्प्ले तकनीक है जिसमें सभी चार नेत्र तंत्र प्रदान करने की क्षमता होती है: दूरबीन असमानता, गति लंबन, आवास (आंख) और अभिसरण (आंख) ।तीन-आयामी अंतरिक्ष वस्तुओं को बिना किसी विशेष चश्मे के पहने हुए देखा जा सकता है और कोई भी नेत्रावसाद मानव आंखों के कारण नहीं होगा।
2013 में, एक सिलिकॉन वैली कंपनी लीया इंक ने एक बहु-दिशात्मक बैकलाइट का उपयोग करते हुए मोबाइल उपकरणों (घड़ियों, स्मार्टफोन या टैबलेट) के लिए अच्छी तरह से अनुकूल होलोग्राफिक डिस्प्ले का निर्माण प्रारंभ किया और एक विस्तृत पूर्ण-पैरेलैक्स कोण दृश्य की स्वीकृति दी, जो बिना आवश्यकता के तीन आयामी अंतरिक्ष सामग्री को देखने के लिए था।चश्मा।[16] उनका पहला उत्पाद एक मोबाइल फोन (लाल हाइड्रोजन एक ) का भाग था और बाद में अपने स्वयं के एंड्रॉइड टैबलेट में।[citation needed]
इंटीग्रल इमेजिंग
इंटीग्रल इमेजिंग एक ऑटोस्टेरोस्कोपी या बहुमूत्र ी 3 डी डिस्प्ले है, जिसका अर्थ है कि यह दर्शक की ओर से विशेष चश्मे के उपयोग के बिना एक 3 डी छवि प्रदर्शित करता है।यह छवि के सामने माइक्रोलेंस (एक लेंटिकुलर लेंस के समान) की एक सरणी रखकर इसे प्राप्त करता है, जहां प्रत्येक लेंस देखने के कोण के आधार पर अलग दिखता है।इस प्रकार एक 2 डी छवि प्रदर्शित करने के अतिरिक्त जो हर दिशा से समान दिखती है, यह एक 3 डी प्रकाश क्षेत्र को पुन: प्रस्तुत करता है, जो स्टीरियो छवियों को बनाता है जो कि दर्शक के चलने पर लंबन को प्रदर्शित करता है।
कंप्रेसिव लाइट फील्ड डिस्प्ले
कंप्रेसिव लाइट फील्ड नामक एक नई डिस्प्ले तकनीक विकसित की जा रही है।ये प्रोटोटाइप डिस्प्ले डिस्प्ले के समय लेयर्ड एलसीडी पैनल और कम्प्रेशन एल्गोरिदम का उपयोग करते हैं।डिजाइन में दोहरी सम्मिलित हैं[17] और बहुपरत[18][19][20] डिवाइस जो एल्गोरिदम द्वारा संचालित होते हैं जैसे कि गणना की गई टोमोग्राफी और गैर-नकारात्मक मैट्रिक्स कारक और गैर-नकारात्मक टेन्सर कारक।
समस्याएं
इनमें से प्रत्येक डिस्प्ले तकनीकों को सीमाएं देखी जा सकती हैं, चाहे दर्शक का स्थान, बोझिल या भद्दा उपकरण या महान कीमत।विरूपण साक्ष्य-मुक्त 3 डी छवियों का प्रदर्शन मुश्किल है।[citation needed]
यह भी देखें
संदर्भ
- ↑ Holliman, Nicolas S.; Dodgson, Neil A.; Favalora, Gregg E.; Pockett, Lachlan (June 2011). "Three-Dimensional Displays: A Review and Applications Analysis" (PDF). IEEE Transactions on Broadcasting. 57 (2).
- ↑ "New holographic waveguide augments reality". IOP Physic World. 2014.
- ↑ "Holographic Near-Eye Displays for Virtual and Augmented Reality". Microsoft Research. 2017.
- ↑ Martins, R; Shaoulov, V; Ha, Y; Rolland, J (2007). "A mobile head-worn projection display". Opt Express. 15 (22): 14530–8. Bibcode:2007OExpr..1514530M. doi:10.1364/oe.15.014530. PMID 19550732.
- ↑ Héricz, D; Sarkadi, T; Lucza, V; Kovács, V; Koppa, P (2014). "Investigation of a 3D head-mounted projection display using retro-reflective screen". Opt Express. 22 (15): 17823–9. Bibcode:2014OExpr..2217823H. doi:10.1364/oe.22.017823. PMID 25089403.
- ↑ Make Your own Stereo Pictures Julius B. Kaiser The Macmillan Company 1955 page 271
- ↑ Amazing 3D by Hal Morgan and Dan Symmes Little, Broawn & Company (Canada) Limited, pp. 15–16.
- ↑ ""The Chopper", article by Daniel L. Symmes". 3dmovingpictures.com. Retrieved 2010-10-14.
- ↑ "Samsung 3D". www.berezin.com. Retrieved 2017-12-02.
- ↑ "Seeing is believing""; Cinema Technology, Vol 24, No.1 March 2011
- ↑ Okoshi, Three-Dimensional Imaging Techniques, Academic Press, 1976
- ↑ Amazing 3D by Hal Morgan and Dan Symmes Little, Broawn & Company (Canada) Limited, pp. 104–105
- ↑ "The ASC: Ray Zone and the "Tyranny of Flatness" « John Bailey's Bailiwick". May 18, 2012.
- ↑ Make Your own Stereo Pictures Julius B. Kaiser The Macmillan Company 1955 pp. 12–13.
- ↑ Son of Nimslo, John Dennis, Stereo World May/June 1989 pp. 34–36.
- ↑ Fattal, David; Peng, Zhen; Tran, Tho; Vo, Sonny; Fiorentino, Marco; Brug, Jim; Beausoleil, Raymond G. (2013). "A multi-directional backlight for a wide-angle, glasses-free three-dimensional display". Nature. 495 (7441): 348–351. Bibcode:2013Natur.495..348F. doi:10.1038/nature11972. PMID 23518562. S2CID 4424212.
- ↑ Lanman, D.; Hirsch, M.; Kim, Y.; Raskar, R. (2010). "Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization".
- ↑ Wetzstein, G.; Lanman, D.; Heidrich, W.; Raskar, R. (2011). "Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays". ACM Transactions on Graphics (SIGGRAPH).
- ↑ Lanman, D.; Wetzstein, G.; Hirsch, M.; Heidrich, W.; Raskar, R. (2019). "Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs". ACM Transactions on Graphics (SIGGRAPH Asia).
- ↑ Wetzstein, G.; Lanman, D.; Hirsch, M.; Raskar, R. (2012). "Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting". ACM Transactions on Graphics (SIGGRAPH).
प्रदर्शन श्रेणी: प्रदर्शन प्रौद्योगिकी] श्रेणी: प्रदर्शन उपकरण] श्रेणी: उभरती हुई प्रौद्योगिकियां