प्रज्वलन प्रणाली
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
प्रज्वलन (इग्निशन) प्रणाली एक चिनगारी उत्पन्न करता है या चिनगारी (स्पार्क) प्रज्वलन आंतरिक दहन इंजन, तेल से चलने वाले और गैस से चलने वाले बायलर, रॉकेट इंजन आदि में ईंधन तथा वायु के मिश्रण को प्रज्वलित करने के लिए एक उच्च तापमान पर एक इलेक्ट्रोड को गर्म करता है। आंतरिक दहन इंजनों के लिए व्यापक अनुप्रयोग पेट्रोल (गैसोलीन) सड़क वाहनों जैसे कारों और मोटरसाइकिलों में है।
संपीड़न प्रज्वलन डीजल इंजन संपीड़न की गर्मी से ईंधन तथा वायु के मिश्रण को प्रज्वलित करते हैं और एक चिंगारी की आवश्यकता नहीं होती है। उनके पास सामान्य रूप से दीप्ति प्लग होते हैं जो ठंड के मौसम में दहन कक्ष को प्रारम्भ करने की स्वीकृति देने के लिए पहले से गरम करते हैं। अन्य इंजन प्रज्वलन के लिए एक लौ (ज्वाला), या एक गर्म नलिका का उपयोग कर सकते हैं। जबकि यह बहुत प्रारम्भिक इंजनों के लिए सामान्य था, यह अब दुर्लभ है।
पहला विद्युतीय प्रज्वलन चिंगारी संभवतः 1780 के दशक की एलेसेंड्रो वोल्टा की टॉय इलेक्ट्रिक पिस्टल थी।
सीगफ्राइड मार्कस ने 7 अक्टूबर 1884 को "गैस इंजन के लिए विद्युत प्रज्वलन उपकरण" का पेटेंट (किसी आविष्कार का पूर्ण अधिकार) कराया।[1]
इतिहास
यह भी देखें: आंतरिक दहन इंजन का इतिहास
मैग्नेटो प्रणाली
अधिक जानकारी: प्रज्वलन मैग्नेटो
चिनगारी प्रज्वलन का सबसे सरल रूप यह है कि प्रज्वलन मैग्नेटो (विद्युत-उत्पादक यंत्र ) का उपयोग करना। इंजन एक कॉइल के अंदर एक चुंबक को घूमता है, या, पहले के डिजाइनों में, एक निश्चित चुंबक के अंदर एक कॉइल, और एक संपर्क ब्रेकर भी संचालित करता है, वर्तमान को बाधित करता है और विद्युत-दाब को एक छोटे से अंतर को कूदने के लिए पर्याप्त रूप से बढ़ाया जाता है। स्पार्क प्लग सीधे प्रज्वलन मैग्नेटो आउटपुट से जुड़े होते हैं। प्रारम्भिक मैग्नेटोस में एक कॉइल था, जिसमें दहन कक्ष के अंदर संपर्क ब्रेकर (स्पार्किंग प्लग) था। लगभग 1902 में, बॉश ने एक निश्चित स्पार्किंग प्लग के साथ एक डबल-कॉइल मैग्नेटो और सिलेंडर के बाहर संपर्क ब्रेकर पेश किया। आधुनिक कारों में मैग्नेटोस का उपयोग नहीं किया जाता है, लेकिन क्योंकि वे अपनी खुद की बिजली उत्पन्न करते हैं, वे प्रायः छोटे इंजनों पर पाए जाते हैं जैसे कि इंजन से साइकिल, लॉन की घास काटने वाली मशीन, स्नोबोवर्स, चेनसॉ, आदि में पाए जाते हैं, जहां बैटरी-आधारित विद्युत प्रणाली किसी भी संयोजन के लिए सम्मिलित नहीं है आवश्यकता, वजन, कीमत और विश्वसनीयता कारणों की। वे पारस्परिक इंजन पर भी उपयोग किए जाते हैं पिस्टन-संलग्न विमान इंजन यद्यपि एक विद्युत आपूर्ति उपलब्ध है, मैग्नेटो प्रणाली का उपयोग मुख्य रूप से उनकी उच्च विश्वसनीयता के कारण किया जाता है।
मैग्नेटोस का उपयोग छोटे इंजन के पूर्वज, हिट और मिस इंजन पर किया गया था। स्थिर हिट और मिस इंजन जो बीसवीं शताब्दी की प्रारम्भ में, बैटरी प्रारम्भ करने और लाइटिंग से पहले पुराने गैसोलीन या डिस्टिलेट फार्म ट्रैक्टर ों पर उपयोग किया गया था, और विमान पिस्टन इंजन पर। मैग्नेटोस का उपयोग इन इंजनों में किया गया था क्योंकि उनकी सादगी और स्व-निहित ऑपरेशन अधिक विश्वसनीय था, और क्योंकि मैग्नेटोस का वजन बैटरी और डाइनेमो या आवर्तित्र से कम था।
विमान के इंजन में सामान्य रूप से विफलता की स्थिति में अतिरेक (इंजीनियरिंग) प्रदान करने के लिए दोहरी मैग्नेटोस होता है, और केंद्र की ओर दोनों ओर से ईंधन तथा वायु के मिश्रण को अच्छी तरह से और शीघ्रता से जलने से दक्षता बढ़ाने के लिए। राइट ब्रदर्स ने 1902 में आविष्कार किए गए एक मैग्नेटो का उपयोग किया और 1903 में डेटन, ओहियो के आविष्कारक, विन्सेंट ग्रोबी ऐप्पल द्वारा उनके लिए बनाया।[2] कुछ पुराने ऑटोमोबाइल में एक मैग्नेटो प्रणाली और एक बैटरी सक्रिय प्रणाली (नीचे देखें) दोनों एक साथ चल रही थी, जो उस समय प्रदान की गई प्रत्येक प्रणाली को सीमित प्रदर्शन के साथ सभी शर्तों के तहत उचित प्रज्वलन सुनिश्चित करने के लिए एक साथ चल रही थी। इसने गति (मैग्नेटो से) विश्वसनीय स्पार्किंग के साथ आसान प्रारम्भ (बैटरी प्रणाली से) के लाभ दिए।
कई आधुनिक मैग्नेटो प्रणाली (छोटे इंजनों को छोड़कर) ने मैग्नेटो से दूसरे (उच्च विद्युत-दाब) कॉइल को हटा दिया है और इसे नीचे वर्णित प्रज्वलन का तार के समान बाहरी कॉइल असेंबली में रखा है। इस विकास में, मैग्नेटो में कॉइल में प्रेरित करंट भी बाहरी कॉइल के प्राथमिक से बहता है, परिणामस्वरूप माध्यमिक में एक उच्च विद्युत-दाब उत्पन्न करता है। इस तरह की प्रणाली को 'ऊर्जा हस्तांतरण प्रणाली' के रूप में संदर्भित किया जाता है। ऊर्जा हस्तांतरण प्रणाली प्रज्वलन विश्वसनीयता में अंतिम प्रदान करती है।
स्विच करने योग्य प्रणाली
एक मैग्नेटो का आउटपुट इंजन की गति पर निर्भर करता है, और इसलिए प्रारम्भ करना समस्याग्रस्त हो सकता है। कुछ मैग्नेटोस में एक आवेग प्रणाली सम्मिलित होती है, जो चुंबक को उचित क्षण में शीघ्रता से घूमती है, जिससे मंद गति से क्रैंकिंग गति से प्रारम्भ करना आसान हो जाता है। कुछ इंजन, जैसे कि विमान, लेकिन फोर्ड मॉडल टी भी, एक प्रणाली का उपयोग करते थे, जो गैर -रिचार्जेबल सूखी कोशिकाओं पर निर्भर करता था, (एक बड़ी टॉर्च बैटरी के समान, और जो कि आधुनिक ऑटोमोबाइल के रूप में एक आवेशित प्रणाली द्वारा बनाए नहीं रखा गया था) इंजन को प्रारम्भ करने के लिए या कम गति से प्रारम्भ करने और चलने के लिए ऑपरेटर हाई स्पीड ऑपरेशन के लिए मैग्नेटो ऑपरेशन पर प्रज्वलन को मैन्युअल रूप से स्विच करेगा।
कम विद्युत-दाब बैटरी से चिंगारी के लिए उच्च विद्युत-दाब प्रदान करने के लिए, एक 'टिकर' का उपयोग किया गया था, जो अनिवार्य रूप से एक बार व्यापक इलेक्ट्रिक बजर का एक बड़ा संस्करण था। इस उपकरण के साथ, प्रत्यक्ष वर्तमान एक विद्युत से होकर गुजरता है जो संपर्क बिंदुओं की एक जोड़ी को खोलता है, वर्तमान को बाधित करता है;चुंबकीय क्षेत्र ढह जाता है, वसंत-लोड किए गए बिंदु पुनः बंद हो जाते हैं, सर्किट को पुनः स्थापित किया जाता है, और चक्र तेजी से दोहराता है। हालांकि, तेजी से ढहने वाला चुंबकीय क्षेत्र, हालांकि, कॉइल में एक उच्च विद्युत-दाब को प्रेरित करता है जो केवल संपर्क बिंदुओं पर चढ़कर खुद को राहत दे सकता है; जबकि बजर के स्थिति में यह एक समस्या है क्योंकि यह बिंदुओं को एक साथ ऑक्सीकरण और/या वेल्डिंग करने का कारण बनता है, प्रज्वलन प्रणाली के स्थिति में यह स्पार्क प्लग को संचालित करने के लिए उच्च विद्युत-दाब का स्रोत बन जाता है।
ऑपरेशन के इस मोड में, कॉइल निरंतर गूंजता रहेगा, स्पार्क्स की एक निरंतर ट्रेन का उत्पादन करेगा। पूरे तंत्र को 'मॉडल टी चिनगारी कॉइल' (आधुनिक प्रज्वलन कॉइल के विपरीत, जो केवल प्रणाली का वास्तविक कॉइल घटक है) के रूप में जाना जाता था। परिवहन के रूप में मॉडल टी के निधन के लंबे समय बाद, वे इलेक्ट्रिकल होम एक्सपेरिमेंटर्स के लिए उच्च विद्युत-दाब का एक लोकप्रिय स्व-निहित स्रोत बने रहे, जो 1960 के दशक की प्रारम्भ में स्कूल विज्ञान मेलों के लिए लोकप्रिय यांत्रिकी और परियोजनाओं जैसे पत्रिकाओं में लेखों में दिखाई दे रहे थे। यूके में इन उपकरणों को सामान्य रूप से ट्रेश कॉइल के रूप में जाना जाता था और 1910 से पहले की कारों में लोकप्रिय थे, और 1925 के आसपास बड़े इंजनों के साथ वाणिज्यिक वाहनों में भी प्रारम्भ होने में आसानी के लिए।
मॉडल टी मैग्नेटो (चक्का में निर्मित) आधुनिक कार्यान्वयन से भिन्न होता है, जो सीधे आउटपुट पर उच्च विद्युत-दाब प्रदान नहीं करता है;उत्पादित अधिकतम विद्युत-दाब लगभग 30 वोल्ट था, और इसलिए प्रज्वलन के लिए उच्च पर्याप्त विद्युत-दाब प्रदान करने के लिए चिनगारी कॉइल के माध्यम से भी चलाना पड़ा, जैसा कि ऊपर वर्णित है, हालांकि कॉइल इस स्थिति में निरंतर गूंज नहीं देगा, केवल प्रति चिनगारी प्रति चिंगारी से गुजरना होगा। या तो स्थिति में, कम विद्युत-दाब को इंजन के सामने लगे टाइमर द्वारा उपयुक्त स्पार्क प्लग में स्विच किया गया था। इसने आधुनिक वितरक के बराबर कार्य किया, हालांकि कम विद्युत-दाब को निर्देशित करके, वितरक के लिए उच्च विद्युत-दाब नहीं।प्रज्वलन समय स्टीयरिंग पर लगे एक लीवर के माध्यम से इस तंत्र को घुमाकर समायोज्य था। चूंकि चिनगारी का सटीक समय कॉइल के अंदर 'टाइमर' और कांपने वाले संपर्कों पर निर्भर करता है, यह बाद के वितरक के ब्रेकर बिंदुओं से कम सुसंगत है। हालांकि, कम गति और ऐसे प्रारम्भिक इंजनों के कम संपीड़न के लिए, यह अभेद्य समय स्वीकार्य था।
बैटरी और कॉइल-संचालित प्रज्वलन
ऑटोमोबाइल के लिए विद्युत प्रारम्भ के सार्वभौमिक गोद लेने के साथ, और एक बड़ी बैटरी (बिजली) की उपलब्धता को बिजली का एक निरंतर स्रोत प्रदान करने के लिए, मैग्नेटो प्रणाली को उन प्रणालियों के लिए छोड़ दिया गया था जो बैटरी विद्युत-दाब पर वर्तमान को बाधित करते थे, विद्युत-दाब को बढ़ाने के लिए एक प्रज्वलन कॉइल का उपयोग करते हुए। प्रज्वलन की जरूरतों के लिए, और एक वितरक सही समय पर सही स्पार्क प्लग में आगामी पल्स को रूट करने के लिए।
बेंज पेटेंट इंजन कार और फोर्ड मॉडल टी ने एक कांपबर कॉइल प्रज्वलन प्रणाली का उपयोग किया। एक कांपलर कॉइल एक बैटरी-संचालित प्रेरण कुंडली था;कांपने वाले ने कॉइल के माध्यम से करंट को बाधित किया और प्रत्येक फायरिंग के समय स्पार्क्स की एक त्वरित श्रृंखला का कारण बना। ट्रेम्बलर कॉइल को इंजन चक्र में एक उपयुक्त बिंदु पर सक्रिय किया जाएगा। मॉडल टी में, चार-सिलेंडर इंजन में प्रत्येक सिलेंडर के लिए एक कांपलर कॉइल था;एक कम्यूटेटर (टाइमर केस) ने ट्रेम्बलर कॉइल को शक्ति प्रदान की। मॉडल टी को बैटरी पर प्रारम्भ किया जाएगा, लेकिन फिर एक मैग्नेटो पर स्विच किया जाएगा।[3] डेल्को इलेक्ट्रॉनिक्स द्वारा एक अपेक्षाकृत अधिक प्रज्वलन प्रणाली विकसित किया गया था। डेटन इंजीनियरिंग लेबोरेटरीज कंपनी (डेल्को) और 1912 कैडिलैक में पेश किया गया था।[4] यह प्रज्वलन चार्ल्स केटरिंग द्वारा विकसित किया गया था और इसके दिन में एक आश्चर्य था। इसमें एक एकल प्रज्वलन कॉइल, ब्रेकर पॉइंट्स (स्विच), एक संधारित्र (ब्रेक पर अंक बढ़ने से बिंदुओं को रोकने के लिए) और एक वितरक (प्रज्वलन कॉइल से सही सिलेंडर तक बिजली को निर्देशित करने के लिए) सम्मिलित थे।
अंक कॉइल चुंबकीय क्षेत्र को निर्माण करने की स्वीकृति देते हैं। जब अंक एक सीएएम व्यवस्था द्वारा खुलते हैं, तो चुंबकीय क्षेत्र प्राथमिक में एक ईएमएफ को प्रेरित करता है जो बैटरी विद्युत-दाब की तुलना में बहुत बड़ा होता है और ट्रांसफार्मर एक्शन माध्यमिक से एक बड़ा आउटपुट विद्युत-दाब (20 केवी या अधिक) पैदा करता है।
संधारित्र उन बिंदुओं पर वृद्धि को दबा देता है जब वे खुलते हैं;संधारित्र के बिना, कॉइल में संग्रहीत ऊर्जा को स्पार्क प्लग गैप के अतिरिक्त बिंदुओं पर एक चाप में खर्च किया जाएगा। केटरिंग प्रणाली ऑटोमोटिव उद्योग में कई वर्षों तक प्राथमिक प्रज्वलन प्रणाली बन गया, इसकी सांचा कीमत और सापेक्ष सादगी के कारण।
आधुनिक प्रज्वलन प्रणाली
प्रज्वलन प्रणाली को सामान्य रूप से एक प्रमुख संचालित प्रज्वलन बटन द्वारा नियंत्रित किया जाता है।
यंत्रवत् समयबद्ध प्रज्वलन
अधिकांश फोर स्ट्रोक इंजन ने यंत्रवत् समय पर विद्युत प्रज्वलन प्रणाली का उपयोग किया है। प्रणाली का दिल वितरक है। वितरक में इंजन की ड्राइव, ब्रेकर पॉइंट्स का एक सेट, एक कंडेनसर, एक रोटर और एक वितरक कैप द्वारा संचालित एक घूर्णन कैम होता है। वितरक के लिए बाहरी प्रज्वलन कॉइल, स्पार्क प्लग और तारों को वितरक को स्पार्क प्लग और प्रज्वलन कॉइल से जोड़ने के लिए है। (see diagram Below)
प्रणाली एक लीड-एसिड बैटरी द्वारा संचालित है। लीड-एसिड बैटरी, जो कार के विद्युत प्रणाली द्वारा एक डायनमो या अल्टरनेटर (ऑटो) का उपयोग करके चार्ज की जाती है।इंजन संपर्क ब्रेकर पॉइंट संचालित करता है, जो वर्तमान को एक इंडक्शन कॉइल (प्रज्वलन कॉइल के रूप में जाना जाता है) के लिए बाधित करता है।
प्रज्वलन कॉइल में दो ट्रांसफार्मर वाइंडिंग होते हैं - प्राथमिक और माध्यमिक। ये वाइंडिंग एक सामान्य चुंबकीय कोर साझा करते हैं।प्राथमिक में एक वैकल्पिक वर्तमान कोर में एक वैकल्पिक चुंबकीय क्षेत्र को प्रेरित करता है और इसलिए माध्यमिक में एक वैकल्पिक वर्तमान प्रज्वलन कॉइल के माध्यमिक प्राथमिक से अधिक मोड़ हैं। यह एक स्टेप-अप ट्रांसफार्मर है, जो द्वितीयक वाइंडिंग से एक उच्च विद्युत-दाब का उत्पादन करता है। प्राथमिक घुमावदार बैटरी से जुड़ा होता है (सामान्य रूप से एक वर्तमान-सीमित विद्युत गिट्टी रोकनेवाला के माध्यम से) प्रज्वलन कॉइल के अंदर प्रत्येक वाइंडिंग का एक छोर एक साथ जुड़ा हुआ है। यह सामान्य बिंदु संधारित्र/संपर्क ब्रेकर जंक्शन पर ले जाया जाता है। अन्य, उच्च विद्युत-दाब, माध्यमिक का अंत वितरक के रोटर से जुड़ा हुआ है।
प्रज्वलन फायरिंग अनुक्रम अंक (या संपर्क ब्रेकर) के साथ प्रारम्भ होता है। बैटरी से एक स्थिर वर्तमान प्रवाह, वर्तमान-सीमित अवरोधक के माध्यम से, प्राथमिक कॉइल के माध्यम से, बंद ब्रेकर बिंदुओं के माध्यम से और अंत में बैटरी में वापस। यह वर्तमान कॉइल के कोर के अंदर एक चुंबकीय क्षेत्र का उत्पादन करता है। यह चुंबकीय क्षेत्र ऊर्जा जलाशय बनाता है जिसका उपयोग प्रज्वलन चिनगारी को चलाने के लिए किया जाएगा।
जैसे ही इंजन क्रैंकशाफ्ट (अरालदंड) परिवर्तित कर जाता है, यह वितरक शाफ्ट को आधी गति से भी परिवर्तित कर देता है। चार-स्ट्रोक इंजन में, क्रैंकशाफ्ट प्रज्वलन चक्र के लिए दो बार मुड़ता है। एक मल्टी-लोबेड कैम वितरक शाफ्ट से जुड़ा हुआ है;प्रत्येक इंजन सिलेंडर के लिए एक लोब है। एक स्प्रिंग-लोडेड रगड़ ब्लॉक कैम समोच्च के लोबेड भागों का अनुसरण करता है और अंक के उद्घाटन और समापन को नियंत्रित करता है। अधिकांश चक्र के समय, रगड़ ब्लॉक एक करंट को प्रज्वलन कॉइल के प्राथमिक वाइंडिंग में निर्माण करने की स्वीकृति देने के लिए बिंदुओं को बंद रखता है। जैसे ही एक पिस्टन इंजन के संपीड़न चक्र के शीर्ष पर पहुंचता है, कैम का लोब उच्च है जो ब्रेकर बिंदुओं को खोलने के लिए पर्याप्त है। अंक खोलने से प्राथमिक कॉइल के माध्यम से धारा बंद हो जाती है। प्राथमिक के माध्यम से स्थिर वर्तमान के बिना, कॉइल में उत्पन्न चुंबकीय क्षेत्र तुरंत गिर जाता है। चुंबकीय प्रवाह के परिवर्तन की यह उच्च दर कॉइल के द्वितीयक वाइंडिंग में एक उच्च विद्युत-दाब को प्रेरित करती है जो अंततः स्पार्क प्लग के अंतर को चाप और ईंधन को प्रज्वलित करती है।
चिनगारी जनरेशन स्टोरी थोड़ी अधिक जटिल है। प्रज्वलन कॉइल का उद्देश्य एक चिनगारी बनाना है जो स्पार्क प्लग के अंतराल को कूदता है, जो हो सकता है 0.025 inches (0.64 mm) (इसे रोटर-टू-डिस्ट्रिब्यूटर-पोस्ट गैप को भी कूदना है)। फिलहाल अंक खुलते हैं, बहुत छोटा अंतर है, इसके बारे में कहना 0.00004 inches (0.001 mm), बिंदुओं के पार बिंदुओं को अलग -अलग होने से रोकने के लिए कुछ किया जाना चाहिए; यदि अंक चाप, तो वे उस चुंबकीय ऊर्जा को सूखा देंगे जो स्पार्क प्लग के लिए अभिप्रेत थी। संधारित्र (कंडेनसर) उस कार्य को करता है।संधारित्र अस्थायी रूप से प्राथमिक वर्तमान बहता रहता है, इसलिए बिंदुओं पर विद्युत-दाब बिंदु के आर्किंग विद्युत-दाब के नीचे है। एक दौड़ है: बिंदुओं पर विद्युत-दाब बढ़ रहा है क्योंकि प्राथमिक वर्तमान संधारित्र को चार्ज करता है, लेकिन एक ही समय में अंक का पृथक्करण (और परिणामस्वरूप आर्किंग विद्युत-दाब) बढ़ रहा है।अंततः, बिंदु पृथक्करण कुछ के रूप में बढ़ जाएगा 0.015 inches (0.38 mm), बिंदुओं का अधिकतम पृथक्करण।
आर्किंग विद्युत-दाब के नीचे रहने के अतिरिक्त, प्रज्वलन प्रणाली एक एयर गैप के लिए ब्रेकडाउन विद्युत-दाब के नीचे के बिंदुओं पर विद्युत-दाब रखता है ताकि बिंदुओं पर एक चमक निर्वहन को रोका जा सके। इस तरह की चमक डिस्चार्ज शीघ्रता से एक चाप में संक्रमण होगी, और आर्क स्पार्क प्लग को फायरिंग से रोक देगा। वायु में एक चमक डिस्चार्ज के लिए न्यूनतम विद्युत-दाब लगभग 320 & nbsp; v है। परिणामस्वरूप, संधारित्र मूल्य को भी 320 & nbsp; v से कम बिंदुओं पर विद्युत-दाब रखने के लिए चुना जाता है। जब वे अलग -अलग होते हैं, तो अंक को बढ़ाते हुए, प्रज्वलन कॉइल में केवल एक साधारण प्रारंभ करनेवाला का उपयोग करने के अतिरिक्त एक माध्यमिक घुमाव सम्मिलित होता है। यदि ट्रांसफार्मर में 100: 1 अनुपात है, तो माध्यमिक विद्युत-दाब 30 & nbsp; kv तक पहुंच सकता है।
प्रज्वलन कॉइल का उच्च विद्युत-दाब आउटपुट रोटर (वितरक) से जुड़ा होता है जो वितरक शाफ्ट के शीर्ष पर बैठता है। रोटर के चारों ओर वितरक टोपी है। व्यवस्था क्रमिक रूप से माध्यमिक वाइंडिंग के आउटपुट को उपयुक्त स्पार्क प्लग के लिए निर्देशित करती है। कॉइल के माध्यमिक (सामान्य रूप से 20,000 से 50,000 वोल्ट) से उच्च बर्बाद चिंगारी प्लग के अंतराल के पार एक चिनगारी का कारण बनता है जो बदले में इंजन के अंदर संपीड़ित वायु-ईंधन मिश्रण को प्रज्वलित करता है। यह इस चिंगारी का निर्माण है जो उस ऊर्जा का उपभोग करता है जो प्रज्वलन कॉइल के चुंबकीय क्षेत्र में संग्रहीत की गई थी।
फ्लैट ट्विन सिलेंडर 1948 Citroën 2CV ने एक डिस्ट्रीब्यूटर के बिना एक डबल एंडेड कॉइल का उपयोग किया, और बस एक बर्बाद चिनगारी प्रणाली में, ब्रेकर्स से संपर्क किया।
कुछ दो-सिलेंडर मोटरसाइकिल और मोटर स्कूटरों में दो संपर्क बिंदु थे जो एक वितरक के बिना दो स्पार्किंग प्लग में से एक से सीधे जुड़े जुड़वां कॉइल को खिलाते थे;उदा।बीएसए थंडरबोल्ट और ट्रायम्फ टाइग्रेस ।
आठ या अधिक सिलेंडर के साथ उच्च प्रदर्शन इंजन जो उच्च R.P.M में काम करते हैं। (जैसे कि मोटर रेसिंग में उपयोग किए जाने वाले) दोनों चिनगारी की उच्च दर और सरल प्रज्वलन सर्किट की तुलना में उच्च चिनगारी ऊर्जा दोनों की मांग कर सकते हैं। इन अनुकूलन में से किसी एक का उपयोग करके इस समस्या को दूर किया जाता है:
- कॉइल, ब्रेकर और कंडेनसर के दो पूर्ण सेट प्रदान किए जा सकते हैं- इंजन के प्रत्येक आधे भाग के लिए एक सेट, जो सामान्य रूप से वी -8 या वी -12 कॉन्फ़िगरेशन में व्यवस्थित होता है। यद्यपि दो प्रज्वलन प्रणाली के भाग विद्युत रूप से स्वतंत्र होते हैं, वे सामान्य रूप से एक एकल वितरक को साझा करते हैं जो इस स्थिति में घूर्णन कैम द्वारा संचालित दो ब्रेकर होते हैं, और दो उच्च विद्युत-दाब इनपुट के लिए दो अलग -थलग संचालन विमानों के साथ एक रोटर होता है।
- एक कैम और एक रिटर्न स्प्रिंग द्वारा संचालित एक एकल ब्रेकर उच्च आरपीएम पर संपर्क उछाल या फ्लोट की प्रारम्भ से चिनगारी दर में सीमित है। इस सीमा को ब्रेकर के लिए एक 'ब्रेकर्स की जोड़ी' (उर्फ ड्यूल पॉइंट्स) के लिए प्रतिस्थापित करके दूर किया जा सकता है, जो कि समानांतर में विद्युत रूप से जुड़े होते हैं, लेकिन कैम के विपरीत किनारों पर होते हैं ताकि वे चरण से बाहर हो जाएं। प्रत्येक ब्रेकर तब एक एकल ब्रेकर की दर से वर्तमान प्रवाह को स्विच करता है और कॉइल में वर्तमान बिल्डअप के लिए निवास का समय अधिकतम किया जाता है क्योंकि इसे ब्रेकरों के बीच साझा किया जाता है, एक संपर्क सेट मेक जोड़ी और दूसरा ब्रेक जोड़ी है।लेम्बोर्गिनी वी -8 इंजन में ये दोनों अनुकूलन हैं और इसलिए दो प्रज्वलन कॉइल और एक एकल वितरक का उपयोग करता है जिसमें 4 संपर्क ब्रेकर होते हैं।
एक वितरक-आधारित प्रणाली एक मैग्नेटो प्रणाली से बहुत अलग नहीं है, सिवाय इसके कि अधिक अलग-अलग तत्व सम्मिलित हैं। इस व्यवस्था के लिए भी लाभ हैं। उदाहरण के लिए, इंजन कोण के सापेक्ष संपर्क ब्रेकर पॉइंट्स की स्थिति को गतिशील रूप से एक छोटी राशि को परिवर्तित कर दिया जा सकता है, जिससे प्रज्वलन टाइमिंग को प्रति मिनट (आरपीएम) बढ़ाने या बढ़े हुए वैक्यूम में वृद्धि के साथ स्वचालित रूप से उन्नत किया जा सकता है, जिससे अपेक्षाकृत अधिक दक्षता और प्रदर्शन मिलता है।
हालाँकि, समय-समय पर ब्रेकर (ओं) के अधिकतम उद्घाटन अंतराल की जांच करना आवश्यक है, एक फीलर गेज का उपयोग करते हुए, क्योंकि यह यांत्रिक समायोजन उस समय को प्रभावित करता है, जिसके समय कॉइल चार्ज होता है, और ब्रेकरों को पुनः तैयार किया जाना चाहिए या जब वे बन गए हैं तो उन्हें पुनः तैयार किया जाना चाहिए। इलेक्ट्रिक आर्किंग द्वारा पिटाया गया। इस प्रणाली का उपयोग लगभग सार्वभौमिक रूप से 1972 तक किया गया था, जब इलेक्ट्रानिक्स प्रज्वलन प्रणाली दिखाई देने लगे थे।
इलेक्ट्रॉनिक प्रज्वलन
यांत्रिक प्रणाली का नुकसान कॉइल के प्राथमिक घुमावदार के माध्यम से कम-विद्युत-दाब उच्च-वर्तमान को बाधित करने के लिए ब्रेकर बिंदुओं का उपयोग है;अंक यांत्रिक पहनने के अधीन हैं जहां वे सीएएम को खोलने और बंद करने के लिए सवारी करते हैं, साथ ही ऑक्सीकरण और निरंतर स्पार्किंग से संपर्क सतहों पर जलते हैं। उन्हें पहनने के लिए क्षतिपूर्ति करने के लिए नियमित समायोजन की आवश्यकता होती है, और संपर्क ब्रेकरों के उद्घाटन, जो चिनगारी टाइमिंग के लिए जिम्मेदार है, यांत्रिक विविधताओं के अधीन है।
इसके अतिरिक्त, चिनगारी विद्युत-दाब भी संपर्क प्रभावशीलता पर निर्भर है, और खराब स्पार्किंग से कम इंजन दक्षता हो सकती है। एक मैकेनिकल कॉन्टैक्ट ब्रेकर प्रणाली लगभग 3 से अधिक के औसत प्रज्वलन करंट को नियंत्रित नहीं कर सकता है, जबकि अभी भी एक उचित सेवा जीवन दे रहा है, और यह चिनगारी और अल्टीमेट इंजन की गति को सीमित कर सकता है।
इलेक्ट्रॉनिक प्रज्वलन (ईआई) इन समस्याओं को समाधान करता है। प्रारंभिक प्रणालियों में, अंक अभी भी उपयोग किए गए थे, लेकिन उन्होंने केवल एक कम धारा को ग्रहण किया, जिसका उपयोग एक ठोस स्थिति स्विचिंग प्रणाली के माध्यम से उच्च प्राथमिक वर्तमान को नियंत्रित करने के लिए किया गया था। शीघ्र ही, हालांकि, यहां तक कि इन संपर्क ब्रेकर बिंदुओं को किसी तरह के कोण सेंसर द्वारा परिवर्तित कर दिया गया था - या तो ऑप्टिकल, जहां एक वैन्ड रोटर एक हल्के बीम को तोड़ता है, या अधिक सामान्य रूप से एक हॉल प्रभाव सेंसर का उपयोग करता है, जो वितरक पर घुड़सवार एक घूर्णन चुंबक का जवाब देता हैशाफ्ट। सेंसर आउटपुट को उपयुक्त सर्किटरी द्वारा आकार और संसाधित किया जाता है, फिर एक thyristor जैसे स्विचिंग उपकरण को ट्रिगर करने के लिए उपयोग किया जाता है, जो कॉइल के माध्यम से एक बड़े करंट को स्विच करता है।
पहला इलेक्ट्रॉनिक प्रज्वलन (एक कोल्ड कैथोड प्रकार) का परीक्षण 1948 में रेमी इलेक्ट्रिक द्वारा किया गया था।</ref> जबकि लुकास इंडस्ट्रीज ने 1955 में एक ट्रांजिस्टर प्रज्वलन पेश किया था, जिसका उपयोग 1962 में ब्रिटिश रेसिंग मोटर्स और कोवेंट्री चरमोत्कर्ष फार्मूला वन इंजन पर किया गया था।उस वर्ष ईआई की पेशकश प्रारम्भ की, दोनों ऑटोलाइट इलेक्ट्रिक ट्रांजिस्टर 201 और भारी सूर्य ईआई -4 (थायरट्रॉन कैपेसिटिव डिस्चार्ज) उपलब्ध होने के साथ।81, p.35। </ref> पोंटिएक (ऑटोमोबाइल) कुछ 1963 मॉडल पर एक वैकल्पिक ईआई, ब्रेकरलेस चुंबकीय पल्स-ट्रिगर डेलकोट्रोनिक की पेशकश करने वाले पहले ऑटोमेकर बन गए;यह कुछ शेवरलेट कार्वेट (सी 2) C2) s पर भी उपलब्ध था। कनाडा 1963 में भी। फोर्ड मोटर कंपनी ने अगले साल इंडियानापोलिस 500#यूरोपीय अवसरों में प्रवेश किए गए लोटस 25 के दशक में एक फोर्ड डिज़ाइन किए गए ब्रेकरलेस प्रणाली को फिट किया, 1964 में एक फ्लीट टेस्ट चलाया, और 1965 में कुछ मॉडलों पर वैकल्पिक ईआई की पेशकश प्रारम्भ की। यह इलेक्ट्रॉनिक प्रणाली। शेल्बी अमेरिकन और होल्मन और मूडी द्वारा अभियान चलाए गए GT40S पर उपयोग किया गया था।रॉबर्ट सी। होगल, फोर्ड मोटर कंपनी, ने SAE कांग्रेस, डेट्रायट, मिशिगन, जनवरी 9-13, 1967 में, मार्क II-GT प्रज्वलन और इलेक्ट्रिकल प्रणाली, प्रकाशन #670068 को प्रस्तुत किया। 1958 में प्रारम्भ, अर्ल डब्ल्यू मेयर में। क्रिसलर ने ईआई पर काम किया, 1961 तक जारी रहा और जिसके परिणामस्वरूप कंपनी के NASCAR CHRYSLER HEMI ENGENT#HEMI Design ने 1963 और 1964 में EI का उपयोग किया।
प्रेस्ट-ओह की सीडी -65, जो कैपेसिटेंस डिस्चार्ज (सीडी) पर निर्भर थी, 1965 में दिखाई दी, और एक अभूतपूर्व 50,000 मील की वारंटी थी।<रेफ नाम = सुपर स्ट्रीट कारें, 9/81, p.35 /> (यह 1972 में अमेरिकन मोटर्स उत्पादों पर पेश किए गए गैर-सीडी प्रेस्ट-ओ-लाइट प्रणाली से भिन्न है, और 1975 मॉडल वर्ष के लिए मानक उपकरण बनाए हैं।)<रेफ नाम = सुपर स्ट्रीट कारें, 9/81, p.35 /> एक समान सीडी यूनिट 1966 में डेल्को से उपलब्ध थी, <रेफ नाम = सुपर स्ट्रीट कार, 9/81, p.34 /> जो कि OldSmobile पर वैकल्पिक था, पोंटियाक, और जीएमसी (ऑटोमोबाइल) 1967 मॉडल वर्ष में वाहन। <रेफ नाम = सुपर स्ट्रीट कार, 9/81, p.35 /> भी 1967 में, मोटोरोला ने अपने ब्रेकरलेस सीडी प्रणाली की प्रारम्भ की। <रेफरी नाम = सुपर स्ट्रीट कारें।
फिएट डिनो 1968 में ईआई के साथ मानक आने वाली पहली प्रोडक्शन कार थी, उसके बाद जगुआर एक्सजे#सीरीज 1 .281968.E2.80.9373.29 ref>"नया जगुआर V12 - मोटर स्पोर्ट मैगज़ीन आर्काइव". Motor Sport Magazine. 7 July 2014.</ref> 1971 में, क्रिसलर (1971 के परीक्षण के बाद) 1973 में और 1975 में फोर्ड और जीएम द्वारा। <रेफरी नाम = सुपर स्ट्रीट कारें, 9/81, p.35/>
1967 में, प्रेस्ट-ओ-लाइट ने एक ब्लैक बॉक्स प्रज्वलन एम्पलीफायर बनाया, जिसका उद्देश्य उच्च आरपीएम रन के समय डिस्ट्रीब्यूटर के ब्रेकर पॉइंट्स को लोड करना था, जिसका उपयोग डॉज और प्लायमाउथ (ऑटोमोबाइल) द्वारा उनके फैक्ट्री सुपर स्टॉक चकमा कोरोनेट और प्लायमाउथ बेल्वेडियर पर किया गया दौड़कर खींच <रेफ नाम = सुपर स्ट्रीट कारें, 9/81, p.35 /> यह एम्पलीफायर कारों के फ़ायरवॉल के आंतरिक भाग पर स्थापित किया गया था, और एक वाहिनी थी जो इकाई को ठंडा करने के लिए बाहर वायु प्रदान की थी।[citation needed] बाकी प्रणाली (वितरक और स्पार्क प्लग) यांत्रिक प्रणाली के लिए बना हुआ है। यांत्रिक प्रणाली की तुलना में चलती भागों की कमी से अधिक विश्वसनीयता और लंबे समय तक सेवा अंतराल होती है।
क्रिसलर ने 1971 के मध्य में ब्रेसरलेस प्रज्वलन को अपने क्रिसलर एलए इंजन#340 वी 8 और क्रिसलर हेमी इंजन#हेमी डिज़ाइन के लिए एक विकल्प के रूप में पेश किया। 1972 के मॉडल वर्ष के लिए, प्रणाली अपने उच्च-प्रदर्शन इंजनों पर मानक बन गया ( 340 cu in (5.6 L) और चार-बैरल कार्बोरेटर-सुसज्जित 400 hp (298 kW) 400 cu in (7 L)) और इसके लिए एक विकल्प था 318 cu in (5.2 L), 360 cu in (5.9 L), दो-बैरल 400 cu in (6.6 L), और कम प्रदर्शन 440 cu in (7.2 L)।ब्रेकरलेस प्रज्वलन को 1973 के लिए मॉडल रेंज में मानकीकृत किया गया था।
पुरानी कारों के लिए, सामान्य रूप से यांत्रिक एक के स्थान पर एक ईआई प्रणाली को पुनः बनाना संभव है। कुछ स्थितियों में, एक आधुनिक वितरक पुराने इंजन में बिना किसी अन्य संशोधनों के साथ फिट होगा, जैसे उच्च ऊर्जा प्रज्वलन | H.E.Iजनरल मोटर्स द्वारा बनाया गया वितरक, हॉट-चिनगारी इलेक्ट्रॉनिक प्रज्वलन रूपांतरण किट और क्रिसलर ब्रेकरलेस प्रणाली।
अन्य नवाचार वर्तमान में विभिन्न कारों पर उपलब्ध हैं। कुछ मॉडलों में, एक केंद्रीय कॉइल के अतिरिक्त, प्रत्येक स्पार्क प्लग पर व्यक्तिगत कॉइल होते हैं, जिन्हें कभी -कभी प्लग (COP) पर प्रत्यक्ष प्रज्वलन या कॉइल के रूप में जाना जाता है। यह कॉइल को स्पार्क्स के बीच एक चार्ज जमा करने के लिए एक लंबा समय देता है, और इसलिए एक उच्च ऊर्जा चिंगारी। इस पर एक भिन्नता में प्रत्येक कॉइल में दो प्लग हैं, सिलेंडर पर जो चरण से 360 डिग्री से बाहर हैं (और इसलिए एक ही समय में डेड सेंटर (इंजीनियरिंग) (टीडीसी) तक पहुंचते हैं);चार-चक्र इंजन में इसका तात्पर्य है कि एक प्लग निकास स्ट्रोक के अंत के समय स्पार्किंग होगा, जबकि अन्य समय पर अन्य आग लगती है, एक तथाकथित बर्बाद चिनगारी व्यवस्था जिसमें तेजी से स्पार्क प्लग कटाव के अतिरिक्त कोई कमियां नहीं होती हैं; युग्मित सिलेंडर चार सिलेंडर व्यवस्था पर 1/4 और 2/3, छह सिलेंडर इंजनों पर 1/4, 6/3, 2/5 और 6/7, 4/1, 8/3 और 2/5 V8 इंजनों पर हैं।[5] अन्य प्रणाली वितरक के साथ एक समय उपकरण के रूप में दूर करते हैं और उचित समय पर प्रज्वलन को ट्रिगर करने के लिए क्रैंकशाफ्ट पर लगे एक चुंबकीय क्रैंक कोण संवेदक का उपयोग करते हैं।
डिजिटल इलेक्ट्रॉनिक प्रज्वलन
21 वीं सदी के मोड़ पर डिजिटल इलेक्ट्रॉनिक प्रज्वलन मॉड्यूल छोटे इंजनों के लिए उपलब्ध हो गए, जैसे कि चेनसॉ, स्ट्रिंग ट्रिमर, पत्ता उड़ाने वाला और लॉन की घास काटने वाली मशीन ्स जैसे अनुप्रयोगों पर। यह कम कीमत, उच्च गति और छोटे पदचिह्न माइक्रोकंट्रोलर द्वारा संभव बनाया गया था। डिजिटल इलेक्ट्रॉनिक प्रज्वलन मॉड्यूल को या तो संधारित्र निर्वहन प्रज्वलन (सीडीआई) या आगमनात्मक निर्वहन प्रज्वलन (आईडीआई) प्रणाली के रूप में डिज़ाइन किया जा सकता है। कैपेसिटिव डिस्चार्ज डिजिटल प्रज्वलन स्टोर ने मॉड्यूल के अंदर एक संधारित्र में चिनगारी के लिए ऊर्जा चार्ज की थी जो कि माइक्रोप्रोसेसर से एक नियंत्रण संकेत के माध्यम से पूरे इंजन चक्र में लगभग किसी भी समय स्पार्क प्लग में जारी किया जा सकता है। यह अधिक से अधिक समय नम्य, और इंजन प्रदर्शन के लिए स्वीकृति देता है; विशेष रूप से जब इंजन कार्बोरेटर के साथ हाथ से तैयार किया गया है।
इंजन प्रबंधन
एक इंजन नियंत्रण इकाई (ईएमएस) में, इलेक्ट्रॉनिक्स नियंत्रण ईंधन वितरण और प्रज्वलन टाइमिंग को नियंत्रित करता है। प्रणाली पर प्राथमिक सेंसर क्रैंकशाफ्ट कोण (क्रैंकशाफ्ट या टीडीसी स्थिति), इंजन और गला घोंटना स्थिति में एयरफ्लो हैं।सर्किटरी यह निर्धारित करती है कि किस सिलेंडर को ईंधन की आवश्यकता होती है और कितना, इसे वितरित करने के लिए अपेक्षित इंजेक्टर को खोलता है, फिर इसे जलाने के लिए सही समय पर एक चिंगारी का कारण बनता है। प्रारम्भिक ईएमएस प्रणाली ने इसे पूरा करने के लिए एक एनालॉग कंप्यूटर का उपयोग किया, लेकिन जैसा कि अंतःस्थापित प्रणाली कीमत में गिरा और उच्च क्रांतियों में परिवर्तित इनपुट के साथ रखने के लिए पर्याप्त तेजी से हो गया, अंकीय इलेक्ट्रॉनिक्स प्रणाली दिखाई देने लगे।
एक ईएमएस का उपयोग करने वाले कुछ डिजाइन मूल प्रज्वलन कॉइल, वितरक और उच्च-तनाव को पूरा करते हैं जो पूरे इतिहास में कारों पर पाए जाते हैं। अन्य प्रणालियां वितरक के साथ पूरी तरह से प्रसारित हैं और प्रत्येक स्पार्क प्लग के ऊपर सीधे माउंट किए गए व्यक्तिगत कॉइल होते हैं।यह वितरक और उच्च-तनाव दोनों लीड की आवश्यकता को दूर करता है, जो संरक्षण को कम करता है और दीर्घकालिक विश्वसनीयता बढ़ाता है।
आधुनिक ईएमएस क्रैंकशाफ्ट की स्थिति, सेवन कई गुना तापमान, सेवन कई गुना दबाव (या सेवन वायु की मात्रा), थ्रॉटल स्थिति, ऑक्सीजन सेंसर के माध्यम से ईंधन मिश्रण, एक नॉक सेंसर के माध्यम से विस्फोट, और निकास गैस तापमान सेंसर के बारे में विभिन्न सेंसर से डेटा में पढ़ते हैं। ईएमएस तब एकत्र किए गए डेटा का उपयोग ठीक से निर्धारित करता है कि प्रज्वलन टाइमिंग को आगे बढ़ाने के लिए और कब और कितनी दूर तक ईंधन का पता लगाया जाए। इलेक्ट्रॉनिक प्रज्वलन प्रणाली के साथ, व्यक्तिगत सिलेंडर[citation needed] अपना स्वयं का व्यक्तिगत समय हो सकता है ताकि समय ईंधन के विस्फोट के बिना प्रति सिलेंडर जितना संभव हो उतना आक्रामक हो सके। परिणामस्वरूप, परिष्कृत इलेक्ट्रॉनिक प्रज्वलन प्रणाली दोनों अधिक ईंधन कुशल हो सकते हैं, और अपने समकक्षों पर अपेक्षाकृत अधिक प्रदर्शन का उत्पादन कर सकते हैं।
टरबाइन, जेट और रॉकेट इंजन
जेट इंजिन सहित गैस टर्बाइन इंजन में एक या अधिक प्रज्वालक प्लग का उपयोग करने वाली एक सीडीआई प्रणाली होती है, जिसका उपयोग केवल प्रवर्तन पर या दहनशील लौ के बाहर जाने की स्थिति में किया जाता है।
रॉकेट इंजन प्रज्वलन विशेष रूप से महत्वपूर्ण हैं।यदि शीघ्र प्रज्वलन नहीं होता है, तो दहन कक्ष अतिरिक्त ईंधन और ऑक्सीकारक से भर सकता है और अत्यधिक दबाव (अतिप्रवाह) या यहां तक कि एक विस्फोट भी हो सकता है। रॉकेट प्रायः पाइरोटेक्निक उपकरणों को नियुक्त करते हैं जो सुई लगानेवाला प्लेट के फलक पर लपटों को रखते हैं, या, वैकल्पिक रूप से, अतिशयोक्तिपूर्ण प्रोपेलेंट जो एक दूसरे के साथ संपर्क पर अनायास प्रज्वलित करते हैं। बाद के प्रकार के इंजन पूरी तरह से प्रज्वलन प्रणाली के साथ दूर करते हैं और अतिप्रवाह का अनुभव नहीं कर सकते हैं, लेकिन प्रणोदक अत्यधिक विषाक्त और संक्षारक होते हैं। SpaceX के रैप्टर इंजन का उपयोग स्टारशिप और सुपर हेवी और RS-25 इंजन के लिए किया जाता है, जिसका उपयोग स्पेस शटल मेन इंजन (SSME) के रूप में चिनगारी-प्रज्वलन प्रणाली का उपयोग किया जाता है। रैप्टर इंजन को चिनगारी-प्रज्वलन का उपयोग करने की आवश्यकता होती है क्योंकि अंतरिक्ष यात्री पाइरोटेक्निक प्रज्वलन प्रणाली नहीं बना सकते हैं या चंद्रमा या मंगल पर हाइपरगोलिक ईंधन की आपूर्ति को पुनः भर सकते हैं, क्योंकि चंद्र और मार्टियन संसाधन पृथ्वी के संसाधनों से बहुत अलग हैं।
यह भी देखें
- विद्युत चुंबकत्व
- फैराडे की प्रेरण का नियम
- साब प्रत्यक्ष प्रज्वलन
- प्रज्वलन चिंगारी
संदर्भ
- ↑ Specifications and Drawings of Patents Relating to Electricity Issued by the U. S., Volume 37, Published 1886
- ↑ Vincent Groby Apple (1874-1932) with article at daytonHistoryBooks.com
- ↑ Patterson, Ron; Coniff, Steve (November–December 2003). "मॉडल टी फोर्ड इग्निशन सिस्टम और स्पार्क टाइमिंग" (PDF). Model T Times.
- ↑ "चार्ल्स एफ। केटरिंग, इलेक्ट्रिक सेल्फ-स्टार्टर के आविष्कारक का जन्म हुआ है". HISTORY (in English).
- ↑ northstarperformance.com, fixya.com, i.fixya.net
बाहरी कड़ियाँ
- Ignition apparatus for explosion-motors. Charles F. Kettering 15 September 1909/3 September 1912 "Ignition Apparatus for Explosion-Motors" no capacitor, no points, separate coils
- Ignition system. Charles F. Kettering 2 November 1910/3 September 1912 "Ignition System" distributor with capacitor 46 (not points)
- Ignition system. Charles F. Kettering 11 August 1911/17 April 1917 "Ignition System" points, no capacitor, ignition switch to avoid draining the battery
- Ignition system John A. Hawthorne 1964/1967 comments about Kettering ignition system: "Practical efforts to improve or supplant this system have failed, and it has remained virtually unchanged through the years. However, the present trend toward higher performance automobile engines threatens to render this tried and true system obsolete. The principal limitation of the Kettering system is, as typically applied, the inability to develop adequate levels of spark plug gap energy without sacrificing longevity of the ignition points or the transformer coil. The inherent inefficiency of the system is particularly apparent at higher engine speeds."
प्रज्वलन प्रणाली श्रेणी: ऑटो पार्ट्स श्रेणी: नियंत्रण इंजीनियरिंग के अनुप्रयोग श्रेणी: इंजन घटक