एक्सिटॉन

From Vigyanwiki
Revision as of 08:23, 26 September 2022 by alpha>Payal Nayak
फ्रेनकेल ऐक्साइटॉन, बाध्य इलेक्ट्रॉन-होल जोड़ी क्रिस्टल में एक स्थिति में स्थानीयकृत है जहाँ छेद काले बिंदुओं द्वारा दर्शाया गया है।
वानियर-मॉट ऐक्साइटॉन, बाध्य इलेक्ट्रॉन-होल जोड़ी जो एक क्रिस्टल स्थिति में स्थानीयकृत नहीं है।यह आंकड़ा योजनाबद्ध रूप से जाली के पार ऐक्साइटॉन के प्रसार को दर्शाता है।

ऐक्साइटॉन- इलेक्ट्रॉन और इलेक्ट्रॉन छेद की एक बाध्य अवस्था है, जो इलेक्ट्रोस्टैटिक कूलम्ब बल के नियम द्वारा एक दूसरे के लिए आकर्षित होती है। यह एक विद्युत रूप से तटस्थ अर्धकण(quasiparticle) है, जो इंसुलेटर अर्धचालक और कुछ तरल पदार्थों में मौजूद है। ऐक्साइटॉन को संघनित पदार्थ की प्राथमिक उत्तेजना माना जाता है जो शुद्ध विद्युत आवेश के बिना ऊर्जा का परिवहन कर सकता है।[1][2][3]एक ऐक्साइटॉन तब बन सकता है जब एक सामग्री अपने बैंडगैप की तुलना में उच्च ऊर्जा के एक फोटॉन(photon) को अवशोषित करती है।[4] यह वैलेंस बैंड से चालन बैंड में एक इलेक्ट्रॉन को उत्तेजित करता है। बदले में, यह एक सकारात्मक रूप से चार्ज किए गए इलेक्ट्रॉन छेद (उस स्थान के लिए एक अमूर्तता जहाँ से एक इलेक्ट्रॉन को स्थानांतरित किया गया था) को पीछे छोड़ देता है। चालन बैंड में इलेक्ट्रॉन तब इस स्थानीय छेद के लिए कम आकर्षित होता है, जो छेद और उत्साहित इलेक्ट्रॉन के आसपास बड़ी संख्या में इलेक्ट्रॉनों से प्रतिकारक कूलम्ब बलों के कारण होता है। ये प्रतिकारक बल एक स्थिर ऊर्जा संतुलन प्रदान करते हैं। नतीजतन, ऐक्साइटॉन में अबाध इलेक्ट्रॉन और छेदों की तुलना में थोड़ी कम ऊर्जा होती है। बाध्य अवस्था की तरंग क्रिया को हाइड्रोजनी कहा जाता है। हालांकि, बाध्यकारी ऊर्जा बहुत छोटी है और कण का आकार हाइड्रोजन परमाणु की तुलना में बहुत बड़ा है। यह अर्धचालक में अन्य इलेक्ट्रॉनों द्वारा कूलम्ब बल की स्क्रीनिंग और उत्तेजित इलेक्ट्रॉन और छेद के छोटे प्रभावी द्रव्यमान दोनों के कारण है। इलेक्ट्रॉन और छेद का पुनर्संयोजन यानी ऐक्साइटॉन का क्षय इलेक्ट्रॉन और छेद तरंग क्रिया के ओवरलैप के कारण अनुनाद स्थिरीकरण द्वारा सीमित है, जिसके परिणामस्वरूप ऐक्साइटॉन के लिए एक विस्तारित जीवनकाल होता है।

इलेक्ट्रॉन और छेद में समानांतर या असमानांतर स्पिन हो सकते हैं। स्पिन्स को एक्सचेंज इंटरेक्शन द्वारा युग्मित किया जाता है, जिससे ऐक्साइटॉन सूक्ष्म संरचना को जन्म मिलता है। आवधिक जाली में, ऐक्साइटॉन के गुण गति (K-Vector) निर्भरता दिखाते हैं।

ऐक्साइटॉन की अवधारणा को पहली बार 1931 में याकोव फ्रेनकेल द्वारा प्रस्तावित किया गया था,[5] जब उन्होंने इंसुलेटरों की एक जाली में परमाणुओं के उत्तेजना का वर्णन किया।उन्होंने प्रस्ताव दिया कि यह उत्तेजित अवस्था आवेश के शुद्ध हस्तांतरण के बिना जाली के माध्यम से कण की तरह यात्रा करने में सक्षम होगी।

ऐक्साइटॉन को प्रायः छोटे या बड़े डाइ इलेक्ट्रिक स्थिरांक के दो सीमित मामलों में माना जाता है, क्रमशः फ्रेनकेल ऐक्साइटॉन और वानियर-मॉट ऐक्साइटॉन।

फ्रेनकेल ऐक्साइटॉन

अपेक्षाकृत छोटे ढांके हुआ स्थिरांक वाली सामग्रियों में, एक इलेक्ट्रॉन और एक छेद के बीच कूलम्ब का संपर्क मजबूत हो सकता है और इस प्रकार ऐक्साइटॉन छोटे होते हैं,उसी क्रम के यूनिट सेल के आकार के रूप में आणविक उत्तेजनाएं भी पूरी तरह से एक ही अणु पर स्थित हो सकता है, जैसे कि फुलरीन में याकोव फ्रेनकेल के नाम पर इस फ्रेनकेल ऐक्साइटॉन में 0.1 से 1 ईवी के क्रम पर एक विशिष्ट बाध्यकारी ऊर्जा है। फ्रेनकेल ऐक्साइटॉन आमतौर पर क्षार हलाइड क्रिस्टल और सुगंधित अणुओं से बने कार्बनिक आणविक क्रिस्टल में पाए जाते हैं जैसे एंथ्रासीन और टेट्रासीन। फ्रेनकेल ऐक्साइटॉन के एक अन्य उदाहरण में आंशिक रूप से भरे डी कक्षीय (D-Shells) के साथ संक्रमण धातु यौगिकों में साइट डी-डी कक्ष (D-D Shell) शामिल हैं। जबकि डी-डी संक्रमण सिद्धांत रूप में समरूपता द्वारा निषिद्ध हैं, वे क्रिस्टल में कमजोर रूप से अनुमत हो जाते हैं जब समरूपता संरचनात्मक आराम या अन्य प्रभावों से टूट जाती है। डी-डी संक्रमण के साथ एक फोटॉन गुंजयमान का अवशोषण एक एकल परमाणु साइट पर एक इलेक्ट्रॉन-छेद जोड़ी के निर्माण की ओर जाता है, जिसे फ्रेनकेल ऐक्साइटॉन के रूप में माना जा सकता है।

वानियर-मॉट ऐक्साइटॉन

अर्धचालक में, ढांका हुए स्थिरांक आम तौर पर बड़ा होता है।नतीजतन, विद्युत क्षेत्र की स्क्रीनिंग इलेक्ट्रॉनों और छेदों के बीच कूलम्ब परस्पर क्रिया को कम करता है।परिणाम वानियर-मॉट ऐक्साइटॉन (wannier -mott exciton) है,[6] जिसमें त्रिज्या जाली रिक्ति से बड़ा है।इलेक्ट्रॉनों का छोटा प्रभावी द्रव्यमान जो अर्धचालक का विशिष्ट है, बड़े ऐक्साइटॉन की तैयारी का भी पक्षधर है।नतीजतन, जाली की क्षमता के प्रभाव को इलेक्ट्रॉन और छेद के प्रभावी द्रव्यमान में शामिल किया जा सकता है।इसी तरह 0.01eV के क्रम पर कम द्रव्यमान और स्क्रीनिंग कूलम्ब परस्पर क्रिया के कारण ऊर्जा आमतौर पर हाइड्रोजन परमाणु की तुलना में बहुत कम होती है। इस प्रकार के ऐक्साइटॉन का नाम ग्रेगरी वानियर और नेविल फ्रांसिस मॉट के नाम पर रखा गया था। वानियर-मॉट ऐक्साइटॉन आमतौर पर क्रिस्टल में छोटे ऊर्जा अंतराल और उच्च ढांकता हुआ स्थिरांक के साथ पाए जाते हैं, लेकिन तरल क्सीनन (xenon) जैसे तरल पदार्थों में भी पहचाने जाते हैं।उन्हें बड़े ऐक्साइटॉन के रूप में भी जाना जाता है।

सिंगल-वॉल कार्बन नैनोट्यूब में, ऐक्साइटॉन में वैनियर-मॉट और फ्रेनकेल दोनों की विशेषताए हैं।यह एक-आयाम में इलेक्ट्रॉनों और छेदों के बीच कूलम्ब की बातचीत की प्रकृति के कारण है। नैनोट्यूब का ढांकता हुआ कार्य तरंग क्रिया की स्थानिक सीमा को ट्यूब अक्ष के साथ कई नैनोमीटर तक विस्तार करने के लिए पर्याप्त है, जबकि नैनोट्यूब के बाहर वैक्यूम या ढांकता हुआ वातावरण में खराब स्क्रीनिंग बड़े के लिए अनुमति देता है (0.4 को 1.0eV) बाध्यकारी ऊर्जा।

अक्सर एक से अधिक बैंड को इलेक्ट्रॉन और छेद के लिए स्रोत के रूप में चुना जा सकता है, जिससे एक ही सामग्री में विभिन्न प्रकार के ऐक्साइटॉन हो सकते हैं।यहां तक कि उच्च-स्तरीय बैंड प्रभावी हो सकते हैं जैसा कि फेमटोसेकंड दो-फोटॉन प्रयोगों ने दिखाया है। क्रायोजेनिक तापमान पर कई उच्च ऐक्साइटॉन स्तरों को बैंड के किनारे पर पहुंचते हुए देखा जा सकता है,[7] वर्णक्रमीय अवशोषण लाइनों की एक श्रृंखला का निर्माण करते हैं जो सिद्धांत रूप में हाइड्रोजन वर्णक्रमीय श्रृंखला के समान होते हैं।

3 डी अर्धचालक के लिए समीकरण

ढेर सारे अर्धचालक में, वानियर ऐक्साइटॉन में ऊर्जा और त्रिज्या जुड़ी होती है,जिसे ऐक्साइटॉन रिडबर्ग एनर्जी और ऐक्साइटॉन बोहर रेडियस कहा जाता है।[8] ऊर्जा के लिए हमारे पास है,

यहाँ पे ऊर्जा की Rydburg इकाई है (cf. Rydberg constant), (स्थैतिक) सापेक्ष पारगम्यता है, इलेक्ट्रॉन और छेद का कम द्रव्यमान है, और इलेक्ट्रॉन द्रव्यमान है।त्रिज्या के विषय में हमारे पास है,

यहाँ पे बोहर रेडियस है।

इसलिए GAAS में उदाहरण के लिए, हमारे पास 12.8 और प्रभावी इलेक्ट्रॉन और छेद द्रव्यमान की सापेक्ष पारगम्यता है।0और 0.2 मीटर0क्रमश;और वह हमें देता है मेव और एन.एम.

2 डी अर्धचालक के लिए समीकरण

द्वि-आयामी (2 डी) सामग्री में, प्रणाली क्वांटम सामग्री के विमान के लंबवत दिशा में सीमित है। प्रणाली की कम आयामीता का वान्नियर ऐक्साइटॉन (Wannier excitons) की बाध्यकारी ऊर्जा और रेडी पर प्रभाव पड़ता है।वास्तव में, ऐसी प्रणालियों में ऐक्साइटॉन प्रभाव बढ़ जाते है।[9] एक साधारण जांच की गई कूलम्ब क्षमता के लिए बाध्यकारी ऊर्जा 2 डी हाइड्रोजन परमाणु का रूप ले लेती है[10]

.

अधिकांश 2 डी अर्धचालक में रायटोवा-केल्डीश (Rytova -keldysh) फॉर्म ऐक्साइटॉन परस्पर क्रिया के लिए अधिक सटीक सन्निकटन है[11][12][13]

जहाँ पे तथाकथित स्क्रीनिंग लंबाई है, आसपास के मीडिया का औसत डाइइलेक्ट्रिकश स्थिरांक और एक्सिटॉन रेडियस। इस क्षमता के एक्सिटॉन ऊर्जा के लिए कोई सामान्य अभिव्यक्ति नहीं मिल सकती है। इसके बजाय एक संख्यात्मक प्रक्रियाओं की ओर मुड़ना चाहिए, और यह सही क्षमता है जो 2 डी अर्धचालक में ऊर्जा की गैरहाइड्रोजेनिक राइडबर्ग श्रृंखला को जन्म देती है।[9]


उदाहरण: ट्रांज़िशन मेटल डाइक्लोजेनाइड्स(TMDs) में एक्साइटन ट्रांज़िशन मेटल डाइक्लोजेनाइ(टीएमडी) के मोनोलेयर्स एक अच्छा और अत्याधुनिक उदाहरण है जहां ऐक्साइटॉन एक प्रमुख भूमिका निभाते हैं। विशेष रूप से इन प्रणालियों में वे 0.5 ईवी के क्रम की एक सीमा ऊर्जा का प्रदर्शन करते हैं[14] जिसमें अन्य पारंपरिक क्वांटम वैल की तुलना में छेद और इलेक्ट्रॉनों के बीच एक कूलम्ब आकर्षण होता हैं। नतीजतन, कमरे के तापमान पर भी इन सामग्रियों में ऑप्टिकल ऐक्साइटोनिक स्तरों में स्थापित हैं। [2]


चार्ज-ट्रांसफर ऐक्साइटॉन

फ्रेनकेल और वानियर-मॉट ऐक्साइटॉन के बीच एक मध्यवर्ती मामला चार्ज-ट्रांसफर (CT) ऐक्साइटॉन है।आणविक भौतिकी में, सीटी ऐक्साइटॉन तब बनते हैं जब इलेक्ट्रॉन और छेद आसन्न अणुओं पर कब्जा कर लेते हैं।[15] वे मुख्य रूप से कार्बनिक और आणविक क्रिस्टल में होते हैं;[16] इस मामले में, फ्रेनकेल और वानियर ऐक्साइटॉन के विपरीत, सीटी ऐक्साइटॉन(CT Exciton) एक स्थिर इलेक्ट्रिक द्विध्रुवीय क्षण प्रदर्शित करते हैं।सीटी ऐक्साइटॉन संक्रमण धातु ऑक्साइड में भी हो सकता है, जहां वे संक्रमण धातु 3 डी कक्षीय में एक इलेक्ट्रॉन और ऑक्सीजन 2 पी कक्षीय में एक छेद शामिल करते हैं।उल्लेखनीय उदाहरणों में सहसंबद्ध cuprates[17] या TiO2 के दो-आयामी ऐक्साइटॉन में[18] सबसे कम-ऊर्जा वाले ऐक्साइटॉन मौजूद होती हैं। उत्पत्ति के बावजूद, सीटी ऐक्साइटॉन की अवधारणा हमेशा एक परमाणु साइट से दूसरे में चार्ज के हस्तांतरण से संबंधित होती है, इस प्रकार कुछ लैटिस साइटों पर तरंग क्रिया को फैलाता है।

भूतल उत्तेजना

सतहों पर तथाकथित छवि अवस्थाओं का होना संभव है, जहां छेद सॉलिड के अंदर होता है और इलेक्ट्रॉन निर्वात में होता है।ये इलेक्ट्रॉन-होल जोड़े केवल सतह के साथ ही चल सकते हैं।

परमाणु और आणविक ऐक्साइटॉन

वैकल्पिक रूप से ऐक्साइटॉन को एक परमाणु आयन अणु की उत्तेजित अवस्था के रूप में वर्णित किया जा सकता है, अगर ऐक्साइटॉन लैटिस की कोशिका एक से दूसरे तक भ्रमण कर रही है।

जब एक अणु ऊर्जा की एक मात्रा को अवशोषित करता है जो एक आणविक कक्षीय से दूसरे आणविक कक्षीय में एक संक्रमण से मेल खाता है, तो परिणामी इलेक्ट्रॉनिक उत्तेजित अवस्था को भी एक ऐक्साइटॉन के रूप में वर्णित किया जाता है। एक इलेक्ट्रॉन को सबसे कम खाली कक्ष में पाया जाता है। और एक इलेक्ट्रॉन छेद उच्चतम कब्जे वाले आणविक कक्षीय में पाया जाता है।और चूंकि वे एक ही आणविक कक्षीय के कई गुना भीतर पाए जाते हैं, इसलिए इलेक्ट्रॉन-होल स्टेट को बाध्य कहा जाता है। आणविक ऐक्साइटॉन में आमतौर पर नैनोसेकंड के आदेश पर विशिष्ट जीवनकाल होता है, जिसके बाद सतह इलेक्ट्रॉनिक स्टेट बहाल हो जाता है और अणु फोटॉन या फोनन उत्सर्जन से गुजरता है। आणविक ऐक्साइटॉन में कई दिलचस्प गुण होते हैं, जिनमें से एक ऊर्जा हस्तांतरण है ( फोरस्टर रेजोनेंस एनर्जी ट्रांसफर देखे) जिससे अगर एक आणविक उत्तेजना में दूसरे अणु के वर्णक्रमीय अवशोषण के लिए उचित ऊर्जावान मिलान होता है, तो एक ऐक्साइटॉन एक अणु से दूसरे अणु से स्थानांतरित (हॉप) हो सकता है। यह प्रक्रिया समाधान में प्रजातियों के बीच अंतर -आणविक दूरी पर दृढ़ता से निर्भर है, और इसलिए प्रक्रिया को संवेदन और आणविक शासकों में आवेदन मिला है।

कार्बनिक आणविक क्रिस्टल में आणविक ऐक्साइटॉन की पहचान डबल्स और/या ऐक्साइटॉन अवशोषण बैंड के ट्रिपलेट्स क्रिस्टलोग्राफिक अक्षों के साथ दृढ़ता से ध्रुवीकृत हैं। इन क्रिस्टल में एक प्राथमिक कोशिका में सममित रूप से समान स्थिति में बैठे कई अणु शामिल होते हैं, जिसके परिणामस्वरूप अंतर -आणविक संपर्क द्वारा उठाए गए स्तर में गिरावट होती है। नतीजतन, अवशोषण बैंड क्रिस्टल के समरूपता अक्षों के साथ ध्रुवीकृत होते हैं। इस तरह के गुणकों (मल्टीप्लेट्स) की खोज एंटोनिना प्रिखोटको के द्वारा की गई थी।[19][20] और उनकी उत्पत्ति अलेक्जेंडर डेविडोव द्वारा प्रस्तावित की गई थी।इसे 'डेविडोव स्प्लिटिंग' के नाम से जाना जाता है।[21][22]


विशालकाय ऑस्किलेटर शक्ति बाध्य ऐक्साइटॉन

शुद्ध क्रिस्टल के इलेक्ट्रॉनिक सबसिस्टम के ऐक्साइटॉन की सबसे कम उत्तेजित अवस्थाएँ हैं।अशुद्धियां ऐक्साइटॉनो को बांध सकती हैं, और जब बाध्य अवस्था उथली होती है, तो बाध्य ऐक्साइटॉन के उत्पादन के लिए ऑस्किलेटर क्षमता इतनी अधिक होती है कि अशुद्धता अवशोषण कम अशुद्धता सांद्रता पर भी आंतरिक ऐक्साइटॉन अवशोषण के साथ प्रतिस्पर्धा कर सकता है।यह घटना सामान्य है और बड़े त्रिज्या (वानियर-मॉट) ऐक्साइटॉन और आणविक (फ्रेनकेल) ऐक्साइटॉन दोनों पर लागू होती है।इसलिए, अशुद्धियों और दोषों के लिए बाध्य ऐक्साइटॉन के पास विशाल ऑस्किलेटर शक्ति होती है।[23]


ऐक्साइटॉन की सेल्फ-ट्रैपिंग

क्रिस्टल में, ऐक्साइटॉन फोनोन, लैटिस कंपन के साथ संपर्क करते हैं।यदि यह युग्मन GaAs या Si जैसे विशिष्ट अर्धचालकों में फोनन द्वारा ऐक्साइटॉन बिखरे हुए हैं।हालांकि, जब युग्मन मजबूत होता है, तो ऐक्साइटॉन स्वयं फंस सकते है।[24][25] वर्चुअल फोनन के घने बादल के साथ ऐक्साइटॉन के सेल्फ-ट्रैपिंग परिणामस्वरूप जो क्रिस्टल के पार स्थानांतरित करने के लिए ऐक्साइटॉन की क्षमता को दृढ़ता से दबा देता है।सरल शब्दों में इसका अर्थ है ऐक्साइटॉन के चारों ओर क्रिस्टल लैटिस का स्थानीय विरूपण। सेल्फ-ट्रैपिंग केवल तभी प्राप्त की जा सकती है जब इस विकृति की ऊर्जा बैंड की चौड़ाई के साथ प्रतिस्पर्धा कर सके।इसलिए, यह लगभग एक इलेक्ट्रॉन वोल्ट के परमाणु पैमाने का होना चाहिए।

ऐक्साइटॉन का सेल्फ-ट्रैपिंग मजबूत-युग्मन पोलरॉन बनाने के समान है, लेकिन तीन आवश्यक अंतरों के साथ।सबसे पहले, स्व-ट्रैप किए गए ऐक्साइटॉन स्टेट हमेशा एक छोटे से त्रिज्या के होते हैं, लैटिस स्थिरांक के क्रम में, उनकी विद्युत तटस्थता के कारण। दूसरा, मुक्त और सेल्फ-ट्रैपिंग स्टेट को अलग करने वाले एक सेल्फ-ट्रैपिंग बैरियर मौजूद है, इसलिए, मुक्त ऐक्साइटॉन मेटास्टेबल हैं।तीसरा, यह बाधा ऐक्साइटॉन के मुक्त और सेल्फ-ट्रैपिंग अवस्थाओं के सह-अस्तित्व को सक्षम बनाता है।[26][27][28] इसका मतलब यह है कि मुक्त ऐक्साइटॉन की वर्णक्रमीय रेखाएं और सेल्फ-ट्रैप हुए एक्साइटों के विस्तृत बैंड को एक साथ अवशोषण और ल्यूमिनेशन स्पेक्ट्रा में देखा जा सकता है।जबकि सेल्फ-टैपड स्टेट लैटिस-स्पेसिंग पैमाने के होते हैं, बैरियर में आमतौर पर बहुत बड़े पैमाने पर होते हैं।दरअसल, इसका स्थानिक पैमाना लगभग जहाँ पे एक्सिटॉन का प्रभावी द्रव्यमान है, ऐक्साइटॉन-फॉनन कपलिंग स्थिरांक है, और ऑप्टिकल फोनन की विशेषता आवृत्ति है। तथा बड़े होते हैं तो ऐक्साइटॉन सेल्फ-ट्रैप हो जाते हैं, फिर लैटिस स्पेसिंग की तुलना में बैरियर का स्थानिक आकार बड़ा होता है। एक मुक्त ऐक्साइटॉन स्टेट को स्व-ट्रैप्ड में बदलना एक युग्मित ऐक्साइटॉन-लेटिस सिस्टम (एक इंस्टेंटन) की सामूहिक सुरंग के रूप में आगे बढ़ता है।क्योंकि बड़ा है, टनलिंग को एक सातत्य सिद्धांत द्वारा वर्णित किया जा सकता है।[29] बैरियर की ऊंचाई क्योंकि दोनों तथा में दिखाई देता हैं बैरियर मूल रूप से कम हैं।इसलिए, क्रिस्टल में केवल शुद्ध नमूनों में और कम तापमान पर मजबूत ऐक्साइटॉन-फॉनन युग्मन के साथ मुक्त ऐक्साइटॉन देखे जा सकते हैं।दुर्लभ-गैस ठोस, क्षार-हैलाइड्स और पाइरीन के आणविक क्रिस्टल में स्वतंत्र और स्व-ट्रैप्ड ऐक्साइटॉन का सह-अस्तित्व देखा गया ।[30][31][32][33]


इंटरैक्शन

उच्च तापमान पर मुक्त इलेक्ट्रॉन-छेद पुनर्संयोजन की जगह, कम तापमान पर अर्धचालकों में प्रकाश उत्सर्जन के लिए ऐक्साइटॉन मुख्य तंत्र हैं (जब विशेषता थर्मल ऊर्जा केटी ऐक्साइटॉन बाइंडिंग एनर्जी से कम होती है)

ऐक्साइटॉन स्टेट के अस्तित्व का अनुमान उत्तेजना से जुड़े प्रकाश के अवशोषण से लगाया जा सकता है।आमतौर पर, बैंड गैप के ठीक नीचे ऐक्साइटॉन देखे जाते हैं।

जब ऐक्साइटॉन फोटॉनों के साथ परस्पर क्रिया करते हैं तो एक तथाकथित पोलरिटॉन (या अधिक विशेष रूप से ऐक्साइटॉन-पोलरिटॉन) बनता है।इन ऐक्साइटॉन को डैसड एक्साइटन के रूप में संदर्भित किया जाता है।

ऐक्साइटॉन एक डायहाइड्रोजन अणु के अनुरूप, एक बाइ ऐक्साइटॉन बनाने के लिए अन्य उत्तेजनाओं के साथ जुड़ सकता है। यदि किसी सामग्री में का एक बड़ा घनत्व बनाया जाता है, तो इलेक्ट्रॉन-होल तरल बनाने के लिए एक दूसरे के साथ संपर्क कर सकते हैं, एक स्टेट जो के-स्पेस(K-Space) अप्रत्यक्ष अर्धचालक में पाया जाता है।

इसके अतिरिक्त, ऐक्साइटॉन पूर्णांक-स्पिन कण होते हैं जो निम्न-घनत्व सीमा में बोस के आँकड़ों का पालन करते हैं। कुछ प्रणालियों में, जहां इंटरैक्शन प्रतिकारक होते हैं, एक बोस -आइंस्टीन संघनित अवस्था, जिसे ऐक्सिटोनियम कहा जाता है, को जमीनी अवस्था होने की भविष्यवाणी की जाती है।ऐक्साइटोनियम के कुछ प्रमाण 1970 के दशक से मौजूद हैं, लेकिन अक्सर एक पीयरल्स (Peierls)चरण से इसे पहचानना मुश्किल हो गया है।[34] ऐक्साइटॉन कंडेनसेट्स को कथित तौर पर डबल क्वांटम वेल सिस्टम में देखा गया है।[35] 2017 में कोगर एट अल (Kogar et al.) त्रि-आयामी अर्धधातु 1T-TiSe2 में संघनित प्रेक्षित उत्तेजनों के लिए "सम्मोहक साक्ष्य" मिला।


स्थानिक रूप से प्रत्यक्ष और अप्रत्यक्ष ऐक्साइटॉन

आम तौर पर, इलेक्ट्रॉन और छेद की निकटता के कारण अर्धचालक में ऐक्साइटॉन का जीवनकाल बहुत कम होता है। हालांकि, तथाकथित 'स्थानिक रूप से अप्रत्यक्ष' उत्तेजनाओं के बीच एक इन्सुलेटिंग बैरियर लेयर के साथ 'स्थानिक रूप से अलग क्वांटम कुओं में इलेक्ट्रॉन और छेद को रखकर बनाया जा सकता है। सामान्य (स्थानिक रूप से प्रत्यक्ष) के विपरीत, ये स्थानिक रूप से अप्रत्यक्ष उत्तोलन इलेक्ट्रॉन और छेद के बीच बड़े स्थानिक पृथक्करण हो सकते हैं, और इस तरह यह बहुत लंबा जीवनकाल रखता है।[36] यह अक्सर बोस-आइंस्टीन संघनन (या इसके दो-आयामी एनालॉग) का अध्ययन करने के लिए इसका उपयोग अक्सर ऐक्साइटॉन को बहुत कम तापमान पर ठंडा करने के लिए किया जाता है।[37]


नैनोकणों में ऐक्साइटॉन

अर्धचालक क्रिस्टलीय नैनोकणों में जो क्वांटम कारावास प्रभावों को प्रदर्शित करते है और इसलिए क्वांटम डॉट्स के रूप में व्यवहार करते है, ऐक्साइटोनिक रेडी द्वारा दिए गए है[38][39]

जहाँ पे सापेक्ष पारगम्यता है, इलेक्ट्रॉन-होल सिस्टम का कम द्रव्यमान है, इलेक्ट्रॉन द्रव्यमान है, और बोहर रेडियस है।


यह भी देखें

  • ऑर्बिटन
  • ऑस्किलेटर शक्ति
  • प्लास्मोन
  • पोलारिटोन सुपरफ्लुइड
  • ट्रियोन

संदर्भ

  1. R. S. Knox, Theory of excitons, Solid state physics (Ed. by Seitz and Turnbul, Academic, NY), v. 5, 1963.
  2. 2.0 2.1 Mueller, Thomas; Malic, Ermin (2018-09-10). "Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors". npj 2D Materials and Applications (in English). 2 (1): 1–12. doi:10.1038/s41699-018-0074-2. ISSN 2397-7132.
  3. Monique Combescot and Shiue-Yuan Shiau, "Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics", Oxford University Press (ISBN 9780198753735)
  4. Couto, ODD; Puebla, J (2011). "Charge control in InP/(Ga,In)P single quantum dots embedded in Schottky diodes". Physical Review B. 84 (4): 226. arXiv:1107.2522. Bibcode:2011PhRvB..84l5301C. doi:10.1103/PhysRevB.84.125301. S2CID 119215237.
  5. Frenkel, J. (1931). "On the Transformation of light into Heat in Solids. I". Physical Review. 37 (1): 17. Bibcode:1931PhRv...37...17F. doi:10.1103/PhysRev.37.17.
  6. Wannier, Gregory (1937). "The Structure of Electronic Excitation Levels in Insulating Crystals". Physical Review. 52 (3): 191. Bibcode:1937PhRv...52..191W. doi:10.1103/PhysRev.52.191.
  7. Kazimierczuk, T.; Fröhlich, D.; Scheel, S.; Stolz, H.; Bayer, M. (2014). "Giant Rydberg excitons in the copper oxide Cu2O". Nature. 514 (7522): 343–347. arXiv:1407.0691. Bibcode:2014Natur.514..343K. doi:10.1038/nature13832. PMID 25318523. S2CID 4470179.
  8. Fox, Mark (2010-03-25). Optical Properties of Solids. Oxford Master Series in Physics (2 ed.). Oxford University Press. p. 97. ISBN 978-0199573363.
  9. 9.0 9.1 Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Ozgur Burak; Reichman, David R.; Hybertsen, Mark S.; Heinz, Tony F. (2014). "Exciton Binding Energy and Nonhydrogenic Rydberg Series in MonolayerWS2". Physical Review Letters. 113 (7): 076802. arXiv:1403.4270. Bibcode:2014PhRvL.113g6802C. doi:10.1103/PhysRevLett.113.076802. ISSN 0031-9007. PMID 25170725.
  10. Yang, X. L. (1 February 1991). "Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory". Physical Review A. 43 (3): 1186–1196. Bibcode:1991PhRvA..43.1186Y. doi:10.1103/PhysRevA.43.1186. PMID 9905143.
  11. Rytova, N S. (1967). "The screened potential of a point charge in a thin film". Proc. MSU Phys. Astron. 3: 30.
  12. Keldysh, LV (1979). "Coulomb interaction in thin semiconductor and semimetal films". JETP Lett. 29: 658.
  13. Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie (2017). "Model dielectric function for 2D semiconductors including substrate screening". Sci. Rep. 7: 39844. Bibcode:2017NatSR...739844T. doi:10.1038/srep39844. PMC 5259763. PMID 28117326.
  14. Mueller, Thomas; Malic, Ermin (2018-09-10). "Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors". npj 2D Materials and Applications (in English). 2 (1): 1–12. doi:10.1038/s41699-018-0074-2. ISSN 2397-7132.
  15. J. D. Wright (1995) [First published 1987]. Molecular Crystals (2nd ed.). Cambridge University Press. p. 108. ISBN 978-0-521-47730-7.
  16. Guglielmo Lanzani (2012). The Photophysics Behind Photovoltaics and Photonics. Wiley-VCH Verlag. p. 82.
  17. Ellis, D. S.; Hill, J. P.; Wakimoto, S.; Birgeneau, R. J.; Casa, D.; Gog, T.; Kim, Young-June (2008). "Charge-transfer exciton in La2CuO4 probed with resonant inelastic x-ray scattering". Physical Review B. 77 (6): 060501(R). arXiv:0709.1705. Bibcode:2008PhRvB..77f0501E. doi:10.1103/PhysRevB.77.060501. S2CID 119238654.
  18. Baldini, Edoardo; Chiodo, Letizia; Dominguez, Adriel; Palummo, Maurizia; Moser, Simon; Yazdi-Rizi, Meghdad; Aubock, Gerald; Mallett, Benjamin P P; Berger, Helmuth; Magrez, Arnaud; Bernhard, Christian; Grioni, Marco; Rubio, Angel; Chergui, Majed (2017). "Strongly bound excitons in anatase TiO2 single crystals and nanoparticles". Nature Communications. 8 (13): 13. arXiv:1601.01244. Bibcode:2017NatCo...8...13B. doi:10.1038/s41467-017-00016-6. PMC 5432032. PMID 28408739.
  19. A. Prikhotjko, Absorption Spectra of Crystals at Low Temperatures, J. Physics USSR 8, 257 (1944)
  20. A. F. Prikhot'ko, Izv, AN SSSR Ser. Fiz. 7, 499 (1948) http://ujp.bitp.kiev.ua/files/journals/53/si/53SI18p.pdf Archived 2016-03-05 at the Wayback Machine
  21. A.S Davydov, Theory of Molecular Excitons (Plenum, NY) 1971
  22. V. L. Broude, E. I. Rashba, and E. F. Sheka, Spectroscopy of molecular excitons (Springer, NY) 1985
  23. E. I. Rashba, Giant Oscillator Strengths Associated with Exciton Complexes, Sov. Phys. Semicond. 8, 807-816 (1975)
  24. N. Schwentner, E.-E. Koch, and J. Jortner, Electronic excitations in condensed rare gases, Springer tracts in modern physics, 107, 1 (1985).
  25. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, and E. Hanamura. Excitonic Processes in Solids, Springer Series in Solid State Sciences, Vol. 60 (1986).
  26. E. I. Rashba, "Theory of Strong Interaction of Electron Excitations with Lattice Vibrations in Molecular Crystals, Optika i Spektroskopiya 2, 75, 88 (1957).
  27. E. I. Rashba, Self-trapping of excitons, in: Excitons (North-Holland, Amsterdam, 1982), p. 547.
  28. S.I. Pekar, E.I. Rashba, V.I. Sheka, Sov. Phys. JETP 49, 251 (1979), http://www.jetp.ac.ru/cgi-bin/dn/e_049_01_0129.pdf
  29. A. S. Ioselevich and E. I. Rashba, Theory of Nonradiative Trapping in Crystals, in: "Quantum tunneling in condensed media." Eds. Yu. Kagan and A. J. Leggett. (North-Holland, Amsterdam, 1992), p. 347-425.https://books.google.com/books?hl=en&lr=&id=ElDtL9qZuHUC&oi=fnd&pg=PA347&dq=%22E+I+Rashba%22&ots=KjE3JYn9kl&sig=0Aj4IdVj0zqPSyq3ep_RT6sOlgQ#v=onepage&q=%22E%20I%20Rashba%22&f=false
  30. U. M. Grassano, "Excited-State Spectroscopy in Solids", Proceedings of the International School of Physics "Enrico Fermi", Course 96, Varenna, Italy, 9–19 July 1985. Amsterdam;New York: North-Holland (1987). ISBN 9780444870704, [1].
  31. I. Ya. Fugol', "Free and self-trapped excitons in cryocrystals: kinetics and relaxation processes." Advances in Physics 37, 1-35 (1988).
  32. Ch. B. Lushchik, in "Excitons," edited by E. I. Rashba, and M. D. Sturge, (North Holland, Amsterdam, 1982), p. 505.
  33. M. Furukawa, Ken-ichi Mizuno, A. Matsui, N. Tamai and I. Yamazaiu, Branching of Exciton Relaxation to the Free and Self-Trapped Exciton States, Chemical Physics 138, 423 (1989).
  34. "New form of matter 'excitonium' discovered". The Times of India. Retrieved 10 December 2017.
  35. Eisenstein, J.P. (January 10, 2014). "Exciton Condensation in Bilayer Quantum Hall Systems". Annual Review of Condensed Matter Physics. 5: 159–181. arXiv:1306.0584. Bibcode:2014ARCMP...5..159E. doi:10.1146/annurev-conmatphys-031113-133832. S2CID 15776603.
  36. Merkl, P.; Mooshammer, F.; Steinleitner, P.; Girnghuber, A.; Lin, K.-Q.; Nagler, P.; Holler, J.; Schüller, C.; Lupton, J. M.; Korn, T.; Ovesen, S.; Brem, S.; Malic, E.; Huber, R. (2019). "Ultrafast transition between exciton phases in van der Waals heterostructures". Nature Materials. 18 (7): 691–696. arXiv:1910.03890. Bibcode:2019NatMa..18..691M. doi:10.1038/s41563-019-0337-0. PMID 30962556. S2CID 104295452.
  37. High, A. A.; Leonard, J. R.; Hammack, A. T.; Fogler, M. M.; Butov, L. V.; Kavokin, A. V.; Campman, K. L.; Gossard, A. C. (2012). "Spontaneous coherence in a cold exciton gas". Nature. 483 (7391): 584–588. arXiv:1109.0253. Bibcode:2012Natur.483..584H. doi:10.1038/nature10903. PMID 22437498. S2CID 3049881.
  38. Brus, Louis (1986). "Electronic wave functions in semiconductor clusters: experiment and theory". The Journal of Physical Chemistry. ACS Publications. 90 (12): 2555–2560. doi:10.1021/j100403a003.
  39. Edvinsson, T. (2018). "Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures". Royal Society Open Science. 5 (9): 180387. Bibcode:2018RSOS....580387E. doi:10.1098/rsos.180387. ISSN 2054-5703. PMC 6170533. PMID 30839677.