विद्युत चुंबकत्व

From Vigyanwiki
Revision as of 23:08, 27 July 2022 by alpha>Sugatha
अलास्का में अरोड़ा चार्ज कणों और चुंबकत्व द्वारा निर्मित प्रकाश दिखा रहा है, विद्युत चुंबकत्व अध्ययन के लिए मौलिक अवधारणाएं

विद्युत चुंबकत्व भौतिकी की एक शाखा है जिसमें विद्युत चुम्बकीय बल का अध्ययन शामिल है, एक प्रकार का भौतिक संपर्क जो विद्युत आवेशित कणों के बीच होता है। विद्युत चुम्बकीय बल विद्युत क्षेत्रों और चुंबकीय क्षेत्रों से बने विद्युत चुम्बकीय क्षेत्रों द्वारा किया जाता है, और प्रकाश जैसे विद्युत चुम्बकीय विकिरण के लिए जिम्मेदार होता है। यह मजबूत अंतःक्रिया, कमजोर अंतःक्रिया और गुरुत्वाकर्षण के साथ प्रकृति में चार मूलभूत अंतःक्रियाओं (आमतौर पर बल कहा जाता है) में से एक है। [1] उच्च ऊर्जा पर, कमजोर बल और विद्युत चुम्बकीय बल एक एकल विद्युत शक्ति बल के रूप में एकीकृत होते हैं।

विद्युतचुंबकीय घटना को विद्युत चुम्बकीय बल के संदर्भ में परिभाषित किया जाता है, जिसे कभी-कभी लोरेंत्ज़ बल (लोरेंत्ज़ फ़ोर्स) कहा जाता है, जिसमें एक ही घटना के विभिन्न अभिव्यक्तियों के रूप में बिजली और चुंबकत्व दोनों शामिल होते हैं। विद्युत चुम्बकीय बल दैनिक जीवन में आने वाली अधिकांश वस्तुओं के आंतरिक गुणों को निर्धारित करने में एक प्रमुख भूमिका निभाता है। परमाणु नाभिक और उनके कक्षीय इलेक्ट्रॉनों के बीच विद्युत चुम्बकीय आकर्षण परमाणुओं को एक साथ रखता है। विद्युत चुम्बकीय बल परमाणुओं के बीच रासायनिक बंधनों के लिए जिम्मेदार होते हैं जो अणु बनाते हैं, और अंतर-आणविक बल। विद्युत चुम्बकीय बल सभी रासायनिक प्रक्रियाओं को नियंत्रित करता है, जो पड़ोसी परमाणुओं से इलेक्ट्रॉनों के बीच बातचीत के परिणामस्वरूप होता है। विद्युत चुंबकत्व आधुनिक तकनीक में बहुत व्यापक रूप से उपयोग किया जाता है, और विद्युत चुम्बकीय सिद्धांत डिजिटल प्रौद्योगिकी सहित विद्युत ऊर्जा इंजीनियरिंग और इलेक्ट्रॉनिक्स का आधार है।

विद्युत चुम्बकीय क्षेत्र के कई गणितीय विवरण हैं। सबसे प्रमुख रूप से, मैक्सवेल के समीकरण वर्णन करते हैं कि कैसे विद्युत और चुंबकीय क्षेत्र एक दूसरे द्वारा और आवेशों और धाराओं द्वारा उत्पन्न और परिवर्तित होते हैं।

विद्युत चुंबकत्व के सैद्धांतिक निहितार्थ, विशेष रूप से प्रसार (पारगम्यता और पारगम्यता) के "माध्यम" के गुणों के आधार पर प्रकाश की गति की स्थापना, ने 1905 में अल्बर्ट आइंस्टीन द्वारा विशेष सापेक्षता के विकास को जन्म दिया।

सिद्धांत का इतिहास

मूल रूप से, बिजली और चुंबकत्व को दो अलग-अलग ताकतों के रूप में माना जाता था। जेम्स क्लर्क मैक्सवेल के 1873 ए ट्रीटीज ऑन इलेक्ट्रिसिटी एंड मैग्नेटिज्म [2] के प्रकाशन के साथ यह दृश्य बदल गया, जिसमें सकारात्मक और नकारात्मक चार्ज की बातचीत को एक बल द्वारा मध्यस्थता दिखाया गया था। इन अंतःक्रियाओं के परिणामस्वरूप चार मुख्य प्रभाव होते हैं, जो सभी प्रयोगों द्वारा स्पष्ट रूप से प्रदर्शित किए गए हैं:

  1. विद्युत आवेश एक दूसरे को उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती बल के साथ आकर्षित या प्रतिकर्षित करते हैं: विपरीत आवेश आकर्षित करते हैं, जैसा कि प्रतिकर्षित करते हैं।
  2. चुंबकीय ध्रुव (या अलग-अलग बिंदुओं पर ध्रुवीकरण की स्थिति) एक दूसरे को सकारात्मक और नकारात्मक चार्ज के समान आकर्षित या पीछे हटाते हैं और हमेशा जोड़े के रूप में मौजूद होते हैं: प्रत्येक उत्तरी ध्रुव एक दक्षिणी ध्रुव से जुड़ा होता है।
  3. एक तार के अंदर एक विद्युत प्रवाह तार के बाहर एक समान परिधीय चुंबकीय क्षेत्र बनाता है। इसकी दिशा (घड़ी की दिशा में या वामावर्त) तार में धारा की दिशा पर निर्भर करती है।
  4. एक विद्युत प्रवाह तार के लूप में तब प्रेरित होता है जब इसे चुंबकीय क्षेत्र की ओर या उससे दूर ले जाया जाता है, या जब चुंबक को उसकी ओर या उससे दूर ले जाया जाता है; धारा की दिशा गति पर निर्भर करती है।

अप्रैल 1820 में, हैंस क्रिस्चियन ओर्स्टेड ने देखा कि एक तार में विद्युत प्रवाह के कारण पास की कम्पास सुई हिल गई। खोज के समय, फर्स्ट ने घटना के किसी भी संतोषजनक स्पष्टीकरण का सुझाव नहीं दिया, न ही उन्होंने गणितीय ढांचे में घटना का प्रतिनिधित्व करने का प्रयास किया। हालांकि, तीन महीने बाद उन्होंने और गहन जांच शुरू की।। [3] [4] अपने निष्कर्षों को प्रकाशित करने के तुरंत बाद, यह साबित करते हुए कि एक विद्युत प्रवाह एक चुंबकीय क्षेत्र उत्पन्न करता है क्योंकि यह एक तार से बहता है। चुंबकीय प्रेरण (ओर्स्टेड) की सीजीएस इकाई का नाम विद्युत चुंबकत्व के क्षेत्र में उनके योगदान के सम्मान में रखा गया है। [5]

उनके निष्कर्षों के परिणामस्वरूप पूरे वैज्ञानिक समुदाय में इलेक्ट्रोडायनामिक्स में गहन शोध हुआ। उन्होंने वर्तमान-वाहक कंडक्टरों के बीच चुंबकीय बलों का प्रतिनिधित्व करने के लिए फ्रांसीसी भौतिक विज्ञानी आंद्रे-मैरी एम्प्रे के एकल गणितीय रूप के विकास को प्रभावित किया। ओर्स्टेड की खोज ने ऊर्जा की एकीकृत अवधारणा की दिशा में एक बड़े कदम का भी प्रतिनिधित्व किया।

यह एकीकरण, जिसे माइकल फैराडे द्वारा देखा गया था, जिसे जेम्स क्लर्क मैक्सवेल द्वारा विस्तारित किया गया था,और आंशिक रूप से ओलिवर हेविसाइड और हेनरिक हर्ट्ज़ द्वारा सुधार किया गया था, यह 19 वीं शताब्दी के गणितीय भौतिकी की प्रमुख उपलब्धियों में से एक है। [6] इसके दूरगामी परिणाम हुए हैं, जिनमें से एक प्रकाश की प्रकृति की समझ थी। उस समय के विद्युत चुम्बकीय सिद्धांत द्वारा प्रस्तावित के विपरीत, प्रकाश और अन्य विद्युत चुम्बकीय तरंगों को वर्तमान में फोटॉन नामक मात्रात्मक, स्व-प्रसारित दोलन विद्युत चुम्बकीय क्षेत्र की गड़बड़ी के रूप में देखा जाता है। दोलन की विभिन्न आवृत्तियाँ विद्युत चुम्बकीय विकिरण के विभिन्न रूपों को जन्म देती हैं, सबसे कम आवृत्तियों पर रेडियो तरंगों से, मध्यवर्ती आवृत्तियों पर दृश्य प्रकाश तक, उच्चतम आवृत्तियों पर गामा किरणों तक।

ओर्स्टेड बिजली और चुंबकत्व के बीच संबंधों की जांच करने वाला एकमात्र व्यक्ति नहीं था। 1802 में, एक इतालवी कानूनी विद्वान जियान डोमेनिको रोमाग्नोसी ने वोल्टाइक ढेर का उपयोग करके एक चुंबकीय सुई को हटा दिया। प्रयोग का वास्तविक सेटअप पूरी तरह से स्पष्ट नहीं है, इसलिए सुई में करंट प्रवाहित हुआ या नहीं। खोज का एक लेख 1802 में एक इतालवी अखबार में प्रकाशित हुआ था, लेकिन समकालीन वैज्ञानिक समुदाय द्वारा इसे काफी हद तक अनदेखा कर दिया गया था, क्योंकि रोमाग्नोसी इस समुदाय से संबंधित नहीं थे। [7]

एक पहले (1735), और अक्सर उपेक्षित, बिजली और चुंबकत्व के बीच संबंध को डॉ. कुकसन द्वारा सूचित किया गया था। [8] खाते में कहा गया है:

यॉर्कशायर के वेकफील्ड में एक व्यापारी ने बड़ी संख्या में चाकू और कांटे एक बड़े डिब्बे में डाल दिए... और बक्सा को एक बड़े कमरे के कोने में रखने के बाद, बिजली और गड़गड़ाहट हुई। मालिक ने एक काउंटर पर बक्से को खाली कर दिया, जहां कुछ कीलें पड़ी थीं, जिन लोगों ने चाकू उठाए, जो कि कीलों पर रखे थे, उन्होंने देखा कि चाकू ने कीलों को उठा लिया है। इस पर पूरी संख्या का परीक्षण किया गया, और पाया गया कि वे ऐसा ही करते हैं, और वह, इस हद तक कि बड़ी कीलें, सुइयां, और अन्य भारी वजन की लोहे की चीजें उठा लेते हैं। . .

ईटी व्हिटेकर ने 1910 में सुझाव दिया कि यह विशेष घटना बिजली को " चुंबकीय स्टील की शक्ति के साथ श्रेय देने के लिए जिम्मेदार थी; और यह निस्संदेह था जिसने 1751 में फ्रैंकलिन को लेडेन जार के निर्वहन के माध्यम से एक सिलाई-सुई को चुम्बकित करने का प्रयास किया। " [9]

मौलिक बल

विद्युत चुम्बकीय बल चार ज्ञात मौलिक बलों में से एक है। अन्य मूलभूत शक्तियाँ हैं:

वृत्ताकार ध्रुवीकृत विद्युत चुम्बकीय विकिरण की एक तरंग के विद्युत क्षेत्र वेक्टर का प्रतिनिधित्व।
  • शक्तिशाली परमाणु बल, जो क्वार्कों को न्यूक्लियॉन बनाने के लिए बांधता है, और न्यूक्लियॉन को नाभिक बनाने के लिए बांधता है।
  • वह कमजोर परमाणु बल, जो सभी ज्ञात कणों को मानक मॉडल में बांधता है, और किसी प्रकार के रेडियोधर्मी क्षय का कारण बनता है। (कण भौतिकी में हालांकि, इलेक्ट्रोवीक इंटरैक्शन प्रकृति के चार ज्ञात मौलिक इंटरैक्शन में से दो का एक एकीकृत विवरण है: विद्युत चुंबकत्व और कमजोर पारस्परिक क्रिया);
  • गुरुत्वाकर्षण बल

अन्य सभी बल (जैसे, घर्षण, संपर्क बल) इन चार मूलभूत बलों से प्राप्त होते हैं और उन्हें गैर-मौलिक बल के रूप में जाना जाता है। [10]

मोटे तौर पर, परमाणुओं के बीच बातचीत में शामिल सभी बलों को विद्युत आवेशित परमाणु नाभिक और परमाणुओं के इलेक्ट्रॉनों के बीच कार्य करने वाले विद्युत चुम्बकीय बल द्वारा समझाया जा सकता है। विद्युत चुम्बकीय बल यह भी बताते हैं कि ये कण अपनी गति से कैसे गति करते हैं। इसमें वे बल शामिल हैं जिन्हें हम साधारण भौतिक वस्तुओं को "धकेलने" या "खींचने" में अनुभव करते हैं, जो हमारे शरीर में और वस्तुओं में अलग-अलग अणुओं के बीच कार्य करने वाले अंतर-आणविक बलों के परिणामस्वरूप होते हैं। विद्युत चुम्बकीय बल भी सभी प्रकार की रासायनिक घटनाओं में शामिल होता है।

तर-परमाणु और अंतर-आणविक बलों को समझने का एक आवश्यक हिस्सा इलेक्ट्रॉनों की गति की गति से उत्पन्न प्रभावी बल है, जैसे कि इलेक्ट्रॉन परस्पर क्रिया करने वाले परमाणुओं के बीच चलते हैं, वे उनके साथ गति करते हैं। जैसे-जैसे इलेक्ट्रॉनों का संग्रह अधिक सीमित होता जाता है, पॉली अपवर्जन सिद्धांत के कारण उनका न्यूनतम संवेग आवश्यक रूप से बढ़ जाता है। घनत्व सहित आणविक पैमाने पर पदार्थ का व्यवहार विद्युत चुम्बकीय बल और स्वयं इलेक्ट्रॉनों द्वारा किए गए गति के आदान-प्रदान द्वारा उत्पन्न बल के बीच संतुलन द्वारा निर्धारित किया जाता है। [11]

चिरसम्मत विद्युतगतिकी

1600 में, विलियम गिल्बर्ट ने अपने डी मैग्नेट में प्रस्तावित किया कि बिजली और चुंबकत्व, जबकि दोनों वस्तुओं के आकर्षण और प्रतिकर्षण पैदा करने में सक्षम थे, अलग-अलग प्रभाव थे। मेरिनर्स ने देखा था कि बिजली के झटके में कम्पास सुई को परेशान करने की क्षमता होती है। 1752 में बेंजामिन फ्रैंकलिन के प्रस्तावित प्रयोगों तक बिजली और बिजली के बीच संबंध की पुष्टि नहीं हुई थी। मानव निर्मित विद्युत प्रवाह और चुंबकत्व के बीच एक लिंक को खोजने और प्रकाशित करने वाले पहले लोगों में से एक जियान रोमाग्नोसी थे, जिन्होंने 1802 में देखा कि एक वोल्टाइक ढेर में एक तार को जोड़ने से पास की कम्पास सुई विक्षेपित हो जाती है। हालांकि, 1820 तक प्रभाव व्यापक रूप से ज्ञात नहीं हुआ, जब फर्स्टड ने एक समान प्रयोग किया। [12] ओर्स्टेड के काम ने एम्पीयर को विद्युत चुंबकत्व के सिद्धांत का निर्माण करने के लिए प्रभावित किया जिसने विषय को गणितीय आधार पर स्थापित किया।

विद्युत चुंबकत्व का एक सिद्धांत, जिसे चिरसम्मत विद्युत चुंबकत्व के रूप में जाना जाता है, 1820 और 1873 के बीच की अवधि के दौरान विभिन्न भौतिकविदों द्वारा विकसित किया गया था, जब यह जेम्स क्लर्क मैक्सवेल द्वारा एक ग्रंथ के प्रकाशन में समाप्त हुआ, जिसने पिछले एकीकृत विकास को एक सिद्धांत में वर्णित किया और विद्युत चुम्बकीय की खोज की। [13] चिरसम्मत विद्युत चुंबकत्व में, विद्युत चुम्बकीय क्षेत्र के व्यवहार को मैक्सवेल के समीकरणों के रूप में ज्ञात समीकरणों के एक समूह द्वारा वर्णित किया जाता है, और विद्युत चुम्बकीय बल लोरेंत्ज़ बल कानून द्वारा दिया जाता है। [14]

चिरसम्मत विद्युत चुंबकत्व की एक विशेषता यह है कि चिरसम्मत यांत्रिकी के साथ सामंजस्य स्थापित करना मुश्किल है, लेकिन यह विशेष सापेक्षता के साथ संगत है। मैक्सवेल के समीकरणों के अनुसार, निर्वात में प्रकाश की गति एक सार्वभौमिक स्थिरांक है जो केवल विद्युत पारगम्यता और मुक्त स्थान की चुंबकीय पारगम्यता पर निर्भर है। यह गैलीलियन इनवेरिएंस का उल्लंघन करता है, जो शास्त्रीय यांत्रिकी की एक लंबे समय से चली आ रही आधारशिला है। दो सिद्धांतों (विद्युत चुंबकत्व और चिरसम्मत यांत्रिकी) को समेटने का एक तरीका एक चमकदार ईथर के अस्तित्व को ग्रहण करना है जिसके माध्यम से प्रकाश फैलता है। हालांकि, बाद के प्रायोगिक प्रयास ईथर की उपस्थिति का पता लगाने में विफल रहे। 1905 में हेंड्रिक लोरेंत्ज़ और हेनरी पोंकारे के महत्वपूर्ण योगदान के बाद, अल्बर्ट आइंस्टीन ने विशेष सापेक्षता की शुरुआत के साथ समस्या का समाधान किया, जिसने चिरसम्मत कीनेमेटीक्स को चिरसम्मत विद्युत चुंबकत्व के साथ संगत किनेमेटिक्स के एक नए सिद्धांत के साथ बदल दिया। (अधिक जानकारी के लिए, विशेष सापेक्षता का इतिहास देखें। )

इसके अलावा, सापेक्षता के सिद्धांत का तात्पर्य है कि संदर्भ के एक गतिशील फ्रेम में, एक चुंबकीय क्षेत्र एक गैर-शून्य विद्युत घटक वाले क्षेत्र में बदल जाता है और इसके विपरीत, एक गतिमान विद्युत क्षेत्र एक गैर-शून्य चुंबकीय घटक में बदल जाता है। , इस प्रकार दृढ़ता से दर्शाता है कि घटना के दो पहलू हैं। एक ही सिक्का। इसलिए शब्द "विद्युत चुंबकत्व"। (अधिक जानकारी के लिए, चिरसम्मत विद्युत चुंबकत्व और विशेष सापेक्षता और चिरसम्मत विद्युत चुंबकत्व का सहसंयोजक सूत्रीकरण देखें। )

गैर-रेखीय घटना का विस्तार

सौर प्लाज्मा में चुंबकीय पुन: संयोजन सौर फ्लेयर्स को जन्म देता है, एक जटिल मैग्नेटोहाइड्रोडायनामिक घटना।

मैक्सवेल के समीकरण रैखिक हैं, जिसमें स्रोतों (आवेशों और धाराओं) में परिवर्तन के परिणामस्वरूप क्षेत्रों में आनुपातिक परिवर्तन होता है। नॉनलाइनियर डायनेमिक्स तब हो सकता है जब इलेक्ट्रोमैग्नेटिक फील्ड कपल टू मैटर जो नॉनलाइनियर डायनेमिक कानूनों का पालन करता है। इसका अध्ययन किया जाता है, उदाहरण के लिए, मैग्नेटोहाइड्रोडायनामिक्स के विषय में, जो मैक्सवेल के सिद्धांत को नेवियर-स्टोक्स समीकरणों के साथ जोड़ता है।

मात्रा और इकाइयाँ

विद्युतचुंबकीय इकाइयाँ प्राथमिक रूप से विद्युत धाराओं के चुंबकीय गुणों पर आधारित विद्युत इकाइयों की एक प्रणाली का हिस्सा हैं, मौलिक SI इकाई एम्पीयर है। इकाइयां हैं:

विद्युत चुम्बकीय सीजीएस प्रणाली में, विद्युत प्रवाह एम्पीयर के नियम के माध्यम से परिभाषित एक मौलिक मात्रा है और पारगम्यता को एक आयाम रहित मात्रा (सापेक्ष पारगम्यता) के रूप में लेता है जिसका मूल्य निर्वात में एकता है । नतीजतन, प्रकाश की गति का वर्ग इस प्रणाली में कुछ समीकरणों में परस्पर संबंधित मात्राओं में स्पष्ट रूप से प्रकट होता है।

Table is missing

विद्युत चुंबकत्व के भौतिक नियमों के सूत्र (जैसे मैक्सवेल के समीकरण ) को इस आधार पर समायोजित करने की आवश्यकता है कि कौन सी इकाइयों की प्रणाली का उपयोग किया जाता है। ऐसा इसलिए है क्योंकि एसआई और सीजीएस में विद्युत चुम्बकीय इकाइयों के बीच कोई एक-से-एक पत्राचार नहीं है, जैसा कि यांत्रिक इकाइयों के मामले में है। इसके अलावा, सीजीएस के भीतर, विद्युतचुंबकीय इकाइयों के कई प्रशंसनीय विकल्प हैं, जो गाऊसी, "ईएसयू", "ईएमयू", और हेविसाइड-लोरेंत्ज़ सहित विभिन्न इकाई "उप-प्रणालियों" के लिए अग्रणी हैं। इन विकल्पों में से, गाऊसी इकाइयाँ आज सबसे आम हैं, और वास्तव में वाक्यांश "सीजीएस इकाइयाँ" अक्सर विशेष रूप से सीजीएस-गॉसियन इकाइयों को संदर्भित करने के लिए उपयोग किया जाता है। [15]

यह सभी देखें

संदर्भ

  1. Ravaioli, Fawwaz T. Ulaby, Eric Michielssen, Umberto (2010). Fundamentals of applied electromagnetics (6th ed.). Boston: Prentice Hall. p. 13. ISBN 978-0-13-213931-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. "A Treatise on Electricity and Magnetism". Nature (in English). 7 (182): 478–480. 24 April 1873. doi:10.1038/007478a0. ISSN 0028-0836.
  3. "History of the Electric Telegraph". Scientific American. 17 (425supp): 6784–6786. 1884-02-23. doi:10.1038/scientificamerican02231884-6784supp. ISSN 0036-8733.
  4. Volta and the history of electricity. Fabio Bevilacqua, Enrico A. Giannetto. Milano: U. Hoepli. 2003. ISBN 88-203-3284-1. OCLC 1261807533.{{cite book}}: CS1 maint: others (link)
  5. Roche, John J. (1998). The mathematics of measurement : a critical history. London: Athlone Press. ISBN 0-485-11473-9. OCLC 40499222.
  6. Darrigol, Olivier (2000). Electrodynamics from Ampère to Einstein. New York: Oxford University Press. ISBN 0198505949.
  7. Martins, Roberto de Andrade. "Romagnosi and Volta's Pile: Early Difficulties in the Interpretation of Voltaic Electricity" (PDF). In Fabio Bevilacqua; Lucio Fregonese (eds.). Nuova Voltiana: Studies on Volta and his Times. Vol. 3. Università degli Studi di Pavia. pp. 81–102. Archived from the original (PDF) on 2013-05-30. Retrieved 2010-12-02.
  8. VIII. An account of an extraordinary effect of lightning in communicating magnetism. Communicated by Pierce Dod, M.D. F.R.S. from Dr. Cookson of Wakefield in Yorkshire. Phil. Trans. 1735 39, 74-75, published 1 January 1735
  9. Whittaker, E.T. (1910). A History of the Theories of Aether and Electricity from the Age of Descartes to the Close of the Nineteenth Century. Longmans, Green and Company.
  10. Browne, "Physics for Engineering and Science," p. 160: "Gravity is one of the fundamental forces of nature. The other forces such as friction, tension, and the normal force are derived from the electric force, another of the fundamental forces. Gravity is a rather weak force... The electric force between two protons is much stronger than the gravitational force between them."
  11. Purcell, "Electricity and Magnetism, 3rd Edition," p. 546: Ch 11 Section 6, "Electron Spin and Magnetic Moment."
  12. Stern, Dr. David P.; Peredo, Mauricio (2001-11-25). "Magnetic Fields – History". NASA Goddard Space Flight Center. Retrieved 2009-11-27.
  13. Purcell, p. 436. Chapter 9.3, "Maxwell's description of the electromagnetic field was essentially complete."
  14. Purcell: p. 278: Chapter 6.1, "Definition of the Magnetic Field." Lorentz force and force equation.
  15. "Conversion of formulae and quantities between unit systems" (PDF). www.stanford.edu. Retrieved 29 January 2022.

अग्रिम पठन

वेब स्रोत

पाठ्यपुस्तकें

सामान्य संदर्भ

बाहरी संबंध