त्वरक भौतिकी

From Vigyanwiki
Revision as of 23:40, 16 July 2022 by alpha>Pranjalikushwaha (Edit text)

त्वरक भौतिकी अनुप्रयुक्त भौतिकी की एक शाखा है, जो कण त्वरक के डिजाइन(बनावट), निर्माण और संचालन से संबंधित है। जैसे, इसे गति, हेरफेर और सापेक्षतावादी आवेशित कण बीम के अवलोकन और विद्युत चुम्बकीय क्षेत्रों द्वारा त्वरक संरचनाओं के साथ उनकी बातचीत के अध्ययन के रूप में वर्णित किया जा सकता है।

यह अन्य क्षेत्रों से भी संबंधित है:

कण त्वरक के साथ किए गए प्रयोगों को त्वरक भौतिकी के भाग के रूप में नहीं माना जाता है, लेकिन वे (प्रयोगों के उद्देश्यों के अनुसार) से संबंधित हैं, उदाहरण के लिए, कण भौतिकी, परमाणु भौतिकी, संघनित पदार्थ भौतिकी या सामग्री भौतिकी । किसी विशेष त्वरक सुविधा में किए गए प्रयोगों के प्रकार उत्पन्न कण बीम(किरणपुंज) की विशेषताओं जैसे औसत ऊर्जा, कण प्रकार, तीव्रता और आयामों द्वारा निर्धारित किए जाते हैं।

रेडियो फ्रीक्वेंसी (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया

नाइओबियम गुहा

हालांकि इलेक्ट्रोस्टैटिक(विद्युत् स्थैतिक) क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक में, इस विधि में उच्च वोल्टेज पर विद्युत विकार द्वारा दी गई सीमाएं हैं। इसके अलावा, विद्युत् स्थैतिक क्षेत्र रूढ़िवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है।

इस समस्या को दूर करने के लिए, रैखिक कण त्वरक समय-समय पर भिन्न क्षेत्रों का उपयोग करके काम करते हैं। खोखले मैक्रोस्कोपिक(सूक्ष्मदर्शी) संरचनाओं का उपयोग करके इस क्षेत्र को नियंत्रित करने के लिए जिसके माध्यम से कण गुजर रहे हैं (तरंग दैर्ध्य प्रतिबंध), ऐसे त्वरण क्षेत्रों की आवृत्ति विद्युत चुम्बकीय स्पेक्ट्रम के रेडियो आवृत्ति क्षेत्र में स्थित है।

एक कण बीम(किरणपुंज) के चारों ओर की जगह को गैस परमाणुओं के साथ बिखरने से रोकने के लिए खाली कर दिया जाता है, जिसके लिए इसे एक निर्वात कक्ष (या बीम पाइप ) में संलग्न करने की आवश्यकता होती है। बीम का अनुसरण करने वाले मजबूत विद्युत चुम्बकीय क्षेत्रों के कारण, इसके लिए बीम पाइप की दीवारों में किसी भी विद्युत प्रतिबाधा के साथ परस्पर प्रभाव डालना संभव है। यह एक प्रतिरोधक प्रतिबाधा (यानी, बीम पाइप सामग्री की सीमित प्रतिरोधकता) या एक आगमनात्मक/कैपेसिटिव प्रतिबाधा (बीम पाइप के क्रॉस सेक्शन में ज्यामितीय परिवर्तनों के कारण) के रूप में हो सकता है।

ये प्रतिबाधा वेकफील्ड्स(बीम के विद्युत चुम्बकीय क्षेत्र का एक मजबूत युद्ध) को प्रेरित करेंगे जो बाद के कणों के साथ परस्पर प्रभाव डाल सकते हैं। चूंकि इस पारस्परिक प्रभाव का नकारात्मक प्रभाव पड़ सकता है, इसलिए इसका परिमाण निर्धारित करने के लिए, और इसे कम करने के लिए किए जा सकने वाले किसी भी कार्य को निर्धारित करने के लिए अध्ययन किया जाता है।

बीम डायनेमिक्स(किरणपुंज गतिकी)

कणों के उच्च वेग और चुंबकीय क्षेत्रों के लिए परिणामी लोरेंत्ज़ बल के कारण, दिशा में समायोजन मुख्य रूप से मैग्नेटोस्टैटिक क्षेत्रों द्वारा नियंत्रित होते हैं जो कणों को विक्षेपित करते हैं। अधिकांश त्वरक अवधारणाओं ( साइक्लोट्रॉन या बीटाट्रॉन जैसी कॉम्पैक्ट संरचनाओं को छोड़कर) में, इन्हें विभिन्न गुणों और कार्यों के साथ समर्पित विद्युत चुम्बकों द्वारा लागू किया जाता है। इस प्रकार के त्वरक के विकास में एक महत्वपूर्ण कदम मजबूत ध्यान केंद्रित करने की समझ थी। [1] संरचना के माध्यम से बीम का मार्गदर्शन करने के लिए द्विध्रुवीय चुम्बकों का उपयोग किया जाता है, जबकि चतुर्ध्रुवी चुम्बकों का उपयोग बीम पर ध्यान केंद्रित करने के लिए किया जाता है, और सेक्स्टुपोल चुम्बकों( में छह चुंबकीय ध्रुव होते हैं जो एक अक्ष के चारों ओर व्यवस्थित उत्तरी और दक्षिणी ध्रुवों की व्यवस्था में निर्धारित होते हैं) का उपयोग प्रकीर्णन प्रभावों के सुधार के लिए किया जाता है।

त्वरक के सटीक डिजाइन प्रक्षेपवक्र (या डिजाइन कक्षा ) पर एक कण केवल द्विध्रुवीय क्षेत्र घटकों का अनुभव करता है, जबकि अनुप्रस्थ स्थिति विचलन वाले कण डिजाइन कक्षा में फिर से केंद्रित हैं। प्रारंभिक गणना के लिए, चतुर्ध्रुवी से अधिक सभी क्षेत्रों के घटकों की उपेक्षा(नेगलेक्ट)करना, एक समप्रजाति हिल डिफरेंशियल समीकरण

एक गैर-स्थिर फ़ोकसिंग बल , मजबूत फोकसिंग और कमजोर फोकसिंग प्रभाव सहित डिजाइन बीम आवेग से सापेक्ष विचलन वक्रता का प्रक्षेपवक्र त्रिज्या , और रूपरेखा(डिजाइन) पथ की लंबाई ,

इस प्रकार प्रणाली को एक पैरामीट्रिक थरथरानवाला के रूप में पहचानना। त्वरक के लिए बीम मापदंडों की गणना रे ट्रांसफर मैट्रिक्स विश्लेषण का उपयोग करके की जा सकती है; उदाहरण के लिए, एक चतुर्भुज क्षेत्र ज्यामितीय प्रकाशिकी में एक लेंस के समान होता है, जिसमें बीम फोकस करने के समान गुण होते हैं (लेकिन अर्नशॉ के प्रमेय का पालन करना)।

गति के सामान्य समीकरण सापेक्षवादी हैमिल्टनियन यांत्रिकी से उत्पन्न होते हैं, लगभग सभी मामलों में पैराएक्सियल सन्निकटन का उपयोग करते हैं। यहां तक कि दृढ़ता से अरेखीय चुंबकीय क्षेत्रों के मामलों में, और पैराएक्सियल सन्निकटन के बिना, एक उच्च स्तर की सटीकता के साथ एक इंटीग्रेटर के निर्माण के लिए एक झूठ परिवर्तन का उपयोग किया जा सकता है।Template:उद्धरण आवश्यक

मॉडलिंग कोड

एक्सेलेरेटर(त्वरक) भौतिकी के विभिन्न पहलुओं के प्रतिरूपण के लिए कई अलग-अलग सॉफ्टवेयर(प्रक्रिया सामग्री) पैकेज उपलब्ध हैं। उन तत्वों को मॉडल करना चाहिए जो विद्युत और चुंबकीय क्षेत्र बनाते हैं, और फिर उन क्षेत्रों के भीतर आवेशित कण विकास को मॉडल करना चाहिए। सर्न द्वारा डिज़ाइन किया गया बीम(किरणपुंज) डायनेमिक्स के लिए एक लोकप्रिय कोड MAD, या मेथोडिकल एक्सेलेरेटर डिज़ाइन है।

किरणपुंज डायग्नोस्टिक्स

किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण गुच्छों के विभिन्न गुणों को मापने की अनुमति देते हैं।

विभिन्न गुणों को मापने के लिए एक विशिष्ट मशीन कई अलग-अलग प्रकार के माप उपकरणों का उपयोग कर सकती है। इनमें समूह की स्थिति को मापने के लिए बीम स्थिति मॉनिटर (बीपीएम), स्क्रीन (फ्लोरोसेंट स्क्रीन, ऑप्टिकल ट्रांजिशन रेडिएशन (ओटीआर) डिवाइस) शामिल हैं जो समूह की रूपरेखा की छवि बनाते हैं, इसके मापने के लिए वायर-स्कैनर बंच चार्ज (यानी, प्रति समूह कणों की संख्या) को मापने के लिए क्रॉस-सेक्शन, और टॉरोइड्स या आईसीटी का उपयोग किया जाता है।

जबकि इनमें से कई उपकरण अच्छी तरह से समझी जाने वाली तकनीक पर भरोसा करते हैं, किसी विशेष मशीन के लिए बीम(किरणपुंज) को मापने में सक्षम उपकरण को रूपरेखा करना एक जटिल कार्य है जिसके लिए बहुत विशेषज्ञता की आवश्यकता होती है। न केवल उपकरण के संचालन की भौतिकी की पूरी समझ आवश्यक है, बल्कि यह सुनिश्चित करना भी आवश्यक है कि उपकरण विचाराधीन मशीन के अपेक्षित मापदंडों को मापने में सक्षम है।

बीम(किरणपुंज) डायग्नोस्टिक्स की पूरी श्रृंखला की सफलता अक्सर पूरी मशीन की सफलता को कम करती है।

मशीन सहिष्णुता

इस पैमाने की मशीनों में घटकों, क्षेत्र तीव्रता आदि के संरेखण में त्रुटियां अपरिहार्य हैं, इसलिए उन सहनशीलता पर विचार करना महत्वपूर्ण है जिसके तहत मशीन संचालित हो सकती है।

इंजीनियर भौतिकविदों को इन परिस्थितियों में मशीन के अपेक्षित व्यवहार के पूर्ण भौतिकी अनुरूपण की अनुमति देने के लिए प्रत्येक घटक के संरेखण और निर्माण के लिए अपेक्षित सहनशीलता प्रदान करेंगे। कई मामलों में यह पाया जाएगा कि कार्य को अस्वीकार्य स्तर तक नीचा दिखाया गया है, जिसके लिए या तो घटकों की पुन: इंजीनियरिंग की आवश्यकता होती है, या एल्गोरिदम का आविष्कार होता है जो मशीन के प्रदर्शन को डिजाइन स्तर पर वापस 'ट्यून' करने की अनुमति देता है।

प्रत्येक ट्यूनिंग एल्गोरिदम की सापेक्ष सफलता निर्धारित करने के लिए और वास्तविक मशीन पर एल्गोरिदम के संग्रह के लिए अनुशंसाओं की अनुमति देने के लिए विभिन्न त्रुटि स्थितियों के कई सिमुलेशन की आवश्यकता हो सकती है।

यह सभी देखें

संदर्भ

  1. Courant, E. D.; Snyder, H. S. (Jan 1958). "Theory of the alternating-gradient synchrotron" (PDF). Annals of Physics. 3 (1): 360–408. Bibcode:2000AnPhy.281..360C. doi:10.1006/aphy.2000.6012.

बाहरी संबंध

]