अनुवादात्मक समरूपता
ज्यामिति में, अनुवाद (ज्यामिति) करने के लिए एक ज्यामितीय आकृति को बिना घुमाए एक स्थान से दूसरे स्थान पर ले जाना है। अनुवाद किसी चीज़ को सरका देता है a: Ta(p) = p + a.
भौतिकी और गणित में, निरंतर अनुवादात्मक समरूपता किसी भी अनुवाद के तहत समीकरणों की प्रणाली का अपरिवर्तनीय (गणित) है। असतत गणित अनुवाद के अंतर्गत असतत अनुवादात्मक समरूपता अपरिवर्तनीय है।
अनुरूप रूप से एक ऑपरेटर (गणित) A फ़ंक्शन पर अनुवाद (ज्यामिति) के संबंध में अनुवादात्मक रूप से अपरिवर्तनीय कहा जाता है यदि आवेदन करने के बाद परिणाम {{math|A}यदि तर्क फ़ंक्शन का अनुवाद किया जाता है तो } नहीं बदलता है। अधिक सटीक रूप से इसे अवश्य ही धारण करना चाहिए
किसी वस्तु की अनुवादात्मक समरूपता का अर्थ है कि कोई विशेष अनुवाद वस्तु को नहीं बदलता है। किसी दिए गए ऑब्जेक्ट के लिए, जिन अनुवादों पर यह लागू होता है, वे एक समूह बनाते हैं, ऑब्जेक्ट का समरूपता समूह, या, यदि ऑब्जेक्ट में अधिक प्रकार की समरूपता है, तो समरूपता समूह का एक उपसमूह बनता है।
ज्यामिति
| Lie groups |
|---|
ट्रांसलेशनल इनवेरिएंस का तात्पर्य है कि, कम से कम एक दिशा में, वस्तु अनंत है: किसी दिए गए बिंदु पी के लिए, ट्रांसलेशनल समरूपता के कारण समान गुणों वाले बिंदुओं का सेट अनंत असतत सेट बनाता है {p + na | n ∈ Z} = p + Z a. मौलिक डोमेन हैं उदा. H + [0, 1] a किसी भी हाइपरप्लेन H के लिए जिसके लिए a की एक स्वतंत्र दिशा है। यह 1डी में एक रेखा खंड है, 2डी में एक अनंत पट्टी है, और 3डी में एक स्लैब है, जैसे कि एक तरफ से शुरू होने वाला वेक्टर दूसरी तरफ समाप्त होता है। ध्यान दें कि पट्टी और स्लैब को वेक्टर के लंबवत होने की आवश्यकता नहीं है, इसलिए वे वेक्टर की लंबाई से संकरी या पतली हो सकती हैं।
1 से अधिक आयाम वाले स्थानों में, एकाधिक अनुवादात्मक समरूपता हो सकती है। k स्वतंत्र अनुवाद वैक्टर के प्रत्येक सेट के लिए, समरूपता समूह Z के साथ समरूपी हैक. विशेष रूप से, बहुलता आयाम के बराबर हो सकती है। इसका तात्पर्य यह है कि वस्तु सभी दिशाओं में अनंत है। इस मामले में, सभी अनुवादों का सेट एक जाली (समूह) बनाता है। अनुवाद वैक्टर के विभिन्न आधार एक ही जाली उत्पन्न करते हैं यदि और केवल यदि एक को पूर्णांक गुणांक के मैट्रिक्स द्वारा दूसरे में बदल दिया जाता है, जिसमें निर्धारक का पूर्ण मान 1 है। के एक सेट द्वारा गठित मैट्रिक्स के निर्धारक का पूर्ण मान अनुवाद वैक्टर एन-आयामी समानांतर चतुर्भुज का हाइपरवॉल्यूम है जो सेट सबटेंड करता है (जिसे जाली का कोवॉल्यूम भी कहा जाता है)। यह समांतर चतुर्भुज समरूपता का एक मूलभूत क्षेत्र है: इस पर या इसमें कोई भी पैटर्न संभव है, और यह संपूर्ण वस्तु को परिभाषित करता है। जाली (समूह) भी देखें।
जैसे 2डी में हम 'ए' और 'बी' के स्थान पर 'ए' और भी ले सकते हैं a − b, आदि। सामान्यतः 2डी में हम ले सकते हैं pa + qb और ra + sb पूर्णांकों p, q, r, और s के लिए ऐसा ps − qr 1 या −1 है. यह सुनिश्चित करता है कि a और b स्वयं अन्य दो वैक्टरों के पूर्णांक रैखिक संयोजन हैं। यदि नहीं, तो अन्य जोड़ी के साथ सभी अनुवाद संभव नहीं हैं। प्रत्येक जोड़ी ए, बी एक समांतर चतुर्भुज को परिभाषित करती है, सभी का क्षेत्रफल समान है, क्रॉस उत्पाद का परिमाण। एक समांतर चतुर्भुज पूरी वस्तु को पूरी तरह से परिभाषित करता है। आगे समरूपता के बिना, यह समांतर चतुर्भुज एक मौलिक डोमेन है। सदिश a और b को जटिल संख्याओं द्वारा दर्शाया जा सकता है। दो दिए गए जाली बिंदुओं के लिए, जाली आकार उत्पन्न करने के लिए तीसरे बिंदु के विकल्पों की तुल्यता मॉड्यूलर समूह द्वारा दर्शायी जाती है, जाली (समूह) देखें।
वैकल्पिक रूप से, उदा. एक आयत संपूर्ण ऑब्जेक्ट को परिभाषित कर सकता है, भले ही अनुवाद वेक्टर लंबवत न हों, यदि इसकी दो भुजाएं एक अनुवाद वेक्टर के समानांतर हैं, जबकि दूसरा अनुवाद वेक्टर आयत के एक तरफ से शुरू होकर विपरीत दिशा में समाप्त होता है।
उदाहरण के लिए, समान आयताकार टाइलों के साथ एक टाइलिंग पर विचार करें, जिस पर एक असममित पैटर्न है, सभी समान रूप से उन्मुख हैं, पंक्तियों में, प्रत्येक पंक्ति के लिए एक अंश का बदलाव, एक टाइल का आधा नहीं, हमेशा समान, तो हमारे पास है केवल अनुवादात्मक समरूपता, वॉलपेपर_ग्रुप#ग्रुप_.22पी1.22|वॉलपेपर समूह पी1 (यही बात बिना शिफ्ट के लागू होती है)। टाइल पर पैटर्न के क्रम दो की घूर्णी समरूपता के साथ हमारे पास p2 है (टाइल पर पैटर्न की अधिक समरूपता टाइल्स की व्यवस्था के कारण इसे नहीं बदलती है)। एक टाइल के भाग और दूसरे के भाग वाले समांतर चतुर्भुज की तुलना में आयत को मौलिक डोमेन (या उनमें से दो का सेट) के रूप में विचार करने के लिए एक अधिक सुविधाजनक इकाई है।
2डी में किसी भी लंबाई के वैक्टर के लिए एक दिशा में अनुवादात्मक समरूपता हो सकती है। एक पंक्ति, एक ही दिशा में नहीं, पूरी वस्तु को पूरी तरह से परिभाषित करती है। इसी प्रकार, 3डी में किसी भी लंबाई के वैक्टर के लिए एक या दो दिशाओं में अनुवादात्मक समरूपता हो सकती है। एक समतल (क्रॉस-सेक्शन (ज्यामिति) | क्रॉस-सेक्शन) या रेखा, क्रमशः, पूरी वस्तु को पूरी तरह से परिभाषित करती है।
उदाहरण
* फ्रिज़ पैटर्न में सभी अनुवादात्मक समरूपताएं होती हैं, और कभी-कभी अन्य प्रकार की भी।
- निरपेक्ष मूल्यों की बाद की गणना के साथ फूरियर रूपांतरण एक अनुवाद-अपरिवर्तनीय ऑपरेटर है।
- एक बहुपद फलन से बहुपद घात तक मानचित्रण एक अनुवाद-अपरिवर्तनीय प्रकार्य है।
- लेबेस्ग माप एक पूर्ण माप अनुवाद-अपरिवर्तनीय माप (गणित) है।
यह भी देखें
- सरकना प्रतिबिंब
- विस्थापन (वेक्टर)
- आवधिक कार्य
- जाली (समूह)
- अनुवाद ऑपरेटर (क्वांटम यांत्रिकी)
- घूर्णी समरूपता
- लोरेंत्ज़ समरूपता
- चौकोर
- List of cycles § Mathematics of waves and cycles
संदर्भ
- Stenger, Victor J. (2000) and MahouShiroUSA (2007). Timeless Reality. Prometheus Books. Especially chpt. 12. Nontechnical.