एनालॉग कंप्यूटर

From Vigyanwiki
Revision as of 07:03, 19 August 2023 by Indicwiki (talk | contribs) (9 revisions imported from alpha:एनालॉग_कंप्यूटर)
बॉम्बार्डियर की सूचना फ़ाइल (बीआईएफ) का पृष्ठ जो नॉर्डेन बम बारी के घटकों और नियंत्रणों का वर्णन करता है। उत्तर बमबारी अत्यधिक परिष्कृत ऑप्टिकल/मैकेनिकल एनालॉग कंप्यूटर था जिसका उपयोग द्वितीय विश्व युद्ध , कोरियाई युद्ध और वियतनाम युद्ध के समय संयुक्त राज्य अमेरिका की सेना वायु सेना द्वारा बमों को त्रुटिहीन रूप से गिराने में बमवर्षक विमान के पायलट की सहायता के लिए किया जाता था।
1960 के दशक के अंत और 70 के दशक की शुरुआत का TR-10 डेस्कटॉप एनालॉग कंप्यूटर

एनालॉग संगणक या एनालॉग कंप्यूटर एक प्रकार का कंप्यूटर है जो भौतिक घटना के निरंतर भिन्नता पहलू जैसे विद्युत नेटवर्क , यांत्रिकी , या जलगति विज्ञान मात्रा ( एनालॉग सिग्नल ') का उपयोग वैज्ञानिक मॉडलिंग के लिए समस्या को हल करने के लिए करता है। इसके विपरीत, डिजिटल कम्प्यूटर प्रतीकात्मक रूप से और समय और आयाम (डिजिटल सिग्नल ) दोनों के असतत मूल्यों द्वारा भिन्न-भिन्न मात्राओं का प्रतिनिधित्व करते हैं।

एनालॉग कंप्यूटरों में समष्टि की विस्तृत श्रृंखला हो सकती है। स्लाइड नियम और नॉमोग्राम सबसे सरल हैं, जबकि नौसैनिक गनफायर कंट्रोल कंप्यूटर और बड़े हाइब्रिड डिजिटल/एनालॉग कंप्यूटर सबसे समष्टि थे।[1] प्रक्रिया नियंत्रण और सुरक्षात्मक रिले के लिए समष्टि तंत्र नियंत्रण और सुरक्षात्मक कार्यों को करने के लिए एनालॉग गणना का उपयोग करते हैं।

डिजिटल कंप्यूटरों के आगमन के पश्चात् भी वैज्ञानिक और औद्योगिक अनुप्रयोगों में एनालॉग कंप्यूटरों का व्यापक रूप से उपयोग किया गया था, क्योंकि उस समय वह सामान्यतः बहुत तेज थे, किन्तु वह सत्र 1950 और 1960 के दशक की शुरुआत में अप्रचलित होने लगे, चूंकि वह कुछ विशिष्ट क्षेत्रों में उपयोग में बने रहे। अनुप्रयोगों, जैसे विमान उड़ान सिमुलेटर, विमान में उड़ान कंप्यूटर, और विश्वविद्यालयों में नियंत्रण प्रणाली सिखाने के लिए। एनालॉग कंप्यूटरों का संभवतः सबसे अधिक प्रासंगिक उदाहरण यांत्रिक घड़ियां हैं जहां परस्पर जुड़े गियर के निरंतर और आवधिक रोटेशन घड़ी में सेकंड, मिनट और घंटे की सुइयों को चलाते हैं। अधिक समष्टि अनुप्रयोग, जैसे विमान उड़ान सिमुलेटर और सिंथेटिक-एपर्चर रडार, सत्र 1980 के दशक में अच्छी तरह से एनालॉग कंप्यूटिंग (और हाइब्रिड कंप्यूटर) का डोमेन बने रहे, क्योंकि डिजिटल कंप्यूटर इस कार्य के लिए अपर्याप्त थे।[2]

एनालॉग कंप्यूटरों की समयरेखा

अग्रदूत

यह आधुनिक कंप्यूटर के पूर्ववर्ती माने जाने वाले प्रारंभिक संगणना उपकरणों के उदाहरणों की एक सूची है। उनमें से कुछ को प्रेस द्वारा 'कंप्यूटर' भी कहा जा सकता है, चूंकि वह आधुनिक परिभाषाओं में फिट होने में विफल हो सकते हैं।

एंटीकाइथेरा तंत्र , 150 और 100 ईसा पूर्व के मध्य, प्रारंभिक एनालॉग कंप्यूटर था।

डेरेक जे डी सोला प्राइस के अनुसार, एंटीकाइथेरा तंत्र नक्षत्र-भवन था और इसे प्रारंभिक यांत्रिक एनालॉग कंप्यूटर माना जाता है।[3] इसे खगोलीय स्थितियों की गणना करने के लिए डिज़ाइन किया गया था। यह सत्र 1901 में एंटी काइथेरा के मलबे में ग्रीक द्वीप एंटीकाईथेरा में, काइथेरा और क्रेते के मध्य खोजा गया था, और इसे दिनांकित किया गया है c. 100 BC ग्रीस के हेलेनिस्टिक काल के समय। एंटीकाइथेरा तंत्र की तुलना में समष्टिता के स्तर के उपकरण हजार साल पश्चात् तक फिर से प्रकट नहीं होंगे।

गणना और माप के लिए अनेक यांत्रिक सहायता का निर्माण खगोलीय और नेविगेशन उपयोग के लिए किया गया था। गोल तल का मानचित्र का वर्णन पहली बार टॉलेमी ने दूसरी शताब्दी ईस्वी में किया था। पहली या दूसरी शताब्दी ईसा पूर्व में हेलेनिस्टिक सभ्यता में यंत्र का आविष्कार किया गया था और इसे अधिकांशतः हिप्पार्कस के लिए जिम्मेदार ठहराया जाता है। प्लैनिस्फीयर और डायोप्ट्रे का संयोजन, एस्ट्रोलैब प्रभावी रूप से एनालॉग कंप्यूटर था जो गोलाकार खगोल विज्ञान में अनेक भिन्न-भिन्न प्रकार की समस्याओं को हल करने में सक्षम था। यांत्रिक पंचांग कंप्यूटर को सम्मिलित करने वाला एस्ट्रोलैब[4][5] और गियर -व्हील्स का आविष्कार इस्फ़हान , फारस के अबी बक्र ने 1235 में किया था।[6] अबू रेहान अल-बिरीनी ने पहले यांत्रिक गियर वाले चंद्र-सौर कैलेंडर एस्ट्रोलैब का आविष्कार किया,[7] प्रारंभिक फिक्स्ड-तार नॉलेज प्रोसेसिंग मशीन [8] गियर ट्रेन और गियर-पहियों के साथ,[9] c. AD 1000. क्लॉक टावर हिस्ट्री, 1206 में अल जजारी द्वारा आविष्कार की गई जलविद्युत यांत्रिक खगोलीय घड़ी , पहला कंप्यूटर प्रोग्रामिंग एनालॉग कंप्यूटर था।[10][11][12]

सेक्टर (साधन) , अनुपात, त्रिकोणमिति, गुणा और भाग में समस्याओं को हल करने के लिए उपयोग किया जाने वाला गणना उपकरण, और वर्ग और घनमूल जैसे विभिन्न कार्यों के लिए, 16 वीं शताब्दी के अंत में विकसित किया गया था और गनरी, सर्वेक्षण और नेविगेशन में आवेदन मिला .

प्लैनीमीटर यांत्रिक लिंकेज के साथ बंद आकृति के क्षेत्र की गणना करने के लिए मैनुअल उपकरण था।

एक स्लाइड नियम। स्लाइडिंग सेंट्रल स्लिप 1.3 पर समूह है, कर्सर 2.0 पर और 2.6 के गुणा परिणाम की ओर संकेत करता है।

लॉगरिदम के इतिहास के प्रकाशन के तुरंत पश्चात्, सत्र 1620-1630 के आसपास स्लाइड नियम का आविष्कार किया गया था। यह गुणा और भाग करने के लिए हाथ से संचालित एनालॉग कंप्यूटर है। जैसे-जैसे स्लाइड नियम का विकास आगे बढ़ा, जोड़े गए पैमानों ने पारस्परिक, वर्ग और वर्गमूल, घन और घनमूल, साथ ही अनुवांशिक कार्य जैसे लघुगणक और घातांक, परिपत्र और अतिशयोक्तिपूर्ण त्रिकोणमिति और अन्य वेरिएबल (गणित) प्रदान किए। उड्डयन उन कुछ क्षेत्रों में से है जहां स्लाइड नियम अभी भी व्यापक उपयोग में हैं, खासकर हल्के विमानों में समय-दूरी की समस्याओं को हल करने के लिए।

सत्र 1831-1835 में, गणितज्ञ और इंजीनियर जियोवानी प्लाना ने कैपेला देई मर्केंटी (ट्यूरिन) परपेचुअल कैलेंडर मशीन तैयार की, जो पुली और सिलेंडर की प्रणाली के माध्यम से एडी से हर साल के लिए सतत कैलेंडर की भविष्यवाणी कर सकती थी।, 1 ईसा पूर्व) से 4000 ईस्वी तक, लीप वर्ष और दिन की भिन्न-भिन्न लंबाई का ट्रैक रखते हुए।[13]

सत्र 1872 में विलियम थॉमसन, प्रथम बैरन केल्विन द्वारा आविष्कार की गई ज्वार की भविष्यवाणी करने वाली मशीन उथले पानी में नेविगेशन के लिए बहुत उपयोगी थी। यह विशेष स्थान पर निर्धारित अवधि के लिए अनुमानित ज्वार स्तरों की स्वचालित रूप से गणना करने के लिए पुली और तारों की प्रणाली का उपयोग करता है।

अंतर विश्लेषक, मैकेनिकल एनालॉग कंप्यूटर जिसे अभिन्न द्वारा अंतर समीकरण को हल करने के लिए डिज़ाइन किया गया है, इंटीग्रेशन करने के लिए व्हील-एंड-डिस्क मैकेनिज्म का उपयोग किया जाता है। सत्र 1876 ​​​​में जेम्स थॉमसन (इंजीनियर) ने पहले से ही ऐसे कैलकुलेटर के संभावित निर्माण पर चर्चा की थी, किन्तु बॉल-एंड-डिस्क इंटीग्रेटर के सीमित आउटपुट टॉर्क से उन्हें स्तब्ध कर दिया गया था। इसी तरह की अनेक प्रणालियों का अनुसरण किया गया, विशेष रूप से स्पेनिश इंजीनियर लियोनार्डो टोरेस और क्वेवेडो की, जिन्होंने बहुपदों की वास्तविक और समष्टि जड़ों को हल करने के लिए अनेक मशीनों का निर्माण किया; और माइकलसन और स्ट्रैटन, जिनके हार्मोनिक विश्लेषक ने फूरियर विश्लेषण किया, किन्तु केल्विन इंटीग्रेटर्स के अतिरिक्त 80 स्प्रिंग्स की सरणी का उपयोग किया। इस कार्य ने गिब्स परिघटना की गणितीय समझ को फूरियर निरूपण में असंबद्धता के निकट ओवरशूट करने के लिए प्रेरित किया।[14] विभेदक विश्लेषक में, इंटीग्रेटर के आउटपुट ने अगले इंटीग्रेटर, या रेखांकन आउटपुट के इनपुट को चला दिया। टोक़ प्रवर्धक वह अग्रिम था जिसने इन मशीनों को काम करने की अनुमति दी। 1920 के दशक में, वन्नेवर बुश और अन्य ने यांत्रिक अंतर विश्लेषक विकसित किए।

आधुनिक युग

1949 के आसपास लुईस उड़ान प्रणोदन प्रयोगशाला में एनालॉग कंप्यूटिंग मशीन।
हीथकिट ईसी-1 शैक्षिक एनालॉग कंप्यूटर

डुमारेस्क यांत्रिक गणना उपकरण था जिसका आविष्कार सत्र 1902 के आसपास नौ सेना के लेफ्टिनेंट जॉन सौमरेज़ डुमरेस्क ने किया था। यह एनालॉग कंप्यूटर था जो अग्नि नियंत्रण समस्या के महत्वपूर्ण चर को स्वयं के जहाज और लक्ष्य जहाज की गति से संबंधित करता था। यह अधिकांशतः अन्य उपकरणों के साथ प्रयोग किया जाता था, जैसे कि विकर्स रेंज घड़ी रेंज और विक्षेपण डेटा उत्पन्न करने के लिए जिससे कि जहाज की बंदूक की स्थानों को लगातार समूह किया जा सके। जैसे-जैसे विकास आगे बढ़ा, डुमरेस्क के अनेक संस्करण बढ़ती हुई समष्टिता के कारण तैयार किए गए।

सत्र 1912 तक आर्थर पराग ने डिफरेंशियल एनालाइजर पर आधारित अग्नि नियंत्रण प्रणाली के लिए विद्युत चालित यांत्रिक एनालॉग कंप्यूटर विकसित किया था। इसका उपयोग प्रथम विश्व युद्ध में इंपीरियल रूसी नौसेना द्वारा किया गया था।

सत्र 1929 से, नेटवर्क विश्लेषक (एसी पावर) का निर्माण विद्युत शक्ति प्रणालियों से संबंधित गणना समस्याओं को हल करने के लिए किया गया था जो उस समय संख्यात्मक तरीकों से हल करने के लिए बहुत बड़े थे।[15] यह अनिवार्य रूप से पूर्ण आकार की प्रणाली के विद्युत गुणों के पैमाने के मॉडल थे। चूंकि नेटवर्क विश्लेषक विश्लेषणात्मक विधियों या हाथ की गणना के लिए बहुत बड़ी समस्याओं को संभाल सकते हैं, इसलिए उनका उपयोग परमाणु भौतिकी और संरचनाओं के डिजाइन में समस्याओं को हल करने के लिए भी किया जाता था। 1950 के दशक के अंत तक 50 से अधिक बड़े नेटवर्क विश्लेषक बनाए गए थे।

द्वितीय विश्व युद्ध के युग के बंदूक निदेशक (सैन्य) , बंदूक डेटा कंप्यूटर और बम स्थलों में यांत्रिक एनालॉग कंप्यूटर का उपयोग किया गया था। 1942 में हेल्मुट होल्जर ने पीनमंडे आर्मी रिसर्च सेंटर में पूरी तरह से इलेक्ट्रॉनिक एनालॉग कंप्यूटर बनाया[16][17][18] त्वरण और अभिविन्यास ( जाइरोस्कोप द्वारा मापा गया) से वी वी-2 रॉकेट प्रक्षेपवक्र की गणना करने और मिसाइल को स्थिर और निर्देशित करने के लिए एम्बेडेड नियंत्रण प्रणाली (मिक्सिंग डिवाइस) के रूप में।[19][20] द्वितीय विश्व युद्ध, कोरियाई युद्ध और वियतनाम युद्ध से पहले अग्नि नियंत्रण प्रणाली में यांत्रिक एनालॉग कंप्यूटर बहुत महत्वपूर्ण थे; वह महत्वपूर्ण संख्या में बनाए गए थे।

सत्र 1930-1945 की अवधि में नीदरलैंड में जोहान वैन वीन ने चैनलों की ज्यामिति बदलने पर ज्वारीय धाराओं की गणना और भविष्यवाणी करने के लिए एनालॉग कंप्यूटर विकसित किया। सत्र 1950 के आसपास इस विचार को इसमें भाग लेने वाले में विकसित किया गया था, जो हाइड्रोलिक सादृश्य कंप्यूटर है जो नीदरलैंड के दक्षिण-पश्चिम ( डेल्टा वर्क्स ) में मुहानाओं को बंद करने का समर्थन करता है।

FERMIAC भौतिक विज्ञानी एनरिको फर्मी द्वारा सत्र 1947 में न्यूट्रॉन परिवहन के अपने अध्ययन में सहायता के लिए आविष्कार किया गया एनालॉग कंप्यूटर था।[21] प्रोजेक्ट साइक्लोन सत्र 1950 में रीव्स द्वारा गतिशील प्रणालियों के विश्लेषण और डिजाइन के लिए विकसित एनालॉग कंप्यूटर था।[22] प्रोजेक्ट टाइफून 1952 में आरसीए द्वारा विकसित एनालॉग कंप्यूटर था। इसमें 4000 से अधिक इलेक्ट्रॉन ट्यूब सम्मिलित थे और प्रोग्राम के लिए 100 डायल और 6000 प्लग-इन कनेक्टर का उपयोग किया गया था।[23] MONIAC ​​कंप्यूटर सत्र 1949 में पहली बार अनावरण की गई राष्ट्रीय अर्थव्यवस्था का हाइड्रोलिक सादृश्य था।[24]

कंप्यूटर इंजीनियरिंग एसोसिएट्स को सत्र 1950 में कैलटेक से बाहर कर दिया गया था, जो कि गिल्बर्ट डी। मैककैन, चार्ल्स एच। विल्ट्स, और बार्ट एन लोकांथी।[25][26]

शैक्षिक एनालॉग कंप्यूटर ने एनालॉग गणना के सिद्धांतों का वर्णन किया। हीथकिट ईसी-1, $199 शैक्षिक एनालॉग कंप्यूटर, हीथ कंपनी, यू.एस. द्वारा बनाया गया था c. 1960.[27] इसे पैच कॉर्ड का उपयोग करके प्रोग्राम किया गया था जो नौ परिचालन एम्पलीफायरों और अन्य घटकों को जोड़ता था।[28] सामान्य विद्युतीय ने सत्र 1960 के दशक की शुरुआत में साधारण डिजाइन के शैक्षिक एनालॉग कंप्यूटर किट का विपणन किया जिसमें दो ट्रांजिस्टर टोन जनरेटर और तीन पोटेंशियोमीटर सम्मिलित थे, जैसे कि समीकरण को संतुष्ट करने के लिए पोटेंशियोमीटर डायल को हाथ से रखने पर थरथरानवाला की आवृत्ति शून्य हो जाती थी। पोटेंशियोमीटर का सापेक्ष प्रतिरोध तब हल किए जा रहे समीकरण के सूत्र के सामान्तर था। कौन से डायल इनपुट थे और कौन सा आउटपुट था, इसके आधार पर गुणा या भाग किया जा सकता है। त्रुटिहीनता और रिज़ॉल्यूशन सीमित था और साधारण स्लाइड नियम अधिक त्रुटिहीन था। चूँकि, इकाई ने मूल सिद्धांत का प्रदर्शन किया।

इलेक्ट्रॉनिक्स पत्रिकाओं में एनालॉग कंप्यूटर डिजाइन प्रकाशित किए गए थे। उदाहरण पीई एनालॉग कंप्यूटर है, जिसे सितंबर सत्र 1978 के संस्करण में प्रैक्टिकल इलेक्ट्रॉनिक्स में प्रकाशित किया गया था। और अधिक आधुनिक हाइब्रिड कंप्यूटर डिजाइन सत्र 2002 में एवरीडे प्रैक्टिकल इलेक्ट्रॉनिक्स में प्रकाशित हुआ था।[29] ईपीई हाइब्रिड कंप्यूटर में वर्णित उदाहरण हैरियर जंप जेट जैसे वीटीओएल विमान की उड़ान थी।[29] विमान की ऊंचाई और गति की गणना कंप्यूटर के एनालॉग भाग द्वारा की गई और डिजिटल माइक्रोप्रोसेसर के माध्यम से पीसी को भेजा गया और पीसी स्क्रीन पर प्रदर्शित किया गया।

औद्योगिक प्रक्रिया नियंत्रण में, तापमान, प्रवाह, दबाव, या अन्य प्रक्रिया स्थितियों को स्वचालित रूप से विनियमित करने के लिए एनालॉग लूप नियंत्रकों का उपयोग किया जाता था। इन नियंत्रकों की विधि विशुद्ध रूप से मैकेनिकल इंटीग्रेटर्स से लेकर वैक्यूम-ट्यूब और सॉलिड-स्टेट डिवाइसेस के माध्यम से, माइक्रोप्रोसेसरों द्वारा एनालॉग नियंत्रकों के अनुकरण तक होती है।

इलेक्ट्रॉनिक एनालॉग कंप्यूटर

पोलिश एनालॉग कंप्यूटर AKAT-1 (1959)
क्लास ट्रैक्टर के हार्डवेयर-इन-द-लूप सिमुलेशन के लिए प्रयुक्त EAI 8800 एनालॉग कंप्यूटिंग सिस्टम (1986)

रैखिक यांत्रिक घटकों, जैसे कि वसंत (उपकरण) और डैशपॉट्स (चिपचिपा-द्रव डैम्पर्स), और विद्युत घटकों, जैसे संधारित्र, प्रारंभ करनेवाला और अवरोध के मध्य समानता गणित के संदर्भ में हड़ताली है। उन्हें ही रूप के समीकरणों का उपयोग करके प्रतिरूपित किया जा सकता है।

चूँकि, इन प्रणालियों के मध्य अंतर वह है जो एनालॉग कंप्यूटिंग को उपयोगी बनाता है। समष्टि प्रणालियां अधिकांशतः पेन-एंड-पेपर विश्लेषण के लिए उत्तरदायी नहीं होती हैं, और इसके लिए किसी प्रकार के परीक्षण या अनुकरण की आवश्यकता होती है। समष्टि यांत्रिक प्रणालियाँ, जैसे रेसिंग कारों के लिए निलंबन, बनाना महंगा है और संशोधित करना कठिन है। और उच्च गति परीक्षणों के समय त्रुटिहीन यांत्रिक माप लेने से और कठिनाई होती है।

इसके विपरीत, इसके व्यवहार का अनुकरण करने के लिए, समष्टि यांत्रिक प्रणाली के विद्युत समकक्ष का निर्माण करना बहुत सस्ता है। इंजीनियर परिपथ बनाने के लिए कुछ ऑपरेशनल एम्पलीफायरों (op amps) और कुछ निष्क्रिय रैखिक घटकों की व्यवस्था करते हैं जो समान समीकरणों का अनुसरण करते हैं जैसे कि यांत्रिक प्रणाली का अनुकरण किया जा रहा है। सभी माप सीधे आस्टसीलस्कप के साथ लिए जा सकते हैं। परिपथ में, उदाहरण के लिए, वसंत की (नकली) कठोरता को इंटीग्रेटर के मापदंडों को समायोजित करके बदला जा सकता है। विद्युत प्रणाली भौतिक प्रणाली का सादृश्य है, इसलिए नाम है, किन्तु यह यांत्रिक प्रोटोटाइप की तुलना में बहुत कम खर्चीला है, संशोधित करना बहुत आसान है, और सामान्यतः सुरक्षित है।

इलेक्ट्रॉनिक परिपथ को सिम्युलेटेड फिजिकल सिस्टम की तुलना में तेज या धीमी गति से चलाने के लिए भी बनाया जा सकता है। इलेक्ट्रॉनिक एनालॉग कंप्यूटरों के अनुभवी उपयोगकर्ताओं ने कहा कि उन्होंने डिजिटल सिमुलेशन के सापेक्ष तुलनात्मक रूप से अंतरंग नियंत्रण और समस्या की समझ की प्रस्तुति की।

इलेक्ट्रॉनिक एनालॉग कंप्यूटर विशेष रूप से अंतर समीकरणों द्वारा वर्णित स्थितियों का प्रतिनिधित्व करने के लिए उपयुक्त हैं। ऐतिहासिक रूप से, उनका उपयोग अधिकांशतः तब किया जाता था जब अंतर समीकरणों की प्रणाली को पारंपरिक तरीकों से हल करना बहुत कठिनाई सिद्ध करना होता था। सरल उदाहरण के रूप में, हार्मोनिक थरथरानवाला की गतिशीलता | वसंत-द्रव्यमान प्रणाली को समीकरण द्वारा वर्णित किया जा सकता है , साथ द्रव्यमान की ऊर्ध्वाधर स्थिति के रूप में , भिगोना गुणांक , हुक का नियम और पृथ्वी का गुरुत्वाकर्षण । एनालॉग कंप्यूटिंग के लिए, समीकरण को इस प्रकार क्रमादेशित किया गया है: . समतुल्य एनालॉग परिपथ में राज्य चर के लिए दो इंटीग्रेटर होते हैं (गति) और (स्थिति), इन्वर्टर, और तीन पोटेंशियोमीटर।

इलेक्ट्रॉनिक एनालॉग कंप्यूटर में कमियां हैं: परिपथ की आपूर्ति वोल्टेज का मान उस सीमा को सीमित करता है जिस पर चर भिन्न हो सकते हैं (चूंकि चर का मान किसी विशेष तार पर वोल्टेज द्वारा दर्शाया जाता है)। इसलिए, प्रत्येक समस्या को बढ़ाया जाना चाहिए जिससे कि उसके मापदंडों और आयामों को वोल्टेज का उपयोग करके दर्शाया जा सके जो कि परिपथ आपूर्ति कर सकता है - जैसे, वेग की अपेक्षित परिमाण और वसंत लोलक की स्थिति। अनुचित रूप से स्केल किए गए चर के मान आपूर्ति वोल्टेज की सीमा से जुड़े हो सकते हैं। या यदि बहुत छोटा किया जाता है, तब वह उच्च शोर (भौतिकी) से पीड़ित हो सकते हैं। कोई भी समस्या परिपथ को भौतिक प्रणाली का गलत अनुकरण करने का कारण बन सकती है। (आधुनिक डिजिटल सिमुलेशन अपने चर के व्यापक रूप से भिन्न मूल्यों के लिए बहुत अधिक शक्तिशाली हैं, किन्तु अभी भी इन चिंताओं से पूरी तरह से प्रतिरक्षा नहीं हैं: फ्लोटिंग-पॉइंट डिजिटल गणना विशाल गतिशील रेंज का समर्थन करती है, किन्तु यदि बड़े मूल्यों के छोटे अंतर के कारण त्रुटि हो सकती है संख्यात्मक स्थिरता ।)

स्प्रिंग-मास परिपथकी गतिशीलता के लिए एनालॉग परिपथ (बिना स्केलिंग कारकों के)
स्प्रिंग-मास परिपथकी नम गति

एनालॉग कंप्यूटर रीडआउट की त्रुटिहीनता मुख्य रूप से उपयोग किए गए रीडआउट उपकरण की त्रुटिहीनता से सीमित थी, सामान्यतः तीन या चार महत्वपूर्ण आंकड़े। (आधुनिक डिजिटल सिमुलेशन इस क्षेत्र में बहुत उत्तम हैं। डिजिटल मनमानी-त्रुटिहीन अंकगणित त्रुटिहीनता की वांछित डिग्री प्रदान कर सकता है।) चूंकि, अधिकतर स्थितियोंमें मॉडल विशेषताओं और इसके विधि ी मानकों की अनिश्चितता को देखते हुए एनालॉग कंप्यूटर की त्रुटिहीनता बिल्कुल पर्याप्त है। .

विशिष्ट संगणनाओं के लिए समर्पित अनेक छोटे कंप्यूटर अभी भी औद्योगिक विनियमन उपकरण का हिस्सा हैं, किन्तु सत्र 1950 से 1970 के दशक तक, सामान्य-उद्देश्य वाले एनालॉग कंप्यूटर ही एकमात्र सिस्टम थे जो गतिशील प्रणालियों के वास्तविक समय के अनुकरण के लिए पर्याप्त तेज़ थे, विशेष रूप से विमान, सैन्य और एयरोस्पेस में खेत।

सत्र 1960 के दशक में, प्रमुख निर्माता अपने 231R एनालॉग कंप्यूटर (वैक्यूम ट्यूब, 20 इंटीग्रेटर्स) और पश्चात् में इसके EAI 8800 एनालॉग कंप्यूटर (सॉलिड स्टेट ऑपरेशनल एम्पलीफायर्स, 64 इंटीग्रेटर्स) के साथ प्रिंसटन, न्यू जर्सी के इलेक्ट्रॉनिक एसोसिएट्स थे।[30] इसका चैलेंजर एन आर्बर, मिशिगन का एप्लाइड डायनेमिक्स था।

चूंकि एनालॉग कंप्यूटर के लिए मूलभूतविधि सामान्यतः परिचालन एम्पलीफायर (जिसे निरंतर चालू एम्पलीफायर भी कहा जाता है क्योंकि उनकी कोई कम आवृत्ति सीमा नहीं है), सत्र 1960 के दशक में वैकल्पिक विधि का उपयोग करने के लिए फ्रेंच ANALAC कंप्यूटर में प्रयास किया गया था: मध्यम आवृत्ति वाहक और गैर-विघटनकारी प्रतिवर्ती परिपथ।

सत्र 1970 के दशक में गतिशीलता में समस्याओं से संबंधित हर बड़ी कंपनी और प्रशासन का बड़ा एनालॉग कंप्यूटिंग केंद्र था, उदाहरण के लिए:

एनालॉग-डिजिटल संकर

एनालॉग कंप्यूटिंग डिवाइस तेज हैं, डिजिटल कंप्यूटिंग डिवाइस अधिक बहुमुखी और त्रुटिहीन हैं, इसलिए सर्वोत्तम दक्षता के लिए दो प्रक्रियाओं को संयोजित करने का विचार है। ऐसे हाइब्रिड प्राथमिक उपकरण का उदाहरण हाइब्रिड गुणक है जहां इनपुट एनालॉग सिग्नल है, दूसरा इनपुट डिजिटल सिग्नल है और आउटपुट एनालॉग है। यह डिजिटल रूप से अपग्रेड करने योग्य एनालॉग पोटेंशियोमीटर के रूप में कार्य करता है। इस प्रकार की हाइब्रिड विधि का उपयोग मुख्य रूप से तेजी से समर्पित वास्तविक समय की गणना के लिए किया जाता है, जब रडार के लिए सिग्नल प्रोसेसिंग और सामान्यतः अंतः स्थापित प्रणाली में नियंत्रकों के लिए कंप्यूटिंग समय बहुत महत्वपूर्ण होता है।

सत्र 1970 के दशक की शुरुआत में एनालॉग कंप्यूटर निर्माताओं ने दो विधि ों के लाभ प्राप्त करने के लिए अपने एनालॉग कंप्यूटर को डिजिटल कंप्यूटर के साथ जोड़ने की कोशिश की। ऐसी प्रणालियों में, डिजिटल कंप्यूटर ने एनालॉग कंप्यूटर को नियंत्रित किया, प्रारंभिक सेट-अप प्रदान किया, अनेक एनालॉग रन प्रारंभ किए, और स्वचालित रूप से डेटा को फीड और एकत्रित किया। डिजिटल कंप्यूटर एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण |एनालॉग-टू-डिजिटल और डिज़िटल से एनालॉग कन्वर्टर का उपयोग करके गणना में भी भाग ले सकता है।

हाइब्रिड कंप्यूटर का सबसे बड़ा निर्माता इलेक्ट्रॉनिक्स एसोसिएट्स था। उनका हाइब्रिड कंप्यूटर मॉडल 8900 डिजिटल कंप्यूटर और या अधिक एनालॉग कंसोल से बना था। यह प्रणालियाँ मुख्य रूप से नासा में अपोलो कार्यक्रम और स्पेस शटल या यूरोप में एरियन जैसी बड़ी परियोजनाओं के लिए समर्पित थीं, विशेष रूप से एकीकरण चरण के समय जहां शुरुआत में सब कुछ सिम्युलेटेड होता है, और उत्तरोत्तर वास्तविक घटक उनके नकली हिस्से को बदल देते हैं।[31]

केवल कंपनी को सत्र 1970 के दशक में अपने हाइब्रिड कंप्यूटर, फ्रांस की सीआईएसआई (फ्रांसीसी कंपनी) पर सामान्य वाणिज्यिक कंप्यूटिंग सेवाओं की प्रस्तुति के रूप में जाना जाता था।

इस क्षेत्र में सबसे अच्छा संदर्भ एयरबस और कॉनकॉर्ड विमानों के स्वचालित लैंडिंग सिस्टम के प्रत्येक प्रमाणीकरण के लिए 100,000 सिमुलेशन रन है।[32]

सत्र 1980 के पश्चात्, विशुद्ध रूप से डिजिटल कंप्यूटरों ने अधिक से अधिक तेजी से प्रगति की और एनालॉग कंप्यूटरों के साथ प्रतिस्पर्धा करने के लिए पर्याप्त तेज थे।

एनालॉग कंप्यूटर की गति की कुंजी उनकी पूरी तरह से समानांतर गणना थी, किन्तु यह भी सीमा थी। किसी समस्या के लिए जितने अधिक समीकरणों की आवश्यकता होती है, उतने ही अधिक अनुरूप घटकों की आवश्यकता होती है, तब भी जब समस्या महत्वपूर्ण समय नहीं थी। समस्या की प्रोग्रामिंग का कारण एनालॉग ऑपरेटरों को आपस में जोड़ना था; हटाने योग्य वायरिंग पैनल के साथ भी यह बहुत बहुमुखी नहीं था। आज कोई बड़े हाइब्रिड कंप्यूटर नहीं हैं, किंतु केवल हाइब्रिड घटक हैं।

कार्यान्वयन

यांत्रिक एनालॉग कंप्यूटर

सत्र 1881-1882 की विलियम फेरेल की ज्वार की भविष्यवाणी करने वाली मशीन

जबकि पूरे इतिहास में अनेक प्रकार के तंत्र विकसित किए गए हैं, कुछ अपने सैद्धांतिक महत्व के कारण, या क्योंकि वह महत्वपूर्ण मात्रा में निर्मित किए गए थे।

किसी भी महत्वपूर्ण समष्टिता के अधिकांश व्यावहारिक यांत्रिक एनालॉग कंप्यूटर तंत्र से दूसरे तंत्र में चर ले जाने के लिए घूर्णन शाफ्ट का उपयोग करते थे। फूरियर सिंथेसाइज़र में केबल और पुली का उपयोग किया जाता था, ज्वार-पूर्वानुमान मशीन, जिसने व्यक्तिगत हार्मोनिक घटकों को अभिव्यक्त किया। अन्य श्रेणी, जो लगभग उतनी प्रसिद्ध नहीं है, त्रुटिहीन रैक और पिनियन के साथ केवल इनपुट और आउटपुट के लिए घूर्णन शाफ्ट का उपयोग किया जाता है। रैक गणना करने वाले लिंकेज से जुड़े थे। सत्र 1950 के दशक के उत्तरार्ध में कम से कम अमेरिकी नौसेना सोनार अग्नि नियंत्रण कंप्यूटर, जिसे लाइब्रस्कोप द्वारा बनाया गया था, इस प्रकार का था, जैसा कि एमके में प्रमुख कंप्यूटर था। 56 गन फायर कंट्रोल सिस्टम।

ऑनलाइन, उल्लेखनीय स्पष्ट सचित्र संदर्भ है (ओपी 1140)[33] जो अग्नि नियंत्रण कंप्यूटर तंत्र का वर्णन करता है।[33]

जोड़ने और घटाने के लिए, कुछ कंप्यूटरों में त्रुटिहीन मैटर-गियर अंतर सामान्य उपयोग में थे; फोर्ड इंस्ट्रूमेंट मार्क I फायर कंट्रोल कंप्यूटर में उनमें से लगभग 160 थे।

दूसरे चर के संबंध में एकीकरण चर द्वारा संचालित घूर्णन डिस्क द्वारा किया गया था। आउटपुट दूसरे चर के समानुपाती डिस्क पर त्रिज्या पर स्थित पिक-ऑफ डिवाइस (जैसे पहिया) से आया था। (छोटे रोलर्स द्वारा समर्थित स्टील गेंदों की जोड़ी के साथ वाहक विशेष रूप से अच्छी तरह से काम करता है। रोलर, डिस्क की सतह के समानांतर इसकी धुरी, आउटपुट प्रदान करती है। यह स्प्रिंग द्वारा गेंदों की जोड़ी के विरुद्ध आयोजित किया गया था।)

अनुयायी आंदोलन को शाफ्ट रोटेशन में बदलने के लिए गियरिंग के साथ, कैम द्वारा चर के इच्छानुसार कार्य प्रदान किए गए थे।

त्रि-आयामी कैम द्वारा दो चर के कार्य प्रदान किए गए थे। अच्छे डिज़ाइन में, चर ने कैम को घुमाया। अर्धगोलाकार अनुयायी ने अपने वाहक को कैम के घूर्णन अक्ष के समानांतर धुरी अक्ष पर ले जाया। पिवोटिंग मोशन आउटपुट था। दूसरे चर ने अनुयायी को कैम की धुरी के साथ ले जाया। व्यावहारिक अनुप्रयोग तोपखाने में बैलिस्टिक था।

ध्रुवीय से आयताकार में समन्वय रूपांतरण यांत्रिक रिज़ॉल्वर (यूएस नेवी फायर कंट्रोल कंप्यूटर में घटक सॉल्वर कहा जाता है) द्वारा किया गया था। सामान्य अक्ष पर दो डिस्क ने स्लाइडिंग ब्लॉक को पिन (स्टब्बी शाफ्ट) के साथ रखा। डिस्क फेस कैम थी, और फेस कैम के खांचे में ब्लॉक पर अनुयायी ने त्रिज्या निर्धारित की। पिन के करीब दूसरी डिस्क में सीधा स्लॉट होता है जिसमें ब्लॉक चलता है। इनपुट कोण ने पश्चात् वाली डिस्क को घुमाया (एक अपरिवर्तनीय त्रिज्या के लिए फेस कैम डिस्क, दूसरे (कोण) डिस्क के साथ घुमाया गया; अंतर और कुछ गियर ने यह सुधार किया)।

तंत्र के फ्रेम का जिक्र करते हुए, पिन का स्थान कोण और परिमाण इनपुट द्वारा दर्शाए गए सदिश की नोक से मेल खाता है। उस पिन पर लगा चौकोर ब्लॉक था।

रेक्टिलिनियर-कोऑर्डिनेट आउटपुट (साइन और कोसाइन दोनों, सामान्यतः) दो स्लेटेड प्लेट्स से आते हैं, प्रत्येक स्लॉट ब्लॉक पर फिटिंग का अभी उल्लेख किया गया है। प्लेटें सीधी रेखाओं में चलती हैं, प्लेट की गति दूसरे के समकोण पर होती है। आंदोलन की दिशा में स्लॉट समकोण पर थे। प्रत्येक प्लेट, अपने आप में, स्कॉच योक की तरह थी, जिसे भाप इंजन के प्रति उत्साही लोगों के लिए जाना जाता है।

द्वितीय विश्व युद्ध के समय, समान तंत्र ने रेक्टिलिनियर को ध्रुवीय निर्देशांक में बदल दिया, किन्तु यह विशेष रूप से सफल नहीं था और महत्वपूर्ण रीडिज़ाइन (यूएसएन, एमके। 1 से एमके 1 ए) में समाप्त हो गया था।

गुणन समान समकोण त्रिभुजों की ज्यामिति के आधार पर तंत्र द्वारा किया गया था। समकोण त्रिभुज के लिए त्रिकोणमितीय शब्दों का उपयोग करना, विशेष रूप से विपरीत, आसन्न और कर्ण, आसन्न पक्ष निर्माण द्वारा तय किया गया था। चर ने विपरीत पक्ष के परिमाण को बदल दिया। अनेक स्थितियोंमें, इस चर ने संकेत बदल दिया; कर्ण आसन्न पक्ष (एक शून्य इनपुट) के साथ मेल खा सकता है, या आसन्न पक्ष से आगे बढ़ सकता है, संकेत परिवर्तन का प्रतिनिधित्व करता है।

सामान्यतः, पिनियन-संचालित रैक (ट्रिग-परिभाषित) विपरीत पक्ष के समानांतर चलती है, स्लाइड को कर्ण के साथ संयोग के साथ स्लाइड की स्थिति में रखती है। रैक पर धुरी स्लाइड के कोण को स्वतंत्र रूप से बदलने देती है। स्लाइड के दूसरे छोर पर (कोण, त्रिकोणमितीय शब्दों में), फ्रेम के लिए तय किए गए पिन पर ब्लॉक कर्ण और आसन्न पक्ष के मध्य के शीर्ष को परिभाषित करता है।

आसन्न भुजा के साथ किसी भी दूरी पर, इसके लंबवत रेखा कर्ण को विशेष बिंदु पर काटती है। उस बिंदु और आसन्न पक्ष के मध्य की दूरी कुछ अंश है जो 1 के शीर्ष से दूरी और 2 विपरीत पक्ष के परिमाण का उत्पाद है।

इस प्रकार के गुणक में दूसरा इनपुट चर स्लेटेड प्लेट को आसन्न पक्ष के लंबवत रखता है। उस स्लॉट में ब्लॉक होता है, और उसके स्लॉट में उस ब्लॉक की स्थिति उसके ठीक बगल में अन्य ब्लॉक द्वारा निर्धारित की जाती है। उत्तरार्द्ध कर्ण के साथ स्लाइड करता है, इसलिए दो ब्लॉक हैंउत्पाद के समानुपाती राशि से (ट्रिग।) आसन्न पक्ष से दूरी पर स्थित है।

उत्पाद को आउटपुट के रूप में प्रदान करने के लिए, तीसरा तत्व, अन्य स्लॉटेड प्लेट, सैद्धांतिक त्रिभुज के विपरीत दिशा (ट्रिग) के समानांतर चलती है। सदैव की तरह, स्लॉट आंदोलन की दिशा के लंबवत है। इसके स्लॉट में ब्लॉक, कर्ण के लिए पिवट किया गया ब्लॉक इसे रखता है।

एक विशेष प्रकार का समाकलक, उस बिंदु पर उपयोग किया जाता है जहां केवल मध्यम त्रुटिहीनता की आवश्यकता होती है, डिस्क के अतिरिक्त स्टील की गेंद पर आधारित था। इसमें दो इनपुट थे, गेंद को घुमाने के लिए, और दूसरा गेंद के घूर्णन अक्ष के कोण को परिभाषित करने के लिए। वह धुरी सदैव ऐसे विमान में थी जिसमें दो गति वाले पिक-ऑफ रोलर्स की कुल्हाड़ियां थीं, जो रोलिंग-बॉल कंप्यूटर माउस के तंत्र के समान थी (उस तंत्र में, पिक-ऑफ रोलर्स मोटे तौर पर गेंद के समान व्यास के थे) पिक-ऑफ रोलर कुल्हाड़ियाँ समकोण पर थीं।

पिक-ऑफ प्लेन के ऊपर और नीचे रोलर्स की जोड़ी घूर्णन धारकों में लगाई गई थी जो साथ गियर किए गए थे। उस गियरिंग को कोण इनपुट द्वारा संचालित किया गया था, और गेंद के घूर्णन अक्ष को स्थापित किया। अन्य इनपुट ने गेंद को घुमाने के लिए नीचे के रोलर को घुमाया।

अनिवार्य रूप से, संपूर्ण तंत्र, जिसे घटक इंटीग्रेटर कहा जाता है, गति इनपुट और दो आउटपुट के साथ-साथ कोण इनपुट के साथ चर-गति ड्राइव था। कोण इनपुट इनपुट कोण के साइन और कोसाइन के अनुसार गति इनपुट और आउटपुट के मध्य युग्मन के अनुपात (और दिशा) को बदलता है।

चूंकि उन्होंने किसी भी गणना को पूरा नहीं किया, इलेक्ट्रोमैकेनिकल पोजिशन सर्वो रोटेटिंग-शाफ्ट प्रकार के मैकेनिकल एनालॉग कंप्यूटरों में पश्चात् के कंप्यूटिंग तंत्र के इनपुट को ऑपरेटिंग टॉर्क प्रदान करने के साथ-साथ बड़े टॉर्क-ट्रांसमीटर जैसे आउटपुट डेटा-ट्रांसमिशन डिवाइस को चलाने के लिए आवश्यक थे। नौसेना के कंप्यूटरों में सिंक्रोस।

अन्य रीडआउट तंत्र, जो सीधे गणना का हिस्सा नहीं थे, में आंतरिक ओडोमीटर जैसे काउंटर सम्मिलित थे, जिसमें आंतरिक चर को इंगित करने के लिए इंटरपोलिंग ड्रम डायल और मैकेनिकल मल्टी-टर्न लिमिट स्टॉप सम्मिलित थे।

यह देखते हुए कि एनालॉग फायर-कंट्रोल कंप्यूटर में त्रुटिहीन रूप से नियंत्रित घूर्णी गति उनकी त्रुटिहीनता का मूल तत्व था, मोटर थी जिसकी औसत गति बैलेंस व्हील, हेयरस्प्रिंग, ज्वेलेड-बेयरिंग डिफरेंशियल, ट्विन-लोब कैम और स्प्रिंग द्वारा नियंत्रित होती थी। लोडेड कॉन्टैक्ट्स (जहाज की एसी पावर फ्रीक्वेंसी आवश्यक त्रुटिहीन नहीं थी, और न ही पर्याप्त भरोसेमंद थी, जब इन कंप्यूटरों को डिजाइन किया गया था)।

इलेक्ट्रॉनिक एनालॉग कंप्यूटर

EAI 8800 एनालॉग कंप्यूटर का स्विचिंग बोर्ड (सामने का दृश्य)

इलेक्ट्रॉनिक एनालॉग कंप्यूटर में सामान्यतः अनेक जैक (एकल-संपर्क सॉकेट) के साथ फ्रंट पैनल होते हैं जो समस्या सेटअप को परिभाषित करने वाले इंटरकनेक्शन बनाने के लिए पैच कॉर्ड (दोनों सिरों पर प्लग के साथ लचीले तार) की अनुमति देते हैं। इसके अतिरिक्त, स्केल कारकों को स्थापित करने (और, जब आवश्यक हो, भिन्न-भिन्न) के लिए त्रुटिहीन उच्च-रिज़ॉल्यूशन पोटेंशियोमीटर (चर प्रतिरोधक) होते हैं। इसके अतिरिक्त, साधारण -त्रुटिहीनता वोल्टेज माप के लिए सामान्यतः शून्य-केंद्र एनालॉग पॉइंटर-टाइप मीटर होता है। स्थिर, त्रुटिहीन वोल्टेज स्रोत ज्ञात परिमाण प्रदान करते हैं।

विशिष्ट इलेक्ट्रॉनिक एनालॉग कंप्यूटर में कुछ से लेकर सौ या अधिक परिचालन एम्पलीफायर (op amps) होते हैं, क्योंकि वह गणितीय संचालन करते हैं। Op amps विशेष प्रकार का फीडबैक एम्पलीफायर है जिसमें बहुत अधिक लाभ और स्थिर इनपुट (कम और स्थिर ऑफसेट) होता है। वह सदैव त्रुटिहीन प्रतिक्रिया घटकों के साथ उपयोग किए जाते हैं, जो ऑपरेशन में, इनपुट घटकों से आने वाली धाराओं को रद्द कर देते हैं। प्रतिनिधि सेटअप में अधिकांश ऑप एम्प्स एम्पलीफायरों का योग कर रहे हैं, जो एनालॉग वोल्टेज को जोड़ते और घटाते हैं, जिससे उनके आउटपुट जैक पर परिणाम मिलता है। साथ ही, कैपेसिटर फीडबैक वाले ऑप एम्प्स को सामान्यतः सेटअप में सम्मिलित किया जाता है; वह समय के साथ अपने इनपुट के योग को एकीकृत करते हैं।

किसी अन्य चर के संबंध में एकीकरण यांत्रिक एनालॉग इंटीग्रेटर्स का लगभग अनन्य प्रांत है; यह इलेक्ट्रॉनिक एनालॉग कंप्यूटरों में लगभग कभी नहीं किया जाता है। चूँकि, यह देखते हुए कि समस्या का समाधान समय के साथ नहीं बदलता है, समय चर के रूप में काम कर सकता है।

अन्य कंप्यूटिंग तत्वों में एनालॉग मल्टीप्लायर, गैर रेखीय फलन जनक और एनालॉग तुलनित्र सम्मिलित हैं।

इलेक्ट्रिकल एनालॉग कंप्यूटर में उपयोग होने वाले इंडक्टर्स और कैपेसिटर जैसे इलेक्ट्रिकल तत्वों को गैर-आदर्श प्रभावों को कम करने के लिए सावधानीपूर्वक निर्मित किया जाना था। उदाहरण के लिए, नेटवर्क विश्लेषक (एसी पावर) के निर्माण में, कैलकुलेटर (वास्तविक बिजली आवृत्ति के अतिरिक्त) के लिए उच्च आवृत्तियों का उपयोग करने का मकसद यह था कि उच्च-गुणवत्ता वाले प्रेरक अधिक आसानी से बनाए जा सकते थे। अनेक सामान्य-उद्देश्य वाले एनालॉग कंप्यूटर पूरी तरह से इंडक्टर्स के उपयोग से बचते हैं, समस्या को ऐसे रूप में फिर से कास्ट करते हैं जिसे केवल प्रतिरोधक और कैपेसिटिव तत्वों का उपयोग करके हल किया जा सकता है, क्योंकि उच्च गुणवत्ता वाले कैपेसिटर बनाना अपेक्षाकृत आसान है।

एनालॉग कंप्यूटरों में विद्युत गुणों के उपयोग का अर्थ है कि गणना सामान्य रूप से वास्तविक समय कंप्यूटिंग (या तेज) में की जाती है, जो कि परिचालन एम्पलीफायरों और अन्य कंप्यूटिंग तत्वों की आवृत्ति प्रतिक्रिया द्वारा निर्धारित गति से होती है। इलेक्ट्रॉनिक एनालॉग कंप्यूटर के इतिहास में, कुछ विशेष उच्च गति प्रकार थे।

गैर-रेखीय कार्यों और गणनाओं का निर्माण सीमित परिशुद्धता (तीन या चार अंक) के लिए किया जा सकता है, जो वेरिएबल जनरेटर को डिजाइन करके - गैर-रेखीयता प्रदान करने के लिए प्रतिरोधों और डायोड के विभिन्न संयोजनों के विशेष परिपथ। सामान्यतः, जैसे-जैसे इनपुट वोल्टेज बढ़ता है, उत्तरोत्तर अधिक डायोड आचरण करते हैं।

जब तापमान के लिए मुआवजा दिया जाता है, तब ट्रांजिस्टर के बेस-एमिटर जंक्शन के आगे वोल्टेज ड्रॉप त्रुटिहीन त्रुटिहीन लॉगरिदमिक या घातीय कार्य प्रदान कर सकता है। Op amps आउटपुट वोल्टेज को मापता है जिससे कि यह बाकी कंप्यूटर के साथ प्रयोग करने योग्य हो।

कोई भी भौतिक प्रक्रिया जो कुछ गणनाओं को मॉडल करती है, उसे एनालॉग कंप्यूटर के रूप में व्याख्यायित किया जा सकता है। एनालॉग गणना की अवधारणा को स्पष्ट करने के उद्देश्य से आविष्कार किए गए कुछ उदाहरणों में स्पेगेटी के बंडल को स्पेगेटी सॉर्ट के रूप में उपयोग करना सम्मिलित है; बिंदुओं के समूह के उत्तल पतवार को खोजने के मॉडल के रूप में बोर्ड, कीलों का समूह और रबर बैंड; और तार नेटवर्क में सबसे छोटा रास्ता खोजने के मॉडल के रूप में साथ बंधे हैं। इन सभी का वर्णन अलेक्जेंडर ड्यूडनी (1984) में किया गया है।

घटक

1960 का न्यूमार्क एनालॉग कंप्यूटर, पांच इकाइयों से बना है। इस कंप्यूटर का उपयोग डिफरेंशियल इक्वेशन को हल करने के लिए किया गया था और वर्तमान में इसे प्रौद्योगिकी के कैम्ब्रिज संग्रहालय में रखा गया है।

एनालॉग कंप्यूटर में अधिकांशतः समष्टि ढांचा होता है, किन्तु उनके मूल में, गणना करने वाले प्रमुख घटकों का समूह होता है। ऑपरेटर कंप्यूटर के ढांचे के माध्यम से इनमें हेरफेर करता है।

मुख्य हाइड्रोलिक घटकों में पाइप, वाल्व और कंटेनर सम्मिलित हो सकते हैं।

अंतर (यांत्रिक उपकरण) में कंप्यूटर के अंदर डेटा ले जाने के लिए घूर्णन शाफ्ट, मेटर गियर डिफरेंशियल (मैकेनिकल डिवाइस), डिस्क/बॉल/रोलर इंटीग्रेटर्स, सांचा (2-डी और 3-डी), मैकेनिकल रिज़ॉल्वर अनुरूप गुणक , और टॉर्क सर्वो सम्मिलित हो सकते हैं।

प्रमुख विद्युत/इलेक्ट्रॉनिक घटकों में सम्मिलित हो सकते हैं:

  • त्रुटिहीन प्रतिरोधक और कैपेसिटर
  • परिचालन एम्पलीफायरों
  • एनालॉग गुणक
  • तनाव नापने का यंत्र
  • फिक्स्ड-फंक्शन जनरेटर

इलेक्ट्रिक एनालॉग कंप्यूटर में उपयोग किए जाने वाले मुख्य गणितीय कार्य हैं:

कुछ एनालॉग कंप्यूटर डिज़ाइनों में, भाग के अतिरिक्त गुणा को अधिक पसंद किया जाता है। ऑपरेशनल एम्पलीफायर के फीडबैक पथ में गुणक के साथ विभाजन किया जाता है।

समय के संबंध में भेदभाव का अधिकांशतः उपयोग नहीं किया जाता है, और जब संभव हो तब समस्या को फिर से परिभाषित करके व्यवहार में टाला जाता है। यह फ़्रीक्वेंसी डोमेन में उच्च-पास फ़िल्टर से मेल खाती है, जिसका अर्थ है कि उच्च-आवृत्ति शोर को बढ़ाया जाता है; भेदभाव अस्थिरता को भी कठिन परिस्थिति में डालता है।

सीमाएं

सामान्यतः, एनालॉग कंप्यूटर गैर-आदर्श प्रभावों द्वारा सीमित होते हैं। एनालॉग सिग्नल चार मूलभूतघटकों से बना होता है: डीसी और एसी परिमाण, आवृत्ति और चरण। इन विशेषताओं पर सीमा की वास्तविक सीमा एनालॉग कंप्यूटरों को सीमित करती है। इनमें से कुछ सीमाओं में परिचालन एम्पलीफायर ऑफ़सेट, परिमित लाभ, और आवृत्ति प्रतिक्रिया, शोर तल, गैर-रैखिकता | गैर-रैखिकता, तापमान गुणांक , और अर्धचालक उपकरणों के अंदर माइक्रोइलेक्ट्रॉनिक सम्मिलित हैं। व्यावसायिक रूप से उपलब्ध इलेक्ट्रॉनिक घटकों के लिए, इनपुट और आउटपुट सिग्नल के इन पहलुओं की रेंज सदैव योग्यता के आंकड़े होते हैं।

अस्वीकार

1950 से 1970 के दशक में, पहले वैक्यूम ट्यूब, ट्रांजिस्टर, एकीकृत परिपथ और फिर माइक्रो-प्रोसेसर पर आधारित डिजिटल कंप्यूटर अधिक प्रभावकारी और त्रुटिहीन हो गए। इसने डिजिटल कंप्यूटरों को बड़े पैमाने पर एनालॉग कंप्यूटरों को बदलने के लिए प्रेरित किया। फिर भी, एनालॉग गणना में कुछ शोध अभी भी किया जा रहा है। कुछ विश्वविद्यालय अभी भी नियंत्रण सिद्धांत सिखाने के लिए एनालॉग कंप्यूटर का उपयोग करते हैं। अमेरिकी कंपनी कॉमडिना छोटे एनालॉग कंप्यूटर बनाती थी।[34] इंडियाना यूनिवर्सिटी ब्लूमिंगटन में, जोनाथन मिल्स ने फोम शीट में सैंपलिंग वोल्टेज के आधार पर विस्तारित एनालॉग कंप्यूटर विकसित किया है।[35] हार्वर्ड रोबोटिक्स प्रयोगशाला में,[36] एनालॉग कंप्यूटेशन शोध विषय है। गीत सेमीकंडक्टर के त्रुटि सुधार परिपथ एनालॉग संभाव्य संकेतों का उपयोग करते हैं। विमान कर्मियों के मध्य स्लाइड नियम अभी भी लोकप्रिय हैं।

पुनरुत्थान

बहुत बड़े पैमाने पर एकीकरण (वीएलएसआई) प्रौद्योगिकी के विकास के साथ, कोलंबिया विश्वविद्यालय में यानिस त्सिविडिस का समूह मानक सीएमओएस प्रक्रिया में एनालॉग/हाइब्रिड कंप्यूटर डिजाइन की समीक्षा कर रहा है। ग्लेन कोवान द्वारा दो वीएलएसआई चिप्स विकसित किए गए हैं, 80वें क्रम का एनालॉग कंप्यूटर (250 एनएम)।[37] सत्र 2005 में[38] और 2015 में निंग गुओ द्वारा विकसित चौथे क्रम का हाइब्रिड कंप्यूटर (65 एनएम),[39] दोनों ऊर्जा कुशल ओडीई/पीडीई अनुप्रयोगों पर लक्षित हैं। ग्लेन की चिप में 16 मैक्रो होते हैं, जिसमें 25 एनालॉग कंप्यूटिंग ब्लॉक होते हैं, अर्थात् इंटीग्रेटर्स, मल्टीप्लायर, फैनआउट, कुछ नॉनलाइनियर ब्लॉक। निंग की चिप में मैक्रो ब्लॉक होता है, जिसमें 26 कंप्यूटिंग ब्लॉक होते हैं जिनमें इंटीग्रेटर्स, मल्टीप्लायर्स, फैनआउट्स, एडीसी, एसआरएएम और डीएसी सम्मिलित हैं। एडीसी + एसआरएएम + डीएसी श्रृंखला द्वारा अनेैतिक रूप से गैर-रेखीय वेरिएबल पीढ़ी को संभव बनाया गया है, जहां एसआरएएम ब्लॉक नॉनलाइनियर वेरिएबल डेटा संग्रहीत करता है। संबंधित प्रकाशनों के प्रयोगों से पता चला कि वीएलएसआई एनालॉग/हाइब्रिड कंप्यूटरों ने 5% के अंदर त्रुटिहीनता प्राप्त करते हुए समाधान समय और ऊर्जा दोनों में लाभ के लगभग 1-2 ऑर्डर परिमाण का प्रदर्शन किया, जो क्षेत्र में एनालॉग/हाइब्रिड कंप्यूटिंग विधि का उपयोग करने के वादे की ओर संकेत करता है। ऊर्जा कुशल अनुमानित कंप्यूटिंग की। सत्र 2016 में, शोधकर्ताओं की टीम ने एनालॉग परिपथ का उपयोग करके अंतर समीकरणों को हल करने के लिए कंपाइलर विकसित किया।[40]

एनालॉग कंप्यूटर का उपयोग न्यूरोमॉर्फिक कंप्यूटिंग में भी किया जाता है, और सत्र 2021 में शोधकर्ताओं के समूह ने दिखाया है कि विशिष्ट प्रकार का कृत्रिम तंत्रिका नेटवर्क जिसे स्पाइकिंग तंत्रिका नेटवर्क कहा जाता है, एनालॉग न्यूरोमॉर्फिक कंप्यूटर के साथ काम करने में सक्षम था।[41]

व्यावहारिक उदाहरण

X-15 सिम्युलेटर एनालॉग कंप्यूटर

यह एनालॉग कंप्यूटर के उदाहरण हैं जिनका निर्माण या व्यावहारिक रूप से उपयोग किया गया है:

एनालॉग सिंथेसाइज़र | एनालॉग (ऑडियो) सिंथेसाइज़र को एनालॉग कंप्यूटर के रूप में भी देखा जा सकता है, और उनकी विधि मूल रूप से इलेक्ट्रॉनिक एनालॉग कंप्यूटर विधि पर आधारित थी। ARP 2600 का रिंग मॉड्यूलेटर वास्तव में मध्यम-त्रुटिहीनता एनालॉग गुणक था।

सिमुलेशन काउंसिल (या सिमुलेशन काउंसिल) अमेरिका में एनालॉग कंप्यूटर उपयोगकर्ताओं का संघ था। इसे वर्तमान द सोसाइटी फॉर मॉडलिंग एंड सिमुलेशन इंटरनेशनल के नाम से जाना जाता है। सत्र 1952 से 1963 तक सिमुलेशन काउंसिल न्यूज़लेटर्स ऑनलाइन उपलब्ध हैं और उस समय की चिंताओं और विधि और मिसाइलरी के लिए एनालॉग कंप्यूटरों के सामान्य उपयोग को दिखाते हैं।[42]

यह भी देखें

टिप्पणियाँ

  1. "Gears of war: When mechanical analog computers ruled the waves". 2014-03-18. Archived from the original on 2018-09-08. Retrieved 2017-06-14.
  2. Johnston, Sean F. (2006). Holographic Visions: A History of New Science. OUP Oxford. p. 90. ISBN 978-0191513886.
  3. The Antikythera Mechanism Research Project Archived 2008-04-28 at the Wayback Machine, The Antikythera Mechanism Research Project. Retrieved 1 July 2007.
  4. Fuat Sezgin "Catalogue of the Exhibition of the Institute for the History of Arabic-Islamic Science (at the Johann Wolfgang Goethe University", Frankfurt, Germany) Frankfurt Book Fair 2004, pp. 35 & 38.
  5. François Charette, Archaeology: High tech from Ancient Greece, Nature 444, 551–552(30 November 2006), doi:10.1038/444551a
  6. Silvio A. Bedini, Francis R. Maddison (1966). "Mechanical Universe: The Astrarium of Giovanni de' Dondi", Transactions of the American Philosophical Society 56 (5), pp. 1–69.
  7. D. De S. Price (1984). "A History of Calculating Machines", IEEE Micro 4 (1), pp. 22–52.
  8. Tuncer Őren (2001). "Advances in Computer and Information Sciences: From Abacus to Holonic Agents", Turk J Elec Engin 9 (1), pp. 63–70 [64].
  9. Donald Routledge Hill (1985). "Al-Biruni's mechanical calendar", Annals of Science 42, pp. 139–163.
  10. "Episode 11: Ancient Robots", Ancient Discoveries, History Channel, archived from the original on 1 March 2014, retrieved 2008-09-06
  11. Howard R. Turner (1997), Science in Medieval Islam: An Illustrated Introduction, p. 184, University of Texas Press, ISBN 0-292-78149-0
  12. Donald Routledge Hill, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, pp. 64–69 (cf. Donald Routledge Hill, Mechanical Engineering Archived 25 December 2007 at the Wayback Machine)
  13. "An Amazing Perpetual Calendar, Hidden in an Italian Chapel". Atlas Obscura (in English). Retrieved 2020-09-07.
  14. Ray Girvan, "The revealed grace of the mechanism: computing after Babbage" Archived November 3, 2012, at the Wayback Machine, Scientific Computing World, May/June 2003
  15. Thomas Parke Hughes Networks of power: electrification in Western society, 1880–1930 JHU Press, 1993 ISBN 0-8018-4614-5 page 376
  16. James E. Tomayko, Helmut Hoelzer's Fully Electronic Analog Computer; In: IEEE Annals of the History of Computing, Vol. 7, No. 3, pp. 227–240, July–Sept. 1985, doi:10.1109/MAHC.1985.10025
  17. Neufeld, Michael J. (2013). The Rocket and the Reich: Peenemunde and the Coming of the Ballistic Missile Era (in English). Smithsonian Institution. p. 138. ISBN 9781588344663.
  18. Ulmann, Bernd (2013-07-22). Analog Computing (in English). Walter de Gruyter. p. 38. ISBN 9783486755183.
  19. Neufeld (2013), p. 106.
  20. Tomayko, James E. (1 July 1985). "Helmut Hoelzer". IEEE Annals of the History of Computing. 7 (3): 227–240. doi:10.1109/MAHC.1985.10025. S2CID 15986944.
  21. Metropolis, N. "The Beginning of the Monte Carlo Method." Los Alamos Science, No. 15, p. 125
  22. Small, J. S. "The analogue alternative: The electronic analogue computer in Britain and the USA, 1930–1975" Psychology Press, 2001, p. 90
  23. Small, J. S. "The analogue alternative: The electronic analogue computer in Britain and the USA, 1930–1975" Psychology Press, 2001, p. 93
  24. Bissell, C. (2007-02-01). "Historical perspectives – The Moniac A Hydromechanical Analog Computer of the 1950s" (PDF). IEEE Control Systems Magazine. 27 (1): 69–74. doi:10.1109/MCS.2007.284511. ISSN 1066-033X. S2CID 37510407.
  25. "History – Accounts". me100.caltech.edu.
  26. Karplus, Walter J. (29 November 2017). "Analog simulation: solution of field problems". McGraw-Hill – via Google Books.
  27. Petersen, Julie K. (2003). Fiber optics illustrated dictionary. CRC Press. p. 441. ISBN 978-0-8493-1349-3.
  28. "Heathkit EC - 1 Educational Analog Computer". Computer History Museum. Archived from the original on 2010-05-20. Retrieved 9 May 2010.
  29. 29.0 29.1 EPE Hybrid Computer - Part 1 (November 2002), Part 2 (December 2002), Everyday Practical Electronics
  30. "System Description EAI 8800 Scientific Computing System" (PDF). 1965-05-01. Retrieved 2019-09-17.
  31. Small, James S. (2001). The Analogue Alternative. The Electronic Analogue Computer in Britain and USA, 1930-1975. London: Routledge. pp. 119–178.
  32. Havranek, Bill (1966-08-01). The role of a hybrid computer in supersonic transport simulation. pp. 91–99. {{cite book}}: |work= ignored (help)
  33. 33.0 33.1 "Basic Fire Control Mechanisms". maritime.org.
  34. "Analog Computers". Comdyna. Archived from the original on 2017-12-01. Retrieved 2008-10-06.
  35. "Kirchhoff-Lukasiewicz Machines".
  36. "Harvard Robotics Laboratory".
  37. "Glenn Cowan". Concordia.ca. Retrieved 2016-02-05.
  38. Cowan, G.E.R.; Melville, R.C.; Tsividis, Y. (2005-02-01). "A VLSI analog computer/math co-processor for a digital computer". Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International. 1: 82–586. doi:10.1109/ISSCC.2005.1493879. ISBN 978-0-7803-8904-5. S2CID 38664036.
  39. Guo, Ning; Huang, Yipeng; Mai, Tao; Patil, S.; Cao, Chi; Seok, Mingoo; Sethumadhavan, S.; Tsividis, Y. (2015-09-01). "Continuous-time hybrid computation with programmable nonlinearities". European Solid-State Circuits Conference (ESSCIRC), ESSCIRC 2015 – 41st: 279–282. doi:10.1109/ESSCIRC.2015.7313881. ISBN 978-1-4673-7470-5. S2CID 16523767.
  40. "Analog computing returns".
  41. Benjamin Cramer; Sebastian Billaudelle; Simeon Kanya; Aron Leibfried; Andreas Grübl; Vitali Karasenko; Christian Pehle; Korbinian Schreiber; Yannik Stradmann; Johannes Weis; Johannes Schemmel; View ORCID ProfileFriedemann Zenke (January 25, 2022). "Surrogate gradients for analog neuromorphic computing". PNAS. 119 (4). Bibcode:2022PNAS..11909194C. doi:10.1073/pnas.2109194119. PMC 8794842. PMID 35042792.
  42. "Simulation Council newsletter". Archived from the original on 2013-05-28.

संदर्भ

  • ए.के. ड्यूडनी. "समस्या समाधान के लिए स्पेगेटी कंप्यूटर और अन्य एनालॉग गैजेट्स पर", साइंटिफिक अमेरिकन, 250(6):19-26, जून 1984। द आर्मचेयर यूनिवर्स में पुनर्मुद्रित, ए.के. द्वारा ड्यूडनी, डब्ल्यू.एच. द्वारा प्रकाशित। फ्रीमैन एंड कंपनी (1988), ISBN 0-7167-1939-8.
  • एम्सटर्डम कंप्यूटर संग्रहालय विश्वविद्यालय। (2007)। एनालॉग कंप्यूटर.
  • जैक्सन, अल्बर्ट एस., "एनालॉग कंप्यूटेशन"। लंदन और न्यूयॉर्क: मैकग्रा-हिल, 1960। OCLC 230146450

इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • नामोग्राम
  • हवाई जहाज
  • फ़ाइट सिम्युलेटर
  • यांत्रिक घड़ी
  • एंटीकाइथेरा मलबे
  • पनबिजली
  • समारोह (गणित)
  • लघुगणक का इतिहास
  • ट्रान्सेंडैंटल फंक्शन
  • गिब्स घटना
  • टोक़ एम्पलीफायर
  • शाही रूसी नौसेना
  • पहला विश्व युद्ध
  • विकर्स रेंज क्लॉक
  • संख्यात्मक विधि
  • बम दृष्टि
  • मोनियाक कंप्यूटर
  • ऑपरेशनल एंप्लीफायर
  • रोब जमाना
  • लयबद्ध दोलक
  • इच्छानुसार-त्रुटिहीन अंकगणित
  • फ्रेंच परमाणु ऊर्जा आयोग
  • रीयल-टाइम कंप्यूटिंग
  • स्पघेटी
  • लोगारित्म
  • शोर मचाने वाला फ़र्श
  • गैर linearity

बाहरी संबंध