परिबद्ध परिमाणक

From Vigyanwiki
Revision as of 16:37, 29 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणितीय तर्क में औपचारिक सिद्धांतों के अध्ययन में, मानक परिमाणक ∀ और ∃ के अतिरिक्त, बंधे हुए परिमाणक (a.k.a. प्रतिबंधित परिमाणक) को अधिकांशतः औपचारिक भाषा में सम्मिलित किया जाता है। परिबद्ध परिमाणक ∀ और ∃ से भिन्न होते हैं। क्योंकि परिबद्ध परिमाणक परिमाणित चर की सीमा को सीमित करते हैं। परिबद्ध परिमाणकों का अध्ययन इस तथ्य से प्रेरित है कि यह निर्धारित करना कि केवल परिबद्ध परिमाणकों वाला वाक्य (गणितीय तर्क) सत्य है या नहीं, अधिकांशतः उतना कठिन नहीं होता जितना यह निर्धारित करना कि मनमाना वाक्य सत्य है या नहीं।

उदाहरण

वास्तविक विश्लेषण के संदर्भ में परिबद्ध परिमाणकों के उदाहरणों में सम्मिलित हैं:

  • - सभी x के लिए जहां x 0 से बड़ा है।
  • - वहां y उपस्थित है जहां y 0 से कम है।
  • - सभी x के लिए जहां x वास्तविक संख्या है।
  • - प्रत्येक धनात्मक संख्या ऋणात्मक संख्या का वर्ग होती है।

अंकगणित में परिबद्ध परिमाणक

मान लीजिए कि L पीनो अंकगणित की भाषा है। (दूसरे क्रम के अंकगणित या सभी परिमित प्रकारों में अंकगणित की भाषा भी काम करेगी।) परिबद्ध परिमाणक दो प्रकार के होते हैं: और .

ये परिमाणक संख्या चर n को बांधते हैं और इसमें संख्यात्मक शब्द t होता है जिसमें n का उल्लेख नहीं हो सकता है। लेकिन जिसमें अन्य मुक्त चर हो सकते हैं। (यहाँ संख्यात्मक शब्दों का अर्थ 1 + 1, 2, 2 × 3, m + 3, आदि जैसे पद हैं।)

इन परिमाणकों को निम्नलिखित नियमों द्वारा परिभाषित किया गया है ( सूत्रों को दर्शाता है):

इन परिमाणकों के लिए कई प्रेरणाएँ हैं।

  • पुनरावर्तन सिद्धांत के लिए भाषा के अनुप्रयोगों में, जैसे कि अंकगणितीय पदानुक्रम, परिबद्ध परिमाणक कोई जटिलता नहीं जोड़ते हैं। अगर तब निर्णायकता (तर्क) विधेय है। और निर्णय योग्य भी हैं.
  • पीनो अंकगणित के अध्ययन के अनुप्रयोगों में, तथ्य यह है कि विशेष समुच्च्च्य को केवल बंधे हुए परिमाणक के साथ परिभाषित किया जा सकता है, समुच्च्च्य की संगणना के लिए परिणाम हो सकते हैं। उदाहरण के लिए, केवल परिबद्ध परिमाणकों का उपयोग करके अभाज्य संख्या की परिभाषा है: संख्या n अभाज्य है यदि और केवल तभी जब n से पूरी तरह से कम दो संख्याएँ न हों जिनका गुणनफल n हो। भाषा में आदिमता की कोई परिमाण-मुक्त परिभाषा नहीं है , चुकीं तथ्य यह है कि मौलिकता को परिभाषित करने वाला सीमित मात्रात्मक सूत्र है, यह दर्शाता है कि प्रत्येक संख्या की मौलिकता को गणनात्मक रूप से तय किया जा सकता है।

सामान्य तौर पर, प्राकृतिक संख्याओं पर संबंध बंधे हुए सूत्र द्वारा परिभाषित किया जा सकता है यदि और केवल यदि यह रैखिक-समय पदानुक्रम में गणना योग्य है, जिसे बहुपद पदानुक्रम के समान परिभाषित किया गया है, लेकिन बहुपद के अतिरिक्त रैखिक समय सीमा के साथ परिणामस्वरूप, बंधे हुए सूत्र द्वारा परिभाषित सभी विधेय प्राथमिक कल्मार प्राथमिक, संदर्भ-संवेदनशील व्याकरण और आदिम पुनरावर्ती हैं।

अंकगणितीय पदानुक्रम में, अंकगणितीय सूत्र जिसमें केवल परिबद्ध परिमाणक , , और कहलाता है। सुपरस्क्रिप्ट 0 कभी-कभी छोड़ दिया जाता है।

समुच्चय सिद्धांत में परिबद्ध परिमाणक

मान लीजिए कि L भाषा है ज़र्मेलो-फ्रेंकेल समुच्च्च्य सिद्धांत के अनुसार, जहां ज़र्मेलो-फ्रेंकेल समुच्च्च्य सिद्धांत,द्वारा प्रतिस्थापित किया जा सकता है जैसे कि पॉवरसेट ऑपरेशन के लिए प्रतीक दो परिबद्ध परिमाणक हैं: और . ये परिमाणक समुच्च्च्य चर x को बांधते हैं और इसमें शब्द t होता है जिसमें x का उल्लेख नहीं हो सकता है लेकिन जिसमें अन्य मुक्त चर हो सकते हैं।

इन परिमाणकों का शब्दार्थ निम्नलिखित नियमों द्वारा निर्धारित किया जाता है:

ZF सूत्र जिसमें केवल परिबद्ध परिमाणक होते हैं, कहलाता है। , , और . यह लेवी पदानुक्रम का आधार बनता है, जिसे अंकगणितीय पदानुक्रम के अनुरूप परिभाषित किया गया है।

क्रिपके-प्लेटक समुच्च्च्य सिद्धांत और रचनात्मक समुच्च्च्य सिद्धांत में बंधे हुए परिमाणक महत्वपूर्ण हैं, जहां केवल विधेय पृथक्करण की स्वयंसिद्ध स्कीमा है Δ0 अलगाव सम्मिलित है. अर्थात्, इसमें केवल परिबद्ध परिमाणकों वाले सूत्रों के लिए पृथक्करण सम्मिलित है, लेकिन अन्य सूत्रों के लिए पृथक्करण सम्मिलित नहीं है। KP में प्रेरणा यह तथ्य है कि क्या समुच्च्च्य x बंधे हुए परिमाणक सूत्र को संतुष्ट करता है या नहीं, यह केवल उन सेटों के संग्रह पर निर्भर करता है। जो x के रैंक के समीप हैं। (क्योंकि पॉवरसेट ऑपरेशन को केवल शब्द बनाने के लिए कई बार प्रयुक्त किया जा सकता है।) रचनात्मक समुच्चय सिद्धांत में, यह अव्यावहारिकता के आधार पर प्रेरित होता है।

यह भी देखें

संदर्भ

  • Hinman, P. (2005). Fundamentals of Mathematical Logic. A K Peters. ISBN 1-56881-262-0.
  • Kunen, K. (1980). Set theory: An introduction to independence proofs. Elsevier. ISBN 0-444-86839-9.