सार्वभौमिक बीजगणित

From Vigyanwiki
Revision as of 13:09, 1 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Theory of algebraic structures in general}} सार्वभौमिक बीजगणित (कभी-कभी सामान्य बीजगण...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सार्वभौमिक बीजगणित (कभी-कभी सामान्य बीजगणित कहा जाता है) गणित का क्षेत्र है जो स्वयं बीजगणितीय संरचनाओं का अध्ययन करता है, न कि बीजगणितीय संरचनाओं के उदाहरण (मॉडल)। उदाहरण के लिए, विशेष समूह (गणित) को अध्ययन की वस्तु के रूप में लेने के बजाय, सार्वभौमिक बीजगणित में अध्ययन की वस्तु के रूप में समूहों की कक्षा को लिया जाता है।

मूल विचार

सार्वभौमिक बीजगणित में, एक बीजगणित (या बीजगणितीय संरचना (गणितीय तर्क)) एक सेट (गणित) है जो पर संचालन के संग्रह के साथ है। A पर एक n-arity ऑपरेशन (गणित) एक फ़ंक्शन (गणित) है जो A के n तत्वों को लेता है और A का एकल तत्व लौटाता है। इस प्रकार, एक 0-आरी संक्रिया (या अशक्त संक्रिया) को केवल A के एक तत्व के रूप में, या Constant (गणित) के रूप में प्रदर्शित किया जा सकता है, जिसे अक्सर a जैसे अक्षर से निरूपित किया जाता है। । एक 1-एरी ऑपरेशन (या एकात्मक ऑपरेशन ) केवल से तक का एक फंक्शन है, जिसे अक्सर इसके तर्क के सामने रखे गए प्रतीक द्वारा दर्शाया जाता है, जैसे ~x . एक 2-एरी ऑपरेशन (या बाइनरी ऑपरेशन) को अक्सर इसके तर्कों (जिसे इंफिक्स नोटेशन भी कहा जाता है) के बीच रखे एक प्रतीक द्वारा दर्शाया जाता है, जैसे x ∗ y। उच्च या अनिर्दिष्ट एरिटी के संचालन को आमतौर पर फ़ंक्शन प्रतीकों द्वारा निरूपित किया जाता है, तर्कों को कोष्ठक में रखा जाता है और अल्पविराम से अलग किया जाता है, जैसे f(x,y,z ) या एफ(एक्स1,...,एक्सn). बीजगणित के बारे में बात करने का एक तरीका है, इसे बीजगणितीय संरचनाओं की रूपरेखा के रूप में संदर्भित करना#बीजगणितीय संरचनाओं के प्रकार , कहाँ बीजगणित के संचालन की शुद्धता का प्रतिनिधित्व करने वाली प्राकृतिक संख्याओं का एक क्रमबद्ध क्रम है। हालाँकि, कुछ शोधकर्ता अनंत ऑपरेशंस की भी अनुमति देते हैं, जैसे जहाँ J एक अनंत सूचकांक समुच्चय है, जो पूर्ण जालक के बीजगणितीय सिद्धांत में एक संक्रिया है।

समीकरण

संचालन निर्दिष्ट किए जाने के बाद, बीजगणित की प्रकृति को स्वयंसिद्धों द्वारा परिभाषित किया जाता है, जो सार्वभौमिक बीजगणित में अक्सर पहचान (गणित) # तर्क और सार्वभौमिक बीजगणित, या समीकरण कानूनों का रूप लेते हैं। एक उदाहरण बाइनरी ऑपरेशन के लिए साहचर्य स्वयंसिद्ध है, जो समीकरण x ∗ (y ∗ z)= (x ∗ y) द्वारा दिया गया है ∗z। स्वयंसिद्ध का उद्देश्य सेट 'A' के सभी तत्वों x, y, और z को धारण करना है।

किस्में

सर्वसमिकाओं द्वारा परिभाषित बीजगणितीय संरचनाओं के संग्रह को वैरायटी (सार्वभौमिक बीजगणित) या समतुल्य वर्ग कहा जाता है।

किसी के अध्ययन को किस्मों तक सीमित करना नियमों से बाहर है:

समीकरण वर्गों के अध्ययन को मॉडल सिद्धांत की एक विशेष शाखा के रूप में देखा जा सकता है, आम तौर पर केवल संचालन वाले संरचनाओं से निपटना (अर्थात हस्ताक्षर (तर्क) में कार्यों के लिए प्रतीक हो सकते हैं लेकिन समानता के अलावा अन्य संबंध के लिए नहीं), और जिसमें भाषा इन संरचनाओं के बारे में बात करने के लिए केवल समीकरणों का उपयोग किया जाता है।

व्यापक अर्थों में सभी बीजगणितीय संरचनाएँ इस दायरे में नहीं आती हैं। उदाहरण के लिए, ऑर्डर किए गए समूहों में एक ऑर्डरिंग संबंध शामिल होता है, इसलिए वे इस दायरे में नहीं आएंगे।

क्षेत्र (गणित) का वर्ग एक समतुल्य वर्ग नहीं है क्योंकि कोई प्रकार (या हस्ताक्षर) नहीं है जिसमें सभी क्षेत्र कानूनों को समीकरणों के रूप में लिखा जा सकता है (तत्वों के व्युत्क्रम को एक क्षेत्र में सभी गैर-शून्य तत्वों के लिए परिभाषित किया गया है, इसलिए व्युत्क्रम प्रकार में नहीं जोड़ा जा सकता)।

इस प्रतिबंध का एक फायदा यह है कि सार्वभौमिक बीजगणित में अध्ययन की गई संरचनाओं को किसी भी श्रेणी के सिद्धांत में परिभाषित किया जा सकता है जिसमें परिमित उत्पाद (श्रेणी सिद्धांत) है। उदाहरण के लिए, टोपोलॉजिकल स्पेस की श्रेणी में एक टोपोलॉजिकल समूह सिर्फ एक ग्रुप है।

उदाहरण

गणित की अधिकांश सामान्य बीजगणितीय प्रणालियाँ किस्मों के उदाहरण हैं, लेकिन हमेशा एक स्पष्ट तरीके से नहीं, क्योंकि सामान्य परिभाषाओं में अक्सर परिमाणीकरण या असमानताएँ शामिल होती हैं।

समूह

एक उदाहरण के रूप में, एक समूह (गणित) की परिभाषा पर विचार करें। आम तौर पर एक समूह को एकल बाइनरी ऑपरेशन ∗ के संदर्भ में परिभाषित किया जाता है, जो स्वयंसिद्धों के अधीन होता है:

  • साहचर्य (जैसा कि #समीकरण में है): x ∗ (y ∗ z)  =  (x ∗ y) ∗ z; औपचारिक रूप से: ∀x,y,z. x∗(y∗z)=(x∗y)∗z.
  • पहचान तत्व: एक तत्व ई मौजूद है जैसे कि प्रत्येक तत्व x के लिए, एक में e ∗ x  =  x  =  x ∗ e है; औपचारिक रूप से: ∃e ∀x. e∗x=x=x∗e.
  • उलटा तत्व: पहचान तत्व को आसानी से अद्वितीय माना जाता है, और आमतौर पर ई द्वारा निरूपित किया जाता है। फिर प्रत्येक x के लिए, एक तत्व i मौजूद है जैसे कि x ∗ i  =  e  =  i ∗ x; औपचारिक रूप से: ∀x ∃i। x∗i=e=i∗x.

(कुछ लेखक क्लोजर (गणित) स्वयंसिद्ध का भी उपयोग करते हैं कि x ∗ y जब भी x और y करते हैं तो A से संबंधित होता है, लेकिन यहाँ यह पहले से ही ∗ एक बाइनरी ऑपरेशन को कॉल करके निहित है।)

एक समूह की यह परिभाषा सार्वभौमिक बीजगणित के दृष्टिकोण से तुरंत फिट नहीं होती है, क्योंकि पहचान तत्व और व्युत्क्रम के स्वयंसिद्धों को विशुद्ध रूप से समीकरण कानूनों के संदर्भ में नहीं कहा जाता है जो सभी ... तत्वों के लिए सार्वभौमिक रूप से धारण करते हैं, लेकिन इसमें अस्तित्वगत भी शामिल है क्वांटिफायर मौजूद है .... बाइनरी ऑपरेशन ∗ के अलावा, एक अशक्त ऑपरेशन ई और एक यूनरी ऑपरेशन ~, ~ x के साथ आमतौर पर x के रूप में लिखे जाने के अलावा, समूह स्वयंसिद्धों को सार्वभौमिक रूप से परिमाणित समीकरणों के रूप में व्यक्त किया जा सकता है।-1. स्वयंसिद्ध बन जाते हैं:

  • साहचर्य: x ∗ (yz)  =  (xy) ∗ z.
  • पहचान तत्व: ex  =  x  =  xe; औपचारिक रूप से: ∀x। e∗x=x=x∗e.
  • उलटा तत्व: x ∗ (~x)  =  e  =  (~x) ∗ x   औपचारिक रूप से: ∀x. x∗~x=e=~x∗x.

संक्षेप में, सामान्य परिभाषा में है:

  • एक एकल बाइनरी ऑपरेशन (हस्ताक्षर (तर्क) (2))
  • 1 समतुल्य कानून (साहचर्य)
  • 2 मात्रात्मक कानून (पहचान और व्युत्क्रम)

जबकि सार्वभौमिक बीजगणित की परिभाषा है:

  • 3 ऑपरेशन: एक बाइनरी, एक यूनरी, और एक न्यूलरी (हस्ताक्षर (तर्क) (2,1,0))
  • 3 समान कानून (साहचर्य, पहचान और व्युत्क्रम)
  • कोई मात्रात्मक कानून नहीं (बाहरी सार्वभौमिक क्वांटिफायर को छोड़कर, जो कि किस्मों में अनुमत हैं)

एक महत्वपूर्ण बिंदु यह है कि अतिरिक्त संचालन जानकारी नहीं जोड़ते हैं, लेकिन समूह की सामान्य परिभाषा से विशिष्ट रूप से अनुसरण करते हैं। हालांकि सामान्य परिभाषा विशिष्ट रूप से पहचान तत्व ई को निर्दिष्ट नहीं करती है, एक आसान अभ्यास से पता चलता है कि यह अद्वितीय है, जैसा कि प्रत्येक व्युत्क्रम तत्व है।

सार्वभौमिक बीजगणित दृष्टिकोण श्रेणी सिद्धांत के अनुकूल है। उदाहरण के लिए, श्रेणी सिद्धांत में एक समूह वस्तु को परिभाषित करते समय, जहां प्रश्न में वस्तु एक सेट नहीं हो सकती है, मात्रात्मक कानूनों (जो व्यक्तिगत तत्वों को संदर्भित करते हैं) के बजाय समीकरण कानूनों (जो सामान्य श्रेणियों में समझ में आता है) का उपयोग करना चाहिए। इसके अलावा, व्युत्क्रम और पहचान को श्रेणी में आकारिकी के रूप में निर्दिष्ट किया गया है। उदाहरण के लिए, एक टोपोलॉजिकल समूह में, व्युत्क्रम न केवल तत्व-वार मौजूद होना चाहिए, बल्कि एक निरंतर मानचित्रण (एक आकारिकी) देना चाहिए। कुछ लेखकों को पहचान मानचित्र को एक बंद समावेशन (एक cofibration) होने की भी आवश्यकता होती है।

अन्य उदाहरण

अधिकांश बीजगणितीय संरचनाएं सार्वभौमिक बीजगणित के उदाहरण हैं।

  • रिंग (गणित), semigroup ्स, quasigroup, ग्रुपोइड्स, मैग्मा (गणित), लूप (बीजगणित), और अन्य।
  • एक निश्चित क्षेत्र पर वेक्टर रिक्त स्थान और एक निश्चित अंगूठी पर मॉड्यूल (गणित) सार्वभौमिक बीजगणित हैं। इनमें एक द्विआधारी योग और एकात्मक अदिश गुणन संचालकों का एक परिवार है, जो क्षेत्र या रिंग के प्रत्येक तत्व के लिए एक है।

संबंधपरक बीजगणित के उदाहरणों में अर्द्ध लेटेक्स, जाली (क्रम) और बूलियन बीजगणित शामिल हैं।

बुनियादी निर्माण

हम मानते हैं कि प्रकार, , तय किया गया है। फिर सार्वभौमिक बीजगणित में तीन बुनियादी निर्माण होते हैं: समरूपता छवि, सबलजेब्रा और उत्पाद।

दो बीजगणित A और B के बीच एक समाकारिता एक फलन (गणित) h: A → B समुच्चय A से समुच्चय B तक इस प्रकार है कि, प्रत्येक संक्रिया f के लिएA ए और संबंधित एफB बी की (धैर्य की, कहें, एन), एच (एफA(एक्स1,...,एक्सn)) = एफB(एच (एक्स1),..., एच (एक्सn)). (कभी-कभी f पर सबस्क्रिप्ट हटा दिए जाते हैं जब यह संदर्भ से स्पष्ट हो जाता है कि फ़ंक्शन किस बीजगणित से है।) उदाहरण के लिए, यदि e एक स्थिर (अशक्त संक्रिया) है, तो h(eA) = औरB. अगर ~ एक यूनरी ऑपरेशन है, तो h(~x) = ~h(x). अगर ∗ एक बाइनरी ऑपरेशन है, तो h(x ∗ y) = h(x) ∗ h(y)। और इसी तरह। समरूपता के साथ कुछ चीजें की जा सकती हैं, साथ ही साथ कुछ विशेष प्रकार की समरूपता की परिभाषाएं होमोमोर्फिज्म प्रविष्टि के तहत सूचीबद्ध हैं। विशेष रूप से, हम एक बीजगणित, h(A) की समरूपी छवि ले सकते हैं।

A का एक सबलजेब्रा A का एक उपसमुच्चय है जो A के सभी कार्यों के तहत बंद है। बीजगणितीय संरचनाओं के कुछ सेट का एक उत्पाद सेट का कार्टेशियन उत्पाद है जिसमें संचालन को समन्वयित परिभाषित किया गया है।

कुछ बुनियादी प्रमेय

  • समरूपता प्रमेय, जिसमें समूह (गणित), वलय (गणित), मॉड्यूल (गणित), आदि की समरूपता प्रमेय शामिल हैं।
  • विविधता (सार्वभौमिक बीजगणित)#बिरखॉफ की प्रमेय|बिरखॉफ की एचएसपी प्रमेय, जिसमें कहा गया है कि बीजगणित का एक वर्ग एक विविधता (सार्वभौमिक बीजगणित) है यदि और केवल अगर यह होमोमोर्फिक छवियों, सबलजेब्रा और मनमाने प्रत्यक्ष उत्पादों के तहत बंद है।

प्रेरणा और अनुप्रयोग

अपने एकीकृत दृष्टिकोण के अलावा, सार्वभौमिक बीजगणित गहन प्रमेय और महत्वपूर्ण उदाहरण और प्रति उदाहरण भी देता है। यह उन लोगों के लिए एक उपयोगी ढांचा प्रदान करता है जो बीजगणित की नई कक्षाओं का अध्ययन शुरू करना चाहते हैं। यह सार्वभौमिक बीजगणित (यदि संभव हो) के संदर्भ में विधियों को पुन: व्यवस्थित करके, बीजगणित के कुछ विशेष वर्गों के लिए बीजगणित के अन्य वर्गों के लिए आविष्कृत विधियों के उपयोग को सक्षम कर सकता है, और फिर इन्हें अन्य वर्गों पर लागू करने के रूप में व्याख्या कर सकता है। इसने वैचारिक स्पष्टीकरण भी प्रदान किया है; जे.डी.एच के रूप में स्मिथ इसे कहते हैं, जो एक विशेष ढांचे में गन्दा और जटिल दिखता है वह उचित सामान्य में सरल और स्पष्ट हो सकता है।

विशेष रूप से, सार्वभौमिक बीजगणित को मोनोइड्स, अंगूठी (बीजगणित), और जाली (क्रम) के अध्ययन के लिए लागू किया जा सकता है। सार्वभौमिक बीजगणित के आने से पहले, इन सभी वर्गों में कई प्रमेय (सबसे विशेष रूप से समरूपता प्रमेय) अलग-अलग साबित हुए थे, लेकिन सार्वभौमिक बीजगणित के साथ, वे हर तरह की बीजगणितीय प्रणाली के लिए एक बार और सभी के लिए सिद्ध हो सकते हैं।

नीचे संदर्भित हिगिंस द्वारा 1956 के पेपर का विशेष बीजगणितीय प्रणालियों की एक श्रृंखला के लिए इसके ढांचे के लिए अच्छी तरह से पालन किया गया है, जबकि उनका 1963 का पेपर संचालन के साथ बीजगणित की चर्चा के लिए उल्लेखनीय है जो केवल आंशिक रूप से परिभाषित हैं, इसके लिए विशिष्ट उदाहरण श्रेणियां और समूह हैं . यह उच्च-आयामी बीजगणित के विषय की ओर जाता है जिसे आंशिक संचालन वाले बीजीय सिद्धांतों के अध्ययन के रूप में परिभाषित किया जा सकता है जिनके डोमेन को ज्यामितीय स्थितियों के तहत परिभाषित किया गया है। इनमें से उल्लेखनीय उदाहरण उच्च-आयामी श्रेणियों और ग्रुपॉयड्स के विभिन्न रूप हैं।

प्रतिबंध संतुष्टि समस्या

यूनिवर्सल बीजगणित बाधा संतुष्टि समस्या | बाधा संतुष्टि समस्या (सीएसपी) के लिए एक प्राकृतिक भाषा प्रदान करता है। सीएसपी कम्प्यूटेशनल समस्याओं के एक महत्वपूर्ण वर्ग को संदर्भित करता है, जहां एक रिलेशनल बीजगणित दिया जाता है A और एक अस्तित्वगत वाक्य (गणितीय तर्क) इस बीजगणित पर, प्रश्न यह पता लगाने का है कि क्या में संतुष्ट हो सकते हैं A. बीजगणित A अक्सर तय होता है, ताकि CSPA उस समस्या को संदर्भित करता है जिसका उदाहरण केवल अस्तित्वगत वाक्य है .

यह सिद्ध हो चुका है कि प्रत्येक कम्प्यूटेशनल समस्या को सूत्रबद्ध किया जा सकता है CSPA कुछ बीजगणित के लिए A.[1] उदाहरण के लिए, ग्राफ कलरिंग | एन-कलरिंग समस्या को बीजगणित के सीएसपी के रूप में कहा जा सकता है , यानी बीजगणित के साथ तत्व और एक संबंध, असमानता।

द्विबीजपत्री अनुमान (अप्रैल 2017 में सिद्ध) बताता है कि यदि A एक परिमित बीजगणित है, तब CSPA या तो पी (जटिलता) या एनपी-पूर्णता है। एनपी-पूर्ण।[2]


सामान्यीकरण

श्रेणी सिद्धांत की तकनीकों का उपयोग करके सार्वभौमिक बीजगणित का भी अध्ययन किया गया है। इस दृष्टिकोण में, उन संक्रियाओं द्वारा पालन किए गए संक्रियाओं और समीकरणों की एक सूची लिखने के बजाय, एक विशेष प्रकार की श्रेणियों का उपयोग करके एक बीजगणितीय संरचना का वर्णन किया जा सकता है, जिसे लॉवरे सिद्धांत या अधिक सामान्यतः बीजगणितीय सिद्धांत के रूप में जाना जाता है। वैकल्पिक रूप से, कोई मोनाड (श्रेणी सिद्धांत) का उपयोग करके बीजगणितीय संरचनाओं का वर्णन कर सकता है। दो दृष्टिकोण निकट से संबंधित हैं, जिनमें से प्रत्येक के अपने फायदे हैं।[3] विशेष रूप से, प्रत्येक लॉवर सिद्धांत सेट की श्रेणी पर एक मोनाड देता है, जबकि सेट की श्रेणी पर कोई भी अंतिम मोनाड एक लॉवर सिद्धांत से उत्पन्न होता है। हालांकि, एक मोनाड एक विशेष श्रेणी (उदाहरण के लिए सेट की श्रेणी) के भीतर बीजगणितीय संरचनाओं का वर्णन करता है, जबकि बीजगणितीय सिद्धांत श्रेणियों के किसी भी बड़े वर्ग (अर्थात् परिमित उत्पाद (श्रेणी सिद्धांत) वाले) के भीतर संरचना का वर्णन करते हैं।

श्रेणी सिद्धांत में एक और हालिया विकास है ओपेरा सिद्धांत - एक ऑपेरड संचालन का एक सेट है, जो एक सार्वभौमिक बीजगणित के समान है, लेकिन उस समीकरण में प्रतिबंधित है जो चर के साथ अभिव्यक्तियों के बीच ही अनुमत है, जिसमें चर के दोहराव या चूक की अनुमति नहीं है। इस प्रकार, छल्ले को कानून के बाद से कुछ ओपेरा के तथाकथित बीजगणित के रूप में वर्णित किया जा सकता है, लेकिन समूह नहीं चर g को बाईं ओर डुप्लिकेट करता है और इसे दाईं ओर छोड़ देता है। पहले तो यह एक परेशानी भरा प्रतिबंध लग सकता है, लेकिन अदायगी यह है कि ओपेरा के कुछ फायदे हैं: उदाहरण के लिए, कोई साहचर्य बीजगणित की अवधारणा को प्राप्त करने के लिए रिंग और वेक्टर स्पेस की अवधारणाओं को हाइब्रिड कर सकता है, लेकिन एक समान हाइब्रिड नहीं बना सकता है समूह और सदिश स्थान की अवधारणाएँ।

एक और विकास आंशिक बीजगणित है जहां ऑपरेटर आंशिक कार्य हो सकते हैं। कुछ आंशिक कार्यों को अनिवार्य रूप से बीजगणितीय सिद्धांत के रूप में जाने वाले लॉवर सिद्धांतों के सामान्यीकरण द्वारा नियंत्रित किया जा सकता है।[4] सार्वभौमिक बीजगणित का एक अन्य सामान्यीकरण मॉडल सिद्धांत है, जिसे कभी-कभी सार्वभौमिक बीजगणित + तर्क के रूप में वर्णित किया जाता है।[5]


इतिहास

1898 में प्रकाशित अल्फ्रेड नॉर्थ व्हाइटहेड की किताब ए ट्रीटिस ऑन यूनिवर्सल अलजेब्रा में, यूनिवर्सल बीजगणित शब्द का अनिवार्य रूप से वही अर्थ था जो आज है। व्हाइटहेड ने विलियम रोवन हैमिल्टन और ऑगस्टस डी मॉर्गन को विषय वस्तु के प्रवर्तक के रूप में श्रेय दिया है, और जेम्स जोसेफ सिल्वेस्टर ने खुद इस शब्द को गढ़ा है।[6]: v 

उस समय ली बीजगणित और अतिशयोक्तिपूर्ण चतुर्भुज जैसी संरचनाओं ने साहचर्य गुणक वर्ग से परे बीजगणितीय संरचनाओं का विस्तार करने की आवश्यकता पर ध्यान आकर्षित किया। एक समीक्षा में अलेक्जेंडर मैकफर्लेन ने लिखा: काम का मुख्य विचार कई तरीकों का एकीकरण नहीं है, न ही साधारण बीजगणित का सामान्यीकरण है ताकि उन्हें शामिल किया जा सके, बल्कि उनकी कई संरचनाओं का तुलनात्मक अध्ययन किया जा सके।[7] उस समय जॉर्ज बूले के तर्क के बीजगणित ने साधारण संख्या बीजगणित के लिए एक मजबूत प्रतिरूप बनाया, इसलिए सार्वभौमिक शब्द ने तनावपूर्ण संवेदनाओं को शांत करने का काम किया।

व्हाइटहेड के शुरुआती काम ने चतुष्कोणों (हैमिल्टन के कारण), ग्रासमैन के बाहरी बीजगणित # इतिहास, और बूल के तर्क के बीजगणित को एकजुट करने की मांग की। व्हाइटहेड ने अपनी पुस्तक में लिखा है:

इस तरह के बीजगणित अलग-अलग विस्तृत अध्ययन के लिए एक आंतरिक मूल्य रखते हैं; साथ ही वे प्रतीकात्मक तर्क के सामान्य सिद्धांत पर और विशेष रूप से बीजगणितीय प्रतीकवाद पर प्रकाश डालने के लिए तुलनात्मक अध्ययन के योग्य हैं। तुलनात्मक अध्ययन अनिवार्य रूप से पिछले कुछ अलग अध्ययन को मानता है, ज्ञान के बिना तुलना असंभव है।[6]

हालाँकि, व्हाइटहेड के पास सामान्य प्रकृति का कोई परिणाम नहीं था। 1930 के दशक की शुरुआत तक इस विषय पर काम न्यूनतम था, जब गैरेट बिरखॉफ और ऑयस्टीन ओरे ने सार्वभौमिक बीजगणित पर प्रकाशन शुरू किया। 1940 और 1950 के दशक में मेटामैथमैटिक्स और श्रेणी सिद्धांत में विकास ने इस क्षेत्र को आगे बढ़ाया, विशेष रूप से अब्राहम रॉबिन्सन, अल्फ्रेड टार्स्की, आंद्रेज मोस्टोव्स्की और उनके छात्रों के काम को।[8] 1935 और 1950 के बीच की अवधि में, अधिकांश पत्र बिरखॉफ के पत्रों द्वारा सुझाई गई पंक्तियों के साथ लिखे गए थे, जो मुक्त वस्तु , सर्वांगसमता और सबलजेब्रा लैटिस और होमोमोर्फिज्म प्रमेयों से संबंधित थे। यद्यपि गणितीय तर्क के विकास ने बीजगणित के लिए अनुप्रयोगों को संभव बना दिया था, वे धीरे-धीरे आए; 1940 के दशक में अनातोली माल्टसेव द्वारा प्रकाशित परिणाम युद्ध के कारण किसी का ध्यान नहीं गया। 1950 में कैंब्रिज में गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस में टार्स्की के व्याख्यान ने एक नई अवधि की शुरुआत की जिसमें मॉडल-सैद्धांतिक पहलुओं को विकसित किया गया था, मुख्य रूप से खुद टार्स्की द्वारा, साथ ही सी.सी. चांग, आह वापसी पर, बज़्नी जॉनसन, रोजर लिंडन, और अन्य।

1950 के दशक के अंत में, एडवर्ड मार्क्ज़वेस्की[9] मुक्त बीजगणित के महत्व पर जोर दिया, जिसके कारण खुद मार्कजेवस्की द्वारा मुक्त बीजगणित के बीजगणितीय सिद्धांत पर 50 से अधिक पत्रों का प्रकाशन किया गया, साथ में जान माइसिल्स्की, व्लाडिसलाव नारकिविक्ज़, विटोल्ड नित्का, जे. प्लोन्का, एस। . उरबनिक और अन्य।

1963 में विलियम लॉवरे की थीसिस से शुरू होकर, श्रेणी सिद्धांत की तकनीकें सार्वभौमिक बीजगणित में महत्वपूर्ण हो गई हैं।[10]


यह भी देखें

फुटनोट्स

  1. Bodirsky, Manuel; Grohe, Martin (2008), Non-dichotomies in constraint satisfaction complexity (PDF)
  2. Zhuk, Dmitriy (2017). "सीएसपी द्विभाजन अनुमान का प्रमाण". arXiv:1704.01914 [cs.cc].
  3. Hyland, Martin; Power, John (2007), The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads (PDF)
  4. Essentially algebraic theory at the nLab
  5. C.C. Chang and H. Jerome Keisler (1990). मॉडल सिद्धांत. Studies in Logic and the Foundation of Mathematics. Vol. 73 (3rd ed.). North Holland. p. 1. ISBN 0444880542.
  6. 6.0 6.1 George Grätzer (1968). M.H. Stone and L. Nirenberg and S.S. Chern (ed.). सार्वभौमिक बीजगणित (1st ed.). Van Nostrand Co., Inc.
  7. Alexander Macfarlane (1899) Review:A Treatise on Universal Algebra (pdf), Science 9: 324–8 via Internet Archive
  8. Brainerd, Barron (Aug–Sep 1967) "Review of Universal Algebra by P. M. Cohn", American Mathematical Monthly 74(7): 878–880.
  9. Marczewski, E. "A general scheme of the notions of independence in mathematics." Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 6 (1958), 731–736.
  10. Lawvere, William F. (1964), Functorial Semantics of Algebraic Theories (PhD Thesis)

संदर्भ


बाहरी संबंध

{{Navbox | name =बीजगणित | state =

| bodyclass = hlist

| title =बीजगणित | group1 =क्षेत्रों | list1 =

| group2 =बीजगणितीय संरचना | list2 =* समूह   ( सिद्धांत)

| group3 =लीनियर अलजेब्रा | list3 =* मैट्रिक्स और nbsp; (सिद्धांत)

| group4 =मल्टीलिनियर बीजगणित | list4 =* टेंसर बीजगणित

| group5 =विषय सूची | list5 =* सार बीजगणित

| group6 =शब्दावलियों | list6 =* रैखिक बीजगणित

| group7 =संबंधित | list7 =* अंक शास्त्र

| belowस्टाइल = फ़ॉन्ट-वेट: बोल्ड; | below =* श्रेणी

}}