ऊर्जा

From Vigyanwiki
Revision as of 20:34, 16 September 2022 by alpha>Pranjalikushwaha (Edit text)
Energy
The Sun in white light.jpg
The Sun is the ultimate source of energy for most of life on Earth.[1] यह मुख्य रूप से अपने मूल में परमाणु संलयन से अपनी ऊर्जा प्राप्त करता है, द्रव्यमान को ऊर्जा में परिवर्तित करता है क्योंकि प्रोटॉन हीलियम बनाने के लिए संयुक्त होते हैं। इस ऊर्जा को सूर्य की सतह पर ले जाया जाता है और अंतरिक्ष में छोड़ा जाता है (मुख्य रूप से उज्ज्वल (प्रकाश) ऊर्जा के रूप में)।

भौतिकी में, ऊर्जा मात्रात्मक गुण है जिसे तत्व या भौतिक प्रणाली में स्थानांतरित किया जाता है, कार्य के प्रदर्शन में गर्मी और प्रकाश के रूप में पहचानने योग्य होती है। ऊर्जा एक संरक्षित मात्रा है, ऊर्जा के संरक्षण का नियम कहता है कि ऊर्जा को किसी रूप में परिवर्तित किया जा सकता है, लेकिन इसे बनाया या नष्ट नहीं किया जा सकता है। ऊर्जा के इकाइयों की अंतर्राष्ट्रीय प्रणाली (इंटरनेशनल सिस्टम ऑफ यूनिट्स) (एसआई) में माप की इकाई जूल है, जो किसी वस्तु को एक न्यूटन के बल के खिलाफ एक मीटर की दूरी तक ले जाने के काम से स्थानांतरित होने वाली ऊर्जा है।

ऊर्जा के सामान्य रूपों में गतिमान वस्तु की गतिज ऊर्जा, किसी वस्तु की स्थिति द्वारा संग्रहीत संभावित ऊर्जा(उदाहरण के लिए किसी क्षेत्र में उसकी स्थिति के कारण), ठोस वस्तुओं को खींचकर संग्रहीत लोचदार ऊर्जा , ईंधन के जलने पर निकलने वाली रासायनिक ऊर्जा शामिल हैं।, प्रकाश द्वारा वहन की जाने वाली दीप्तिमान ऊर्जा और किसी वस्तु के तापमान के कारण तापीय ऊर्जा

द्रव्यमान-ऊर्जा तुल्यता के कारण, किसी भी वस्तु का द्रव्यमान होता है जब स्थिर ( स्थिर द्रव्यमान (रेस्ट मास) कहा जाता है) में भी ऊर्जा की एक समान मात्रा होती है, जिसका रूप विश्राम ऊर्जा कहलाता है, और कोई भी अतिरिक्त ऊर्जा (किसी भी रूप में) उस शेष ऊर्जा से ऊपर की वस्तु द्वारा प्राप्त की जाती है। जिस प्रकार वस्तु की कुल ऊर्जा में वृद्धि होती है, उसी प्रकार वस्तु के कुल द्रव्यमान में वृद्धि होगी। उदाहरण के लिए, किसी वस्तु को गर्म करने के बाद, उसकी ऊर्जा में वृद्धि को सैद्धांतिक रूप से एक संवेदनशील पर्याप्त पैमाने के साथ द्रव्यमान में एक छोटी वृद्धि के रूप में मापा जा सकता है।

जीवित जीवों को जीवित रहने के लिए ऊर्जा की आवश्यकता होती है, जैसे कि ऊर्जा मनुष्य को भोजन और ऑक्सीजन से मिलती है । मानव सभ्यता को कार्य करने के लिए ऊर्जा की आवश्यकता होती है, जो इसे जीवाश्म ईंधन, परमाणु ईंधन या नवीकरणीय ऊर्जा जैसे ऊर्जा संसाधनों से प्राप्त होती है। पृथ्वी की जलवायु और पारिस्थितिकी तंत्र की प्रक्रियाएं पृथ्वी को सूर्य से प्राप्त होने वाली उज्ज्वल ऊर्जा और पृथ्वी के भीतर निहित भू-तापीय ऊर्जा द्वारा संचालित होती हैं।

शैली

एक प्रणाली की कुल ऊर्जा को विभिन्न तरीकों से संभावित ऊर्जा, गतिज ऊर्जा या दोनों के संयोजन में विभाजित और वर्गीकृत किया जा सकता है। गतिज ऊर्जा किसी वस्तु की गति से निर्धारित होती है - या किसी वस्तु के घटकों की समग्र गति - और संभावित ऊर्जा किसी वस्तु की गति की क्षमता को दर्शाती है, और आमतौर पर एक कार्य को क्षेत्र भीतर किसी वस्तु की स्थिति या क्षेत्र में ही रखा जा सकता है।

हालांकि ये दो श्रेणियां ऊर्जा के सभी रूपों का वर्णन करने के लिए पर्याप्त हैं, लेकिन संभावित और गतिज ऊर्जा के विशेष संयोजनों को अपने रूप में संदर्भित करना अक्सर सुविधाजनक होता है। उदाहरण के लिए, एक प्रणाली के भीतर स्थानांतरीय, घूर्णी गतिज और संभावित ऊर्जा के योग को यांत्रिक ऊर्जा के रूप में संदर्भित किया जाता है, जबकि परमाणु ऊर्जा अन्य उदाहरणों के साथ, परमाणु बल या कमजोर बल से परमाणु नाभिक के भीतर संयुक्त क्षमता को संदर्भित करती है।


Some forms of energy (that an object or system can have as a measurable property)
Type of energy Description
Mechanical the sum of macroscopic translational and rotational kinetic and potential energies
Electric potential energy due to or stored in electric fields
Magnetic potential energy due to or stored in magnetic fields
Gravitational potential energy due to or stored in gravitational fields
Chemical potential energy due to chemical bonds
Ionization potential energy that binds an electron to its atom or molecule
Nuclear potential energy that binds nucleons to form the atomic nucleus (and nuclear reactions)
Chromodynamic potential energy that binds quarks to form hadrons
Elastic potential energy due to the deformation of a material (or its container) exhibiting a restorative force as it returns to its original shape
Mechanical wave kinetic and potential energy in an elastic material due to a propagating oscillation of matter
Sound wave kinetic and potential energy in a material due to a sound propagated wave (a particular type of mechanical wave)
Radiant potential energy stored in the fields of waves propagated by electromagnetic radiation, including light
Rest potential energy due to an object's rest mass
Thermal kinetic energy of the microscopic motion of particles, a kind of disordered equivalent of mechanical energy
एक विशिष्ट बिजली की हड़ताल में, 500 मेगाजूल विद्युत संभावित ऊर्जा को अन्य रूपों में ऊर्जा की समान मात्रा में परिवर्तित किया जाता है, ज्यादातर प्रकाश ऊर्जा, ध्वनि ऊर्जा और थर्मल ऊर्जा
ऊष्मीय ऊर्जा पदार्थ के सूक्ष्म घटकों की ऊर्जा है, जिसमें गतिज और स्थितिज ऊर्जा दोनों शामिल हो सकते हैं।

इतिहास

ऊर्जा शब्द Ancient Greek: ἐνέργεια, romanized: energeia, lit.'activity, operation' से निकला है रोमनकृत , [2] जो संभवत: पहली बार चौथी शताब्दी ईसा पूर्व में अरस्तू के काम में प्रकट होता है। आधुनिक परिभाषा के विपरीत, एनर्जिया एक गुणात्मक दार्शनिक अवधारणा थी, जो खुशी और आनंद जैसे विचारों को शामिल करने के लिए पर्याप्त थी।

17 वीं शताब्दी के अंत में, गॉटफ्रीड लाइबनिज़ ने Template:भाषा-लातिन के विचार का प्रस्ताव दिया , या जीवित बल, जिसे किसी वस्तु के द्रव्यमान और उसके वेग के वर्ग के गुणनफल के रूप में परिभाषित किया गया है; उनका मानना था कि कुल विवा का संरक्षण किया गया था। घर्षण के कारण धीमा होने के कारण, लाइबनिज ने सिद्धांत दिया कि थर्मल ऊर्जा में पदार्थ के घटक भागों की गति शामिल है, हालांकि यह आम तौर पर स्वीकार किए जाने तक एक शताब्दी से अधिक समय तक होगा। इस संपत्ति का आधुनिक एनालॉग, गतिज ऊर्जा, केवल दो के कारक से विवा से भिन्न होता है। 18 वीं शताब्दी की शुरुआत में, एमिली डु चैटलेट ने न्यूटन के प्रिंसिपिया मैथमैटिका के फ्रांसीसी भाषा अनुवाद के सीमांत में ऊर्जा के संरक्षण की अवधारणा का प्रस्ताव रखा, जो एक संरक्षित मापनीय मात्रा के पहले फॉर्मूलेशन का प्रतिनिधित्व करता था जो गति से अलग था, और जो बाद में होगा "ऊर्जा" कहा जा सकता है।

1807 में, थॉमस यंग संभवतः अपने आधुनिक अर्थों में विज़ वाइवा के बजाय "ऊर्जा" शब्द का उपयोग करने वाले पहले व्यक्ति थे। [3] गुस्ताव-गैस्पर्ड कोरिओलिस ने 1829 में अपने आधुनिक अर्थों में " गतिज ऊर्जा " का वर्णन किया और 1853 में विलियम रैंकिन ने " संभावित ऊर्जा " शब्द गढ़ा। ऊर्जा के संरक्षण का नियम भी पहली बार 19वीं शताब्दी के प्रारंभ में प्रतिपादित किया गया था, और यह किसी भी पृथक प्रणाली पर लागू होता है। कुछ वर्षों के लिए यह तर्क दिया गया था कि क्या गर्मी एक भौतिक पदार्थ है, जिसे कैलोरी कहा जाता है, या केवल एक भौतिक मात्रा, जैसे गति । 1845 में जेम्स प्रेस्कॉट जूल ने यांत्रिक कार्य और ऊष्मा उत्पन्न करने के बीच की कड़ी की खोज की।

इन विकासों ने ऊर्जा के संरक्षण के सिद्धांत को जन्म दिया, जिसे मोटे तौर पर विलियम थॉमसन ( लॉर्ड केल्विन ) ने थर्मोडायनामिक्स के क्षेत्र के रूप में औपचारिक रूप दिया। थर्मोडायनामिक्स ने रूडोल्फ क्लॉसियस, जोशिया विलार्ड गिब्स और वाल्थर नर्नस्ट द्वारा रासायनिक प्रक्रियाओं के स्पष्टीकरण के तेजी से विकास में सहायता की। इसने क्लॉसियस द्वारा एन्ट्रापी की अवधारणा के गणितीय सूत्रीकरण और जोसेफ स्टीफन द्वारा उज्ज्वल ऊर्जा के नियमों की शुरूआत की ओर अग्रसर किया। नोएदर के प्रमेय के अनुसार, ऊर्जा का संरक्षण इस तथ्य का परिणाम है कि भौतिकी के नियम समय के साथ नहीं बदलते हैं। [4] इस प्रकार, 1918 से, सिद्धांतकारों ने समझा है कि ऊर्जा के संरक्षण का नियम ऊर्जा के साथ संयुग्मित मात्रा, अर्थात् समय के अनुवाद संबंधी समरूपता का प्रत्यक्ष गणितीय परिणाम है।

थॉमस यंग, आधुनिक अर्थों में "ऊर्जा" शब्द का उपयोग करने वाले पहले व्यक्ति थे।

माप की इकाइयाँ

ऊष्मा के यांत्रिक तुल्यांक को मापने के लिए जूल का उपकरण। एक स्ट्रिंग से जुड़ा एक अवरोही वजन पानी में डूबे हुए पैडल को घुमाने का कारण बनता है।

1843 में, जेम्स प्रेस्कॉट जूल ने स्वतंत्र रूप से प्रयोगों की एक श्रृंखला में यांत्रिक समकक्ष की खोज की। उनमें से सबसे प्रसिद्ध ने "जूल उपकरण" का इस्तेमाल किया: एक स्ट्रिंग से जुड़ा एक अवरोही वजन, पानी में डूबे हुए पैडल के रोटेशन का कारण बनता है, व्यावहारिक रूप से गर्मी हस्तांतरण से अछूता रहता है। इससे पता चला कि अवरोही में वजन द्वारा खोई गई गुरुत्वाकर्षण संभावित ऊर्जा पैडल के साथ घर्षण के माध्यम से पानी द्वारा प्राप्त आंतरिक ऊर्जा के बराबर थी।

इंटरनेशनल सिस्टम ऑफ यूनिट्स (SI) में, ऊर्जा की इकाई जूल है, जिसका नाम जूल के नाम पर रखा गया है। यह एक व्युत्पन्न इकाई है । यह एक मीटर की दूरी से एक न्यूटन का बल लगाने में खर्च की गई ऊर्जा (या किए गए कार्य ) के बराबर है। हालांकि ऊर्जा कई अन्य इकाइयों में भी व्यक्त की जाती है जो एसआई का हिस्सा नहीं हैं, जैसे कि एर्ग, कैलोरी, ब्रिटिश थर्मल यूनिट, किलोवाट-घंटे और किलोकलरीज, जिन्हें एसआई इकाइयों में व्यक्त किए जाने पर रूपांतरण कारक की आवश्यकता होती है।

ऊर्जा दर (ऊर्जा प्रति इकाई समय) की एसआई इकाई वाट है, जो प्रति सेकंड एक जूल है। इस प्रकार, एक जूल एक वाट-सेकंड है, और 3600 जूल एक वाट-घंटे के बराबर है। सीजीएस ऊर्जा इकाई एर्ग है और इंपीरियल और यूएस प्रथागत इकाई फुट पाउंड है। अन्य ऊर्जा इकाइयाँ जैसे कि इलेक्ट्रॉनवोल्ट, खाद्य कैलोरी या थर्मोडायनामिक kcal (एक ताप प्रक्रिया में पानी के तापमान परिवर्तन के आधार पर), और BTU का उपयोग विज्ञान और वाणिज्य के विशिष्ट क्षेत्रों में किया जाता है।

वैज्ञानिक उपयोग

चिरसम्मत यांत्रिकी

शास्त्रीय यांत्रिकी में, ऊर्जा एक अवधारणात्मक और गणितीय रूप से उपयोगी संपत्ति है, क्योंकि यह एक संरक्षित मात्रा है। मुख्य अवधारणा के रूप में ऊर्जा का उपयोग करके यांत्रिकी के कई सूत्र विकसित किए गए हैं।

यह कहता है कि कार्य ( ) पथ C के अनुदिश बल F के समाकलन रेखा के बराबर है; विवरण के लिए यांत्रिक कार्य लेख देखें। कार्य और इस प्रकार ऊर्जा फ्रेम पर निर्भर है । उदाहरण के लिए, एक गेंद को बल्ले से टकराने पर विचार करें। सेंटर-ऑफ-मास संदर्भ फ्रेम में, बल्ला गेंद पर कोई काम नहीं करता है। लेकिन, बल्ले को स्विंग कराने वाले शख्स के रेफरेंस फ्रेम में गेंद पर काफी काम होता है.
विलियम रोवन हैमिल्टन के बाद एक प्रणाली की कुल ऊर्जा को कभी-कभी हैमिल्टनियन कहा जाता है। गति के शास्त्रीय समीकरणों को अत्यधिक जटिल या अमूर्त प्रणालियों के लिए भी हैमिल्टनियन के संदर्भ में लिखा जा सकता है। इन शास्त्रीय समीकरणों में गैर-सापेक्ष क्वांटम यांत्रिकी में उल्लेखनीय प्रत्यक्ष एनालॉग हैं। [5]
जोसेफ-लुई लैग्रेंज के बाद ऊर्जा से संबंधित एक अन्य अवधारणा को लैग्रेंजियन कहा जाता है। यह औपचारिकता हैमिल्टन की तरह ही मौलिक है, और दोनों का उपयोग गति के समीकरणों को प्राप्त करने या उनसे प्राप्त करने के लिए किया जा सकता है। इसका आविष्कार शास्त्रीय यांत्रिकी के संदर्भ में किया गया था, लेकिन आमतौर पर आधुनिक भौतिकी में उपयोगी है। Lagrangian को गतिज ऊर्जा के रूप में परिभाषित किया गया है जो संभावित ऊर्जा को घटाती है। आमतौर पर, लैग्रेंज औपचारिकता गैर-रूढ़िवादी प्रणालियों (जैसे घर्षण वाले सिस्टम) के लिए हैमिल्टनियन की तुलना में गणितीय रूप से अधिक सुविधाजनक है।
नोएथर की प्रमेय (1918) में कहा गया है कि किसी भौतिक प्रणाली की क्रिया की किसी भी भिन्न समरूपता में एक समान संरक्षण कानून होता है। नोथेर का प्रमेय आधुनिक सैद्धांतिक भौतिकी और विविधताओं के कलन का एक मूलभूत उपकरण बन गया है। लग्रांगियन और हैमिल्टनियन यांत्रिकी (क्रमशः 1788 और 1833) में गति के स्थिरांक पर मौलिक योगों का एक सामान्यीकरण, यह उन प्रणालियों पर लागू नहीं होता है जिन्हें लैग्रैन्जियन के साथ मॉडल नहीं किया जा सकता है; उदाहरण के लिए, निरंतर समरूपता वाले विघटनकारी प्रणालियों के लिए एक समान संरक्षण कानून की आवश्यकता नहीं होती है।

रसायन विज्ञान

रसायन विज्ञान के संदर्भ में, ऊर्जा किसी पदार्थ की परमाणु, आणविक, या समग्र संरचना के परिणाम के रूप में एक विशेषता है। चूंकि एक रासायनिक परिवर्तन के साथ इस प्रकार की एक या अधिक संरचना में परिवर्तन होता है, इसमें आमतौर पर शामिल पदार्थों की कुल ऊर्जा में कमी और कभी-कभी वृद्धि होती है। कुछ ऊर्जा को परिवेश और अभिकारकों के बीच ऊष्मा या प्रकाश के रूप में स्थानांतरित किया जा सकता है; इस प्रकार एक प्रतिक्रिया के उत्पादों में कभी-कभी अभिकारकों की तुलना में अधिक लेकिन आमतौर पर कम ऊर्जा होती है। एक प्रतिक्रिया को एक्ज़ोथिर्मिक या एक्सर्जोनिक कहा जाता है यदि अंतिम अवस्था प्रारंभिक अवस्था की तुलना में ऊर्जा पैमाने पर कम होती है; एंडोथर्मिक प्रतिक्रियाओं के कम सामान्य मामले में स्थिति विपरीत होती है। रासायनिक प्रतिक्रियाएं आमतौर पर तब तक संभव नहीं होती जब तक कि अभिकारक एक ऊर्जा अवरोध को सक्रिय न कर दें जिसे सक्रियण ऊर्जा के रूप में जाना जाता है। एक रासायनिक प्रतिक्रिया की गति (किसी दिए गए तापमान पर .) टी ) सक्रियण ऊर्जा से संबंधित है  बोल्ट्जमान के जनसंख्या कारक द्वारा ई - / केटी ; अर्थात्, किसी अणु के से अधिक या उसके बराबर ऊर्जा होने की प्रायिकता  दिए गए तापमान पर टी . तापमान पर प्रतिक्रिया दर की इस घातीय निर्भरता को अरहेनियस समीकरण के रूप में जाना जाता है। रासायनिक प्रतिक्रिया के लिए आवश्यक सक्रियण ऊर्जा तापीय ऊर्जा के रूप में प्रदान की जा सकती है।

जीवविज्ञान

ऊर्जा और मानव जीवन का मूल अवलोकन।

जीव विज्ञान में, ऊर्जा जीवमंडल से लेकर सबसे छोटे जीवित जीव तक सभी जैविक प्रणालियों का एक गुण है। एक जीव के भीतर यह एक जैविक कोशिका या एक जैविक जीव के अंग के विकास और विकास के लिए जिम्मेदार होता है। श्वसन में उपयोग की जाने वाली ऊर्जा ज्यादातर आणविक ऑक्सीजन [6] में संग्रहित होती है और इसे कोशिकाओं द्वारा संग्रहीत कार्बोहाइड्रेट (शर्करा सहित), लिपिड और प्रोटीन जैसे पदार्थों के अणुओं के साथ प्रतिक्रियाओं द्वारा अनलॉक किया जा सकता है। मानव शब्दों में, मानव समकक्ष (He) (मानव ऊर्जा रूपांतरण) इंगित करता है, ऊर्जा व्यय की एक निश्चित मात्रा के लिए, मानव चयापचय के लिए आवश्यक ऊर्जा की सापेक्ष मात्रा, एक मानक के रूप में 12,500 के औसत मानव ऊर्जा व्यय का उपयोग करते हुए। kJ प्रति दिन और बेसल चयापचय दर 80 वाट। उदाहरण के लिए, यदि हमारा शरीर (औसतन) 80 वाट पर चलता है, तो 100 वाट पर चलने वाला एक प्रकाश बल्ब 1.25 मानव समकक्ष (100 80) यानी 1.25 हे पर चल रहा है। केवल कुछ सेकंड की अवधि के कठिन कार्य के लिए, एक व्यक्ति एक आधिकारिक अश्वशक्ति में हजारों वाट, कई गुना 746 वाट लगा सकता है। कुछ मिनटों तक चलने वाले कार्यों के लिए, एक फिट इंसान शायद 1,000 वाट उत्पन्न कर सकता है। एक गतिविधि के लिए जिसे एक घंटे तक जारी रखा जाना चाहिए, आउटपुट लगभग 300 तक गिर जाता है; पूरे दिन की गई गतिविधि के लिए, 150 वाट अधिकतम के बारे में है। [7] मानव समकक्ष ऊर्जा इकाइयों को मानवीय शब्दों में व्यक्त करके भौतिक और जैविक प्रणालियों में ऊर्जा प्रवाह को समझने में सहायता करता है: यह ऊर्जा की एक निश्चित मात्रा के उपयोग के लिए "अनुभव" प्रदान करता है। [8]

जब कार्बन डाइऑक्साइड और पानी (दो कम ऊर्जा वाले यौगिक) कार्बोहाइड्रेट, लिपिड, प्रोटीन और ऑक्सीजन [9] और एटीपी जैसे उच्च-ऊर्जा यौगिकों में परिवर्तित हो जाते हैं, तो सूर्य के प्रकाश की उज्ज्वल ऊर्जा को प्रकाश संश्लेषण में रासायनिक संभावित ऊर्जा के रूप में पौधों द्वारा कब्जा कर लिया जाता है। कार्बोहाइड्रेट, लिपिड और प्रोटीन ऑक्सीजन की ऊर्जा को छोड़ सकते हैं, जिसका उपयोग जीवित जीवों द्वारा इलेक्ट्रॉन स्वीकर्ता के रूप में किया जाता है। प्रकाश संश्लेषण के दौरान गर्मी या प्रकाश के रूप में संग्रहीत ऊर्जा की रिहाई अचानक जंगल की आग में एक चिंगारी से शुरू हो सकती है, या इसे पशु या मानव चयापचय के लिए अधिक धीरे-धीरे उपलब्ध कराया जा सकता है जब कार्बनिक अणुओं को अंतर्ग्रहण किया जाता है और एंजाइम क्रिया द्वारा अपचय को ट्रिगर किया जाता है।

सभी जीवित प्राणी ऊर्जा के बाहरी स्रोत पर निर्भर करते हैं ताकि वे बढ़ने और पुन: उत्पन्न करने में सक्षम हों - हरे पौधों के मामले में सूर्य से उज्ज्वल ऊर्जा और जानवरों के मामले में रासायनिक ऊर्जा (किसी न किसी रूप में)। दैनिक 1500-2000 कैलोरी (6-8 .) मानव वयस्क के लिए अनुशंसित एमजे) को ऑक्सीजन और खाद्य अणुओं के संयोजन के रूप में लिया जाता है, बाद वाले ज्यादातर कार्बोहाइड्रेट और वसा, जिनमें से ग्लूकोज (सी 6 एच 126 ) और स्टीयरिन (सी 57 एच 1106 ) सुविधाजनक उदाहरण हैं। माइटोकॉन्ड्रिया में भोजन के अणु कार्बन डाइऑक्साइड और पानी में ऑक्सीकृत हो जाते हैं

2 [10] की शेष रासायनिक ऊर्जा और कार्बोहाइड्रेट या वसा गर्मी में परिवर्तित हो जाते हैं: एटीपी का उपयोग "ऊर्जा मुद्रा" के रूप में किया जाता है, और इसमें शामिल कुछ रासायनिक ऊर्जा का उपयोग अन्य चयापचय के लिए किया जाता है जब एटीपी ओएच समूहों के साथ प्रतिक्रिया करता है और अंततः एडीपी और फॉस्फेट में विभाजित होता है (एक चयापचय पथ के प्रत्येक चरण में, कुछ रासायनिक ऊर्जा गर्मी में परिवर्तित हो जाती है)। मूल रासायनिक ऊर्जा का केवल एक छोटा सा अंश ही काम के लिए उपयोग किया जाता है: [note 1]

100 . के दौरान एक धावक की गतिज ऊर्जा में लाभ मी रेस: 4 के.जे.
एक 150 . की गुरुत्वाकर्षण संभावित ऊर्जा में लाभ किलो वजन 2 . के माध्यम से उठाया मीटर: 3 के.जे.
एक सामान्य वयस्क का दैनिक भोजन सेवन: 6–8 एमजे
ऐसा प्रतीत होता है कि जीवित जीव अपने द्वारा प्राप्त ऊर्जा (रासायनिक या उज्ज्वल ऊर्जा) के उपयोग में उल्लेखनीय रूप से अक्षम (भौतिक अर्थ में) हैं; अधिकांश मशीनें उच्च दक्षता का प्रबंधन करती हैं। बढ़ते जीवों में ऊष्मा में परिवर्तित होने वाली ऊर्जा एक महत्वपूर्ण उद्देश्य को पूरा करती है, क्योंकि यह जीवों के ऊतकों को उन अणुओं के संबंध में उच्च क्रम में रखने की अनुमति देती है जिनसे इसे बनाया गया है। ऊष्मप्रवैगिकी के दूसरे नियम में कहा गया है कि ऊर्जा (और पदार्थ) ब्रह्मांड में अधिक समान रूप से फैलती है: ऊर्जा (या पदार्थ) को एक विशिष्ट स्थान पर केंद्रित करने के लिए, अधिक मात्रा में ऊर्जा (गर्मी के रूप में) फैलाना आवश्यक है। ब्रह्मांड के शेष भाग में ("परिवेश")। [note 2] सरल जीव अधिक जटिल जीवों की तुलना में उच्च ऊर्जा क्षमता प्राप्त कर सकते हैं, लेकिन जटिल जीव पारिस्थितिक निचे पर कब्जा कर सकते हैं जो उनके सरल भाइयों के लिए उपलब्ध नहीं हैं। एक चयापचय पथ में प्रत्येक चरण पर रासायनिक ऊर्जा के एक हिस्से का गर्मी में रूपांतरण पारिस्थितिकी में देखे गए बायोमास के पिरामिड के पीछे का भौतिक कारण है। एक उदाहरण के रूप में, खाद्य श्रृंखला में केवल पहला कदम उठाने के लिए: अनुमानित 124.7 प्रकाश संश्लेषण द्वारा स्थिर कार्बन का पीजी/ए, 64.3 पीजी/ए (52%) हरे पौधों के चयापचय के लिए उपयोग किया जाता है, [11] यानी कार्बन डाइऑक्साइड और गर्मी में पुन: परिवर्तित हो जाता है।

क्वांटम यांत्रिकी

क्वांटम यांत्रिकी में, ऊर्जा को ऊर्जा ऑपरेटर (हैमिल्टनियन) के संदर्भ में तरंग फ़ंक्शन के समय व्युत्पन्न के रूप में परिभाषित किया जाता है। श्रोडिंगर समीकरण ऊर्जा ऑपरेटर को एक कण या एक प्रणाली की पूर्ण ऊर्जा के बराबर करता है। इसके परिणामों को क्वांटम यांत्रिकी में ऊर्जा के मापन की परिभाषा के रूप में माना जा सकता है। श्रोडिंगर समीकरण क्वांटम सिस्टम के धीरे-धीरे बदलते (गैर-सापेक्षवादी) तरंग कार्य के स्थान- और समय-निर्भरता का वर्णन करता है। एक बाध्य प्रणाली के लिए इस समीकरण का समाधान अलग है (अनुमत राज्यों का एक सेट, प्रत्येक ऊर्जा स्तर द्वारा विशेषता है) जिसके परिणामस्वरूप क्वांटा की अवधारणा होती है। किसी भी थरथरानवाला (थरथानेवाला) के लिए श्रोडिंगर समीकरण के समाधान में और वैक्यूम में विद्युत चुम्बकीय तरंगों के लिए, परिणामी ऊर्जा राज्य प्लैंक के संबंध द्वारा आवृत्ति से संबंधित हैं: (कहाँ पे प्लैंक स्थिरांक है और आवृत्ति)। विद्युत चुम्बकीय तरंग के मामले में इन ऊर्जा अवस्थाओं को प्रकाश या फोटॉन का क्वांटा कहा जाता है।

सापेक्षता

गतिज ऊर्जा की गणना करते समय (शून्य गति से कुछ परिमित गति तक एक विशाल शरीर को गति देने के लिए काम ) सापेक्षिक रूप से - न्यूटनियन यांत्रिकी के बजाय लोरेंत्ज़ परिवर्तनों का उपयोग करते हुए - आइंस्टीन ने इन गणनाओं के एक अप्रत्याशित उप-उत्पाद को ऊर्जा शब्द के रूप में खोजा जो शून्य पर गायब नहीं होता है रफ़्तार। उन्होंने इसे आराम ऊर्जा कहा: ऊर्जा जो हर विशाल शरीर में आराम से रहते हुए भी होनी चाहिए। ऊर्जा की मात्रा सीधे शरीर के द्रव्यमान के समानुपाती होती है:

कहाँ पे

उदाहरण के लिए, इलेक्ट्रॉन - पॉज़िट्रॉन सर्वनाश पर विचार करें, जिसमें इन दो अलग-अलग कणों की शेष ऊर्जा (उनके बाकी द्रव्यमान के बराबर) प्रक्रिया में उत्पादित फोटॉनों की उज्ज्वल ऊर्जा में परिवर्तित हो जाती है। इस प्रणाली में पदार्थ और एंटीमैटर (इलेक्ट्रॉन और पॉज़िट्रॉन) नष्ट हो जाते हैं और गैर-पदार्थ (फोटॉन) में बदल जाते हैं। हालाँकि, इस अंतःक्रिया के दौरान कुल द्रव्यमान और कुल ऊर्जा में कोई परिवर्तन नहीं होता है। फोटॉनों में से प्रत्येक में कोई आराम द्रव्यमान नहीं होता है, लेकिन फिर भी उनमें उज्ज्वल ऊर्जा होती है जो दो मूल कणों की तरह ही जड़ता प्रदर्शित करती है। यह एक प्रतिवर्ती प्रक्रिया है - व्युत्क्रम प्रक्रिया को जोड़ी निर्माण कहा जाता है - जिसमें कणों का शेष द्रव्यमान दो (या अधिक) नष्ट करने वाले फोटॉनों की विकिरण ऊर्जा से बनाया जाता है।

सामान्य सापेक्षता में, तनाव-ऊर्जा टेंसर गुरुत्वाकर्षण क्षेत्र के लिए स्रोत शब्द के रूप में कार्य करता है, जिस तरह से द्रव्यमान गैर-सापेक्षवादी न्यूटनियन सन्निकटन में स्रोत शब्द के रूप में कार्य करता है। [12]

ऊर्जा और द्रव्यमान एक प्रणाली की एक ही अंतर्निहित भौतिक संपत्ति की अभिव्यक्तियाँ हैं। यह संपत्ति प्रणाली की गुरुत्वाकर्षण बातचीत की जड़ता और ताकत ("बड़े पैमाने पर अभिव्यक्तियां") के लिए जिम्मेदार है, और काम या हीटिंग ("ऊर्जा अभिव्यक्तियां") करने के लिए सिस्टम की संभावित क्षमता के लिए भी जिम्मेदार है, की सीमाओं के अधीन अन्य भौतिक नियम।

शास्त्रीय भौतिकी में, ऊर्जा एक अदिश राशि है, जो समय के लिए विहित संयुग्म है। विशेष सापेक्षता में ऊर्जा भी एक अदिश होती है (हालाँकि लोरेंत्ज़ अदिश नहीं बल्कि ऊर्जा-गति 4-वेक्टर का एक समय घटक)। [13] दूसरे शब्दों में, अंतरिक्ष के घूर्णन के संबंध में ऊर्जा अपरिवर्तनीय है, लेकिन स्पेसटाइम (= बूस्ट ) के घूर्णन के संबंध में अपरिवर्तनीय नहीं है।

परिवर्तन

एक टर्बो जनरेटर दबाव वाली भाप की ऊर्जा को विद्युत ऊर्जा में बदल देता है

ऊर्जा को विभिन्न रूपों में विभिन्न दक्षताओं पर रूपांतरित किया जा सकता है। इन रूपों के बीच रूपांतरित होने वाली वस्तुओं को ट्रांसड्यूसर कहा जाता है। ट्रांसड्यूसर के उदाहरणों में एक बैटरी ( रासायनिक ऊर्जा से विद्युत ऊर्जा तक), एक बांध ( गुरुत्वाकर्षण संभावित ऊर्जा से चलती पानी की गतिज ऊर्जा (और एक टरबाइन के ब्लेड) और अंततः एक विद्युत जनरेटर के माध्यम से विद्युत ऊर्जा तक) और एक गर्मी शामिल है। इंजन (गर्मी से काम तक)।

ऊर्जा परिवर्तन के उदाहरणों में भाप टरबाइन के माध्यम से ऊष्मा ऊर्जा से विद्युत ऊर्जा उत्पन्न करना, या क्रेन मोटर चलाने वाली विद्युत ऊर्जा का उपयोग करके गुरुत्वाकर्षण के विरुद्ध किसी वस्तु को उठाना शामिल है। गुरुत्वाकर्षण के विरुद्ध उठाने से वस्तु पर यांत्रिक कार्य होता है और वस्तु में गुरुत्वाकर्षण स्थितिज ऊर्जा जमा हो जाती है। यदि वस्तु जमीन पर गिरती है, तो गुरुत्वाकर्षण उस वस्तु पर यांत्रिक कार्य करता है जो गुरुत्वाकर्षण क्षेत्र में संभावित ऊर्जा को जमीन के प्रभाव में गर्मी के रूप में जारी गतिज ऊर्जा में बदल देता है। हमारा सूर्य परमाणु संभावित ऊर्जा को ऊर्जा के अन्य रूपों में बदल देता है; इसका कुल द्रव्यमान उसी के कारण कम नहीं होता है (क्योंकि इसमें अभी भी अलग-अलग रूपों में भी समान कुल ऊर्जा होती है) लेकिन इसका द्रव्यमान कम हो जाता है जब ऊर्जा अपने परिवेश से बाहर निकलती है, मोटे तौर पर उज्ज्वल ऊर्जा के रूप में।

एक चक्रीय प्रक्रिया में कितनी कुशलता से ऊष्मा को कार्य में परिवर्तित किया जा सकता है, इसकी सख्त सीमाएँ हैं, उदाहरण के लिए एक ऊष्मा इंजन में, जैसा कि कार्नोट के प्रमेय और ऊष्मागतिकी के दूसरे नियम द्वारा वर्णित है। हालांकि, कुछ ऊर्जा परिवर्तन काफी कुशल हो सकते हैं। ऊर्जा में परिवर्तन की दिशा (किस प्रकार की ऊर्जा किस प्रकार की ऊर्जा में बदल जाती है) अक्सर एन्ट्रापी ( स्वतंत्रता की सभी उपलब्ध डिग्री के बीच समान ऊर्जा फैलती है) विचारों द्वारा निर्धारित की जाती है। व्यवहार में सभी ऊर्जा परिवर्तनों को छोटे पैमाने पर अनुमति दी जाती है, लेकिन कुछ बड़े परिवर्तनों की अनुमति नहीं है क्योंकि यह सांख्यिकीय रूप से असंभव है कि ऊर्जा या पदार्थ यादृच्छिक रूप से अधिक केंद्रित रूपों या छोटे रिक्त स्थान में चले जाएंगे।

समय के साथ ब्रह्मांड में ऊर्जा परिवर्तन विभिन्न प्रकार की संभावित ऊर्जा की विशेषता है, जो कि बिग बैंग के बाद से उपलब्ध है, जब एक ट्रिगरिंग तंत्र उपलब्ध है, तो "रिलीज" (गतिज या उज्ज्वल ऊर्जा जैसे अधिक सक्रिय प्रकार की ऊर्जा में परिवर्तित) किया जा रहा है। . इस तरह की प्रक्रियाओं के परिचित उदाहरणों में न्यूक्लियोसिंथेसिस शामिल है, एक प्रक्रिया अंततः सुपरनोवा के गुरुत्वाकर्षण पतन से जारी गुरुत्वाकर्षण संभावित ऊर्जा का उपयोग करके भारी आइसोटोप (जैसे यूरेनियम और थोरियम ) के निर्माण में ऊर्जा को "स्टोर" करने के लिए, और परमाणु क्षय, एक प्रक्रिया जिसमें ऊर्जा जारी की जाती है जो मूल रूप से इन भारी तत्वों में संग्रहीत की जाती थी, इससे पहले कि वे सौर मंडल और पृथ्वी में शामिल हो जाएं। यह ऊर्जा परमाणु विखंडन बमों या असैनिक परमाणु ऊर्जा उत्पादन में ट्रिगर और जारी की जाती है। इसी प्रकार, एक रासायनिक विस्फोट के मामले में, रासायनिक संभावित ऊर्जा बहुत कम समय में गतिज और तापीय ऊर्जा में बदल जाती है।

एक और उदाहरण पेंडुलम का है। इसके उच्चतम बिंदुओं पर गतिज ऊर्जा शून्य होती है और गुरुत्वाकर्षण स्थितिज ऊर्जा अपने अधिकतम पर होती है। अपने निम्नतम बिंदु पर गतिज ऊर्जा अपने अधिकतम पर होती है और स्थितिज ऊर्जा में कमी के बराबर होती है। यदि कोई (अवास्तविक रूप से) मानता है कि कोई घर्षण या अन्य नुकसान नहीं है, तो इन प्रक्रियाओं के बीच ऊर्जा का रूपांतरण सही होगा, और पेंडुलम हमेशा के लिए झूलता रहेगा।

ऊर्जा को स्थितिज ऊर्जा से भी स्थानांतरित किया जाता है ( ) गतिज ऊर्जा ( ) और फिर वापस संभावित ऊर्जा में लगातार। इसे ऊर्जा संरक्षण कहा जाता है। इस पृथक प्रणाली में, ऊर्जा को न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है; इसलिए, प्रारंभिक ऊर्जा और अंतिम ऊर्जा एक दूसरे के बराबर होगी। इसे निम्नलिखित द्वारा प्रदर्शित किया जा सकता है:


 

 

 

 

(4)

तब से समीकरण को और सरल बनाया जा सकता है (गुरुत्वाकर्षण गुणा ऊंचाई के कारण द्रव्यमान का त्वरण) और (आधा मास टाइम्स वेग चुकता)। तब ऊर्जा की कुल मात्रा को जोड़कर पाया जा सकता है .

परिवर्तन में ऊर्जा और द्रव्यमान का संरक्षण

ऊर्जा वजन को जन्म देती है जब यह शून्य गति वाले सिस्टम में फंस जाती है, जहां इसे तौला जा सकता है। यह द्रव्यमान के तुल्य भी है, और यह द्रव्यमान सदैव इसके साथ जुड़ा रहता है। द्रव्यमान भी ऊर्जा की एक निश्चित मात्रा के बराबर होता है, और इसी तरह हमेशा इसके साथ जुड़ा हुआ प्रतीत होता है, जैसा कि द्रव्यमान-ऊर्जा तुल्यता में वर्णित है। सूत्र  = अल्बर्ट आइंस्टीन (1905) द्वारा व्युत्पन्न mc विशेष सापेक्षता की अवधारणा के भीतर सापेक्षतावादी द्रव्यमान और ऊर्जा के बीच संबंध को निर्धारित करता है। विभिन्न सैद्धांतिक रूपरेखाओं में, इसी तरह के सूत्र जे जे थॉमसन (1881), हेनरी पोंकारे (1900), फ्रेडरिक हसनोहरल (1904) और अन्य (अधिक जानकारी के लिए मास-ऊर्जा तुल्यता#इतिहास देखें) द्वारा प्राप्त किए गए थे।

पदार्थ की शेष ऊर्जा (विश्राम द्रव्यमान के बराबर) का भाग ऊर्जा के अन्य रूपों (अभी भी द्रव्यमान का प्रदर्शन) में परिवर्तित किया जा सकता है, लेकिन न तो ऊर्जा और न ही द्रव्यमान को नष्ट किया जा सकता है; बल्कि, दोनों किसी भी प्रक्रिया के दौरान स्थिर रहते हैं। हालांकि, चूंकि सामान्य मानव तराजू के सापेक्ष बहुत बड़ा है, बाकी द्रव्यमान की दैनिक मात्रा का रूपांतरण (उदाहरण के लिए, 1 किग्रा) विश्राम ऊर्जा से ऊर्जा के अन्य रूपों में (जैसे गतिज ऊर्जा, तापीय ऊर्जा, या प्रकाश और अन्य विकिरण द्वारा वहन की जाने वाली विकिरण ऊर्जा) अत्यधिक मात्रा में ऊर्जा मुक्त कर सकती है (~ जूल = 21 मेगाटन टीएनटी), जैसा कि परमाणु रिएक्टरों और परमाणु हथियारों में देखा जा सकता है। इसके विपरीत, दैनिक मात्रा में ऊर्जा के बराबर द्रव्यमान बहुत कम होता है, यही कारण है कि अधिकांश प्रणालियों से ऊर्जा की हानि (द्रव्यमान की हानि) को वजन पैमाने पर मापना मुश्किल होता है, जब तक कि ऊर्जा हानि बहुत बड़ी न हो। परमाणु भौतिकी और कण भौतिकी में आराम ऊर्जा (पदार्थ की) और ऊर्जा के अन्य रूपों (जैसे, गतिज ऊर्जा को बाकी द्रव्यमान वाले कणों में) के बीच बड़े परिवर्तनों के उदाहरण पाए जाते हैं। अक्सर, हालांकि, पदार्थ (जैसे परमाणु) का गैर-पदार्थ (जैसे फोटॉन) में पूर्ण रूपांतरण संरक्षण कानूनों द्वारा निषिद्ध है।

प्रतिवर्ती और गैर-प्रतिवर्ती परिवर्तन

ऊष्मप्रवैगिकी ऊर्जा परिवर्तन को दो प्रकारों में विभाजित करती है: प्रतिवर्ती प्रक्रियाएं और अपरिवर्तनीय प्रक्रियाएं । एक अपरिवर्तनीय प्रक्रिया वह है जिसमें ऊर्जा एक मात्रा में उपलब्ध खाली ऊर्जा अवस्थाओं में विसर्जित (फैली) हो जाती है, जिससे इसे और अधिक ऊर्जा के क्षरण के बिना अधिक केंद्रित रूपों (कम क्वांटम अवस्थाओं) में पुनर्प्राप्त नहीं किया जा सकता है। एक प्रतिवर्ती प्रक्रिया वह है जिसमें इस प्रकार का अपव्यय नहीं होता है। उदाहरण के लिए, एक प्रकार के संभावित क्षेत्र से दूसरे में ऊर्जा का रूपांतरण प्रतिवर्ती है, जैसा कि ऊपर वर्णित पेंडुलम प्रणाली में है। उन प्रक्रियाओं में जहां गर्मी उत्पन्न होती है, कम ऊर्जा की क्वांटम अवस्थाएं, परमाणुओं के बीच के क्षेत्रों में संभावित उत्तेजना के रूप में मौजूद होती हैं, ऊर्जा के हिस्से के लिए एक जलाशय के रूप में कार्य करती हैं, जिससे इसे पुनर्प्राप्त नहीं किया जा सकता है, ताकि इसे 100% दक्षता के साथ दूसरे में परिवर्तित किया जा सके। ऊर्जा के रूप। इस मामले में, ऊर्जा को आंशिक रूप से तापीय ऊर्जा के रूप में रहना चाहिए और पूरी तरह से उपयोग करने योग्य ऊर्जा के रूप में पुनर्प्राप्त नहीं किया जा सकता है, सिवाय इसके कि क्वांटम राज्यों में किसी अन्य प्रकार की गर्मी जैसी वृद्धि में वृद्धि की कीमत पर, ब्रह्मांड में (जैसे कि ए पदार्थ का विस्तार, या क्रिस्टल में यादृच्छिकरण)।

जैसे-जैसे ब्रह्मांड समय के साथ विकसित होता है, इसकी अधिक से अधिक ऊर्जा अपरिवर्तनीय अवस्थाओं में फंस जाती है (अर्थात, गर्मी के रूप में या विकार में अन्य प्रकार की वृद्धि के रूप में)। इसने ब्रह्मांड की अपरिहार्य थर्मोडायनामिक गर्मी की मृत्यु की परिकल्पना को जन्म दिया है। इस गर्मी मृत्यु में ब्रह्मांड की ऊर्जा नहीं बदलती है, लेकिन ऊर्जा का अंश जो गर्मी इंजन के माध्यम से काम करने के लिए उपलब्ध है, या ऊर्जा के अन्य उपयोगी रूपों में परिवर्तित हो जाता है (गर्मी इंजन से जुड़े जेनरेटर के उपयोग के माध्यम से), घटती रहती है।

ऊर्जा का संरक्षण

यह तथ्य कि ऊर्जा को न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है , ऊर्जा के संरक्षण का नियम कहलाता है। ऊष्मप्रवैगिकी के पहले नियम के रूप में, यह बताता है कि एक बंद प्रणाली की ऊर्जा तब तक स्थिर रहती है जब तक कि ऊर्जा को काम या गर्मी के रूप में या बाहर स्थानांतरित नहीं किया जाता है, और यह कि स्थानांतरण में कोई ऊर्जा नहीं खोती है। एक प्रणाली में ऊर्जा का कुल प्रवाह प्रणाली से ऊर्जा के कुल बहिर्वाह के साथ-साथ प्रणाली के भीतर निहित ऊर्जा में परिवर्तन के बराबर होना चाहिए। जब भी कोई कणों की एक प्रणाली की कुल ऊर्जा को मापता है (या गणना करता है) जिनकी बातचीत स्पष्ट रूप से समय पर निर्भर नहीं होती है, तो यह पाया जाता है कि सिस्टम की कुल ऊर्जा हमेशा स्थिर रहती है। [14]

जबकि गर्मी को हमेशा एक आदर्श गैस के प्रतिवर्ती इज़ोटेर्मल विस्तार में काम में पूरी तरह से परिवर्तित किया जा सकता है, ऊष्मा इंजनों में व्यावहारिक रुचि की चक्रीय प्रक्रियाओं के लिए थर्मोडायनामिक्स का दूसरा नियम कहता है कि काम करने वाला सिस्टम हमेशा कुछ ऊर्जा को बेकार गर्मी के रूप में खो देता है। यह ऊष्मा ऊर्जा की मात्रा की एक सीमा बनाता है जो एक चक्रीय प्रक्रिया में काम कर सकती है, एक सीमा जिसे उपलब्ध ऊर्जा कहा जाता है। ऐसी सीमाओं के बिना यांत्रिक और अन्य प्रकार की ऊर्जा को दूसरी दिशा में तापीय ऊर्जा में परिवर्तित किया जा सकता है। [15] एक प्रणाली की कुल ऊर्जा की गणना सिस्टम में सभी प्रकार की ऊर्जा को जोड़कर की जा सकती है।

1961 के व्याख्यान के दौरान रिचर्ड फेनमैन ने कहा: [16]

There is a fact, or if you wish, a law, governing all natural phenomena that are known to date. There is no known exception to this law – it is exact so far as we know. The law is called the conservation of energy. It states that there is a certain quantity, which we call energy, that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number and when we finish watching nature go through her tricks and calculate the number again, it is the same.

अधिकांश प्रकार की ऊर्जा (गुरुत्वाकर्षण ऊर्जा एक उल्लेखनीय अपवाद होने के साथ) [17] सख्त स्थानीय संरक्षण कानूनों के अधीन भी हैं। इस मामले में, केवल अंतरिक्ष के आसन्न क्षेत्रों के बीच ऊर्जा का आदान-प्रदान किया जा सकता है, और सभी पर्यवेक्षक किसी भी स्थान में ऊर्जा के वॉल्यूमेट्रिक घनत्व के रूप में सहमत होते हैं। ऊर्जा के संरक्षण का एक वैश्विक नियम भी है, जिसमें कहा गया है कि ब्रह्मांड की कुल ऊर्जा नहीं बदल सकती है; यह स्थानीय कानून का एक परिणाम है, लेकिन इसके विपरीत नहीं। [18] [19]

यह नियम भौतिकी का मूल सिद्धांत है। जैसा कि नोएदर के प्रमेय द्वारा सख्ती से दिखाया गया है, ऊर्जा का संरक्षण समय की अनुवाद संबंधी समरूपता का गणितीय परिणाम है, [20] ब्रह्मांडीय पैमाने के नीचे की अधिकांश घटनाओं की एक संपत्ति जो उन्हें समय के समन्वय पर उनके स्थानों से स्वतंत्र बनाती है। दूसरे शब्दों में कहें तो कल, आज और आने वाला कल शारीरिक रूप से अप्रभेद्य है। ऐसा इसलिए है क्योंकि ऊर्जा वह मात्रा है जो समय के लिए विहित संयुग्म है। ऊर्जा और समय का यह गणितीय उलझाव भी अनिश्चितता के सिद्धांत में परिणत होता है - किसी निश्चित समय अंतराल के दौरान ऊर्जा की सटीक मात्रा को परिभाषित करना असंभव है (हालांकि यह केवल बहुत कम समय अंतराल के लिए व्यावहारिक रूप से महत्वपूर्ण है)। अनिश्चितता के सिद्धांत को ऊर्जा संरक्षण के साथ भ्रमित नहीं होना चाहिए - बल्कि यह गणितीय सीमा प्रदान करता है जिसके लिए ऊर्जा को सिद्धांत रूप में परिभाषित और मापा जा सकता है।

प्रकृति की प्रत्येक मूल शक्ति एक अलग प्रकार की संभावित ऊर्जा से जुड़ी होती है, और सभी प्रकार की संभावित ऊर्जा (अन्य सभी प्रकार की ऊर्जा की तरह) जब भी मौजूद होती है, सिस्टम द्रव्यमान के रूप में प्रकट होती है। उदाहरण के लिए, एक संपीड़ित वसंत संकुचित होने से पहले थोड़ा अधिक विशाल होगा। इसी तरह, जब भी किसी तंत्र द्वारा ऊर्जा को प्रणालियों के बीच स्थानांतरित किया जाता है, तो इसके साथ एक संबद्ध द्रव्यमान स्थानांतरित होता है।

क्वांटम यांत्रिकी में ऊर्जा हैमिल्टनियन ऑपरेटर का उपयोग करके व्यक्त की जाती है। किसी भी समय के पैमाने पर, ऊर्जा में अनिश्चितता है

जो हाइजेनबर्ग अनिश्चितता सिद्धांत के रूप में समान है (लेकिन वास्तव में गणितीय रूप से समकक्ष नहीं है, क्योंकि एच और टी गतिशील रूप से संयुग्मित चर नहीं हैं, न तो शास्त्रीय और न ही क्वांटम यांत्रिकी में)।

कण भौतिकी में, यह असमानता आभासी कणों की गुणात्मक समझ की अनुमति देती है, जो गति ले जाते हैं। वास्तविक कणों के साथ आभासी कणों का आदान-प्रदान सभी ज्ञात मौलिक बलों (अधिक सटीक रूप से मौलिक बातचीत के रूप में जाना जाता है) के निर्माण के लिए जिम्मेदार है। वर्चुअल फोटॉन इलेक्ट्रिक चार्ज के बीच इलेक्ट्रोस्टैटिक इंटरैक्शन के लिए भी जिम्मेदार हैं (जिसके परिणामस्वरूप कूलम्ब का नियम होता है), उत्तेजित परमाणु और परमाणु राज्यों के सहज विकिरण क्षय के लिए, कासिमिर बल के लिए, वैन डेर वाल्स बल और कुछ अन्य अवलोकन योग्य घटनाओं के लिए।

ऊर्जा अंतरण/हस्तांतरण

बंद सस्टम

उन प्रणालियों के विशेष मामले के लिए ऊर्जा हस्तांतरण पर विचार किया जा सकता है जो पदार्थ के हस्तांतरण के लिए बंद हैं। ऊर्जा का वह भाग जिसे रूढ़िवादी बलों द्वारा दूर से स्थानांतरित किया जाता है, को उस कार्य के रूप में मापा जाता है जो स्रोत प्रणाली प्राप्त करने वाले सिस्टम पर करती है। ऊर्जा का वह भाग जो स्थानांतरण के दौरान कार्य नहीं करता है, ऊष्मा कहलाता है। [note 3] प्रणालियों के बीच ऊर्जा को विभिन्न तरीकों से स्थानांतरित किया जा सकता है। उदाहरणों में फोटॉन के माध्यम से विद्युत चुम्बकीय ऊर्जा का संचरण, भौतिक टकराव जो गतिज ऊर्जा को स्थानांतरित करते हैं, [note 4] ज्वारीय बातचीत, [21] और थर्मल ऊर्जा का प्रवाहकीय हस्तांतरण शामिल हैं।

ऊर्जा का कड़ाई से संरक्षण किया जाता है और इसे जहां कहीं भी परिभाषित किया जा सकता है, स्थानीय रूप से संरक्षित भी किया जाता है। ऊष्मप्रवैगिकी में, बंद प्रणालियों के लिए, ऊर्जा हस्तांतरण की प्रक्रिया को पहले कानून द्वारा वर्णित किया गया है: [note 5]

 

 

 

 

(1)

कहाँ पे स्थानांतरित ऊर्जा की मात्रा है,  सिस्टम पर या उसके द्वारा किए गए कार्य का प्रतिनिधित्व करता है, और सिस्टम में या उसके बाहर गर्मी के प्रवाह का प्रतिनिधित्व करता है। एक सरलीकरण के रूप में, गर्मी शब्द, , को कभी-कभी अनदेखा किया जा सकता है, विशेष रूप से गैसों से जुड़ी तेज प्रक्रियाओं के लिए, जो गर्मी के खराब संवाहक हैं, या जब स्थानांतरण की तापीय क्षमता अधिक होती है। ऐसी रुद्धोष्म प्रक्रियाओं के लिए,

 

 

 

 

(2)

उदाहरण के लिए, यह सरलीकृत समीकरण जूल को परिभाषित करने के लिए प्रयोग किया जाता है।

ओपन सिस्टम

बंद प्रणालियों की बाधाओं से परे, खुले सिस्टम पदार्थ हस्तांतरण के साथ ऊर्जा प्राप्त या खो सकते हैं (इस प्रक्रिया को एक कार इंजन में वायु-ईंधन मिश्रण के इंजेक्शन द्वारा चित्रित किया गया है, एक प्रणाली जो ऊर्जा में लाभ प्राप्त करती है, बिना किसी काम के अतिरिक्त या गर्मी)। इस ऊर्जा को द्वारा निरूपित करते हुए , कोई लिख सकता है

 

 

 

 

(3)

ऊष्मप्रवैगिकी

आंतरिक ऊर्जा

आंतरिक ऊर्जा एक प्रणाली की ऊर्जा के सभी सूक्ष्म रूपों का योग है। यह सिस्टम बनाने के लिए आवश्यक ऊर्जा है। यह संभावित ऊर्जा से संबंधित है, उदाहरण के लिए, आणविक संरचना, क्रिस्टल संरचना, और अन्य ज्यामितीय पहलुओं, साथ ही गतिज ऊर्जा के रूप में कणों की गति। ऊष्मप्रवैगिकी मुख्य रूप से आंतरिक ऊर्जा में परिवर्तन से संबंधित है, न कि इसके निरपेक्ष मूल्य से, जिसे केवल उष्मागतिकी के साथ निर्धारित करना असंभव है। [22]

ऊष्मागतिकी का प्रथम नियम

ऊष्मप्रवैगिकी का पहला नियम दावा करता है कि एक प्रणाली और उसके परिवेश की कुल ऊर्जा (लेकिन जरूरी नहीं कि थर्मोडायनामिक मुक्त ऊर्जा ) हमेशा संरक्षित होती है [23] और यह कि गर्मी का प्रवाह ऊर्जा हस्तांतरण का एक रूप है। सजातीय प्रणालियों के लिए, एक अच्छी तरह से परिभाषित तापमान और दबाव के साथ, पहले कानून का आमतौर पर इस्तेमाल किया जाने वाला कोरोलरी यह है कि, एक प्रणाली के लिए केवल दबाव बलों और गर्मी हस्तांतरण (उदाहरण के लिए, गैस से भरा सिलेंडर) बिना रासायनिक परिवर्तन के, सिस्टम की आंतरिक ऊर्जा में अंतर परिवर्तन (एक सकारात्मक मात्रा द्वारा इंगित ऊर्जा में लाभ के साथ) के रूप में दिया जाता है

,

जहां दायीं ओर का पहला पद प्रणाली में स्थानांतरित गर्मी है, जिसे तापमान टी और एन्ट्रापी एस के रूप में व्यक्त किया जाता है (जिसमें एन्ट्रापी बढ़ जाती है और इसका परिवर्तन डी एस सकारात्मक होता है जब सिस्टम में गर्मी जोड़ा जाता है), और अंतिम शब्द पर दाहिने हाथ को सिस्टम पर किए गए कार्य के रूप में पहचाना जाता है, जहां दबाव पी और वॉल्यूम वी है (नकारात्मक संकेत परिणाम सिस्टम के संपीड़न के बाद उस पर काम करने की आवश्यकता होती है और इसलिए वॉल्यूम परिवर्तन, डी वी, काम करते समय नकारात्मक होता है सिस्टम पर किया जाता है।)

यह समीकरण अत्यधिक विशिष्ट है, सभी रासायनिक, विद्युत, परमाणु और गुरुत्वाकर्षण बलों, गर्मी और पीवी -कार्य के अलावा किसी भी प्रकार की ऊर्जा के संवहन जैसे प्रभावों को अनदेखा कर रहा है। प्रथम नियम का सामान्य निरूपण (अर्थात् ऊर्जा का संरक्षण) उन स्थितियों में भी मान्य है जिनमें निकाय सजातीय नहीं है। इन मामलों के लिए एक बंद प्रणाली की आंतरिक ऊर्जा में परिवर्तन सामान्य रूप में व्यक्त किया जाता है

कहाँ पे सिस्टम को आपूर्ति की जाने वाली गर्मी है और सिस्टम पर लागू कार्य है।

ऊर्जा का समविभाजन

एक यांत्रिक हार्मोनिक थरथरानवाला (एक वसंत पर एक द्रव्यमान) की ऊर्जा वैकल्पिक रूप से गतिज और संभावित ऊर्जा होती है । दोलन चक्र में दो बिंदुओं पर यह पूरी तरह से गतिज है, और दो बिंदुओं पर यह पूरी तरह से संभावित है। एक पूरे चक्र में, या कई चक्रों में, औसत ऊर्जा गतिज और क्षमता के बीच समान रूप से विभाजित होती है। यह समविभाजन सिद्धांत का एक उदाहरण है: स्वतंत्रता की कई डिग्री वाली प्रणाली की कुल ऊर्जा औसतन सभी उपलब्ध स्वतंत्रता की डिग्री के बीच समान रूप से विभाजित होती है।

ऊर्जा से निकटता से संबंधित मात्रा के व्यवहार को समझने के लिए यह सिद्धांत अत्यंत महत्वपूर्ण है, जिसे एन्ट्रॉपी कहा जाता है। एन्ट्रापी एक प्रणाली के कुछ हिस्सों के बीच ऊर्जा के वितरण की समता का एक उपाय है। जब एक पृथक प्रणाली को स्वतंत्रता की अधिक डिग्री दी जाती है (यानी, नई उपलब्ध ऊर्जा अवस्थाएं जो मौजूदा राज्यों के समान हैं), तो कुल ऊर्जा "नई" और "पुरानी" डिग्री के बीच भेद किए बिना सभी उपलब्ध डिग्री में समान रूप से फैलती है। यह गणितीय परिणाम ऊष्मप्रवैगिकी के दूसरे नियम का हिस्सा है। ऊष्मप्रवैगिकी का दूसरा नियम केवल उन प्रणालियों के लिए सरल है जो निकट या भौतिक संतुलन अवस्था में हैं। गैर-संतुलन प्रणालियों के लिए, सिस्टम के व्यवहार को नियंत्रित करने वाले कानून अभी भी बहस योग्य हैं। इन प्रणालियों के लिए मार्गदर्शक सिद्धांतों में से एक अधिकतम एन्ट्रापी उत्पादन का सिद्धांत है। [24] [25] इसमें कहा गया है कि नोइक्विलिब्रियम सिस्टम इस तरह से व्यवहार करते हैं कि उनके एन्ट्रापी उत्पादन को अधिकतम किया जा सके। [26]

यह सभी देखें

टिप्पणियाँ

  1. These examples are solely for illustration, as it is not the energy available for work which limits the performance of the athlete but the power output (in case of a sprinter) and the force (in case of a weightlifter).
  2. Crystals are another example of highly ordered systems that exist in nature: in this case too, the order is associated with the transfer of a large amount of heat (known as the lattice energy) to the surroundings.
  3. Although heat is "wasted" energy for a specific energy transfer (see: waste heat), it can often be harnessed to do useful work in subsequent interactions. However, the maximum energy that can be "recycled" from such recovery processes is limited by the second law of thermodynamics.
  4. The mechanism for most macroscopic physical collisions is actually electromagnetic, but it is very common to simplify the interaction by ignoring the mechanism of collision and just calculate the beginning and end result.
  5. There are several sign conventions for this equation. Here, the signs in this equation follow the IUPAC convention.

संदर्भ

  1. Shuster, Michele; Vigna, Janet; Sinha, Gunjan (2011). Scientific American Biology for a Changing World. MacMillan. p. 90. ISBN 9780716773245.
  2. Harper, Douglas. "Energy". Online Etymology Dictionary. Archived from the original on October 11, 2007. Retrieved May 1, 2007.
  3. Smith, Crosbie (1998). The Science of Energy – a Cultural History of Energy Physics in Victorian Britain. The University of Chicago Press. ISBN 978-0-226-76420-7.
  4. Lofts, G; O'Keeffe D; et al. (2004). "11 – Mechanical Interactions". Jacaranda Physics 1 (2 ed.). Milton, Queensland, Australia: John Willey & Sons Australia Ltd. p. 286. ISBN 978-0-7016-3777-4.
  5. The Hamiltonian MIT OpenCourseWare website 18.013A Chapter 16.3 Accessed February 2007
  6. Schmidt-Rohr, K. (2020). "Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics” ACS Omega 5: 2221–33. http://dx.doi.org/10.1021/acsomega.9b03352
  7. "Retrieved on May-29-09". Uic.edu. Archived from the original on 2010-06-04. Retrieved 2010-12-12.
  8. Bicycle calculator – speed, weight, wattage etc. "Bike Calculator". Archived from the original on 2009-05-13. Retrieved 2009-05-29..
  9. Schmidt-Rohr, K. (2020). "Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics” ACS Omega 5: 2221–33. http://dx.doi.org/10.1021/acsomega.9b03352
  10. Schmidt-Rohr, K (2015). "Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O2". J. Chem. Educ. 92 (12): 2094–2099. Bibcode:2015JChEd..92.2094S. doi:10.1021/acs.jchemed.5b00333.
  11. Ito, Akihito; Oikawa, Takehisa (2004). "Global Mapping of Terrestrial Primary Productivity and Light-Use Efficiency with a Process-Based Model. Archived 2006-10-02 at the Wayback Machine" in Shiyomi, M. et al. (Eds.) Global Environmental Change in the Ocean and on Land. pp. 343–58.
  12. Misner, Thorne, Wheeler (1973). Gravitation. San Francisco: W.H. Freeman. ISBN 978-0-7167-0344-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. Misner, Thorne, Wheeler (1973). Gravitation. San Francisco: W.H. Freeman. ISBN 978-0-7167-0344-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  14. Berkeley Physics Course Volume 1. Charles Kittel, Walter D Knight and Malvin A Ruderman
  15. The Laws of Thermodynamics Archived 2006-12-15 at the Wayback Machine including careful definitions of energy, free energy, et cetera.
  16. Feynman, Richard (1964). The Feynman Lectures on Physics; Volume 1. US: Addison Wesley. ISBN 978-0-201-02115-8.
  17. "E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws". Physics.ucla.edu. 1918-07-16. Archived from the original on 2011-05-14. Retrieved 2010-12-12.
  18. The Laws of Thermodynamics Archived 2006-12-15 at the Wayback Machine including careful definitions of energy, free energy, et cetera.
  19. Feynman, Richard (1964). The Feynman Lectures on Physics; Volume 1. US: Addison Wesley. ISBN 978-0-201-02115-8.
  20. "Time Invariance". Ptolemy.eecs.berkeley.edu. Archived from the original on 2011-07-17. Retrieved 2010-12-12.
  21. Jaffe, Robert L.; Taylor, Washington (2018). The Physics of Energy. Cambridge University Press. p. 611. ISBN 9781107016651.
  22. I. Klotz, R. Rosenberg, Chemical Thermodynamics – Basic Concepts and Methods, 7th ed., Wiley (2008), p. 39
  23. Kittel and Kroemer (1980). Thermal Physics. New York: W.H. Freeman. ISBN 978-0-7167-1088-2.
  24. Onsager, L. (1931). "Reciprocal relations in irreversible processes". Phys. Rev. 37 (4): 405–26. Bibcode:1931PhRv...37..405O. doi:10.1103/PhysRev.37.405.
  25. Martyushev, L.M.; Seleznev, V.D. (2006). "Maximum entropy production principle in physics, chemistry and biology". Physics Reports. 426 (1): 1–45. Bibcode:2006PhR...426....1M. doi:10.1016/j.physrep.2005.12.001.
  26. Belkin, A.; et., al. (2015). "Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production". Sci. Rep. 5: 8323. Bibcode:2015NatSR...5E8323B. doi:10.1038/srep08323. PMC 4321171. PMID 25662746.

अग्रिम पठन


जर्नल/पत्रिकाओं

बाहरी संबंध