हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद

From Vigyanwiki
Revision as of 09:24, 12 May 2023 by alpha>Amrapali

क्रमविनिमेय बीजगणित में, हिल्बर्ट फलन, हिल्बर्ट बहुपद, और श्रेणीबद्ध क्रमविनिमेय बीजगणित की हिल्बर्ट श्रृंखला क्षेत्र पर सूक्ष्म रूप से उत्पन्न तीन रूप से संबंधित धारणाएं हैं जो बीजगणित के समरूप घटकों के आयाम के वृद्धि को मापती हैं।

इन धारणाओं को निस्यंदक (फिल्टर) किए गए बीजगणितों तक बढ़ाया जाता है, और इन बीजगणितों पर वर्गीकृत या निस्यंदक किए गए गुणांक (गणित) के साथ-साथ प्रक्षेपीय योजनाओं पर सुसंगत पुलिंदो के लिए भी बढ़ाया गया है।

जिन विशिष्ट स्थितियों में इन धारणाओं का उपयोग किया जाता है, वे निम्नलिखित हैं:

  • एक बहुभिन्नरूपी बहुपद वलय के समरूप आदर्श (वलय थ्योरी) द्वारा भागफल, कुल डिग्री द्वारा वर्गीकृत।
  • एक बहुभिन्नरूपी बहुपद वलय के आदर्श द्वारा भागफल, कुल डिग्री द्वारा निस्यंदक किया गया।
  • अपने उच्चतम अनुकूल क्षमता द्वारा स्थानीय वलय का निस्पंदन करता है। इस स्थिति में हिल्बर्ट बहुपद को हिल्बर्ट-सैमुअल बहुपद कहा जाता है।

बीजगणित या गुणांक की डेविड हिल्बर्ट श्रृंखला ग्रेडेड वेक्टर स्पेस की हिल्बर्ट-पोंकेयर श्रृंखला की विशेष स्थिति होती है।

संगणनात्मकबीजगणितीय ज्यामिति में हिल्बर्ट बहुपद और हिल्बर्ट श्रृंखला महत्वपूर्ण हैं, क्योंकि वे स्पष्ट बहुपद समीकरणों द्वारा परिभाषित आयाम और बीजगणितीय विविधता की डिग्री की गणना के लिए सबसे आसान ज्ञात विधि होती हैं। इसके अतिरिक्त, वे बीजगणितीय बहुरूपताों के श्रेणीयों के लिए उपयोगी आविष्कार प्रदान करते हैं क्योंकि समतल श्रेणी में किसी भी बंद बिंदु पर ही हिल्बर्ट बहुपद होते है . इसका उपयोग हिल्बर्ट योजना और उद्धरण योजना के निर्माण में किया जाता है।

परिभाषाएं और मुख्य गुण

एक क्षेत्र K पर सूक्ष्म रूप से उत्पन्न क्रम विनिमय बीजगणित S पर विचार करें, जो सकारात्मक डिग्री के तत्वों द्वारा अंतिम रूप से उत्पन्न होता है। इस का मतलब है कि

ओर वो .

हिल्बर्ट फलन

K-सदिश स्थल Sn के आयाम के लिए पूर्णांक n को मानचित्र करता है। हिल्बर्ट श्रृंखला, जिसे ग्रेडेड सदिश समष्टि स्थान की अधिक सामान्य सेटिंग में हिल्बर्ट-पोंकेयर श्रृंखला कहा जाता है, औपचारिक श्रृंखला होती है

यदि S सकारात्मक डिग्री के द्वारा h सदृश तत्वों द्वारा उत्पन्न होता है , तो हिल्बर्ट श्रृंखला का योग परिमेय भिन्न होता है

जहाँ Q पूर्णांक गुणांकों वाला बहुपद है।

यदि S डिग्री 1 के तत्वों द्वारा उत्पन्न होता है तो हिल्बर्ट श्रृंखला के योग को फिर से लिखा जा सकता है

जहाँ P पूर्णांक गुणांक वाला बहुपद है, और S का क्रुल आयाम होता है। इस स्थिति में इस तर्कसंगत अंश का श्रृंखला विस्तार होता है

जहाँ

के लिए द्विपद गुणांक है और 0 अन्यथा है।

यदि

का गुणांक में इस प्रकार है

के लिए इस योग में सूचकांक i का पद n डिग्री का बहुपद है प्रमुख गुणांक के साथ यह दर्शाता है कि अद्वितीय बहुपद सम्मलित है तर्कसंगत गुणांक के साथ जो के बराबर होता है बहुत पर्याप्त n के लिए। यह बहुपद हिल्बर्ट बहुपद है, और इसका रूप है

कम से कम n0 ऐसा है कि के लिए nn0 के लिए हिल्बर्ट नियमितता कहलाती है। डिग्री से कम हो सकता है .

हिल्बर्ट बहुपद संख्यात्मक बहुपद है, क्योंकि आयाम पूर्णांक हैं, किन्तु बहुपद में लगभग कभी भी पूर्णांक गुणांक नहीं होते हैं (Schenck 2003, pp. 41).

इन सभी परिभाषाओं को S पर सूक्ष्म रूप से उत्पन्न श्रेणीकृत गुणांक तक बढ़ाया जा सकता है, एकमात्र अंतर के साथ tm हिल्बर्ट श्रृंखला में दिखाई देता है, जहाँ m गुणांक के जनित्र की न्यूनतम डिग्री होती है, जो नकारात्मक हो सकती है।

हिल्बर्ट फलन, हिल्बर्ट श्रृंखला और निस्यंदक किए गए बीजगणित के हिल्बर्ट बहुपद संबद्ध ग्रेडेड बीजगणित के होते हैं।

Pn में प्रक्षेपीय बहुरूपता V के हिल्बर्ट बहुपद को V के समरूप समन्वय वलय के हिल्बर्ट बहुपद के रूप में परिभाषित किया गया है।

वर्गीकृत बीजगणित और बहुपद के वलय

समरूप आदर्शों द्वारा बहुपद वलय और उनके भागफल विशिष्ट श्रेणीबद्ध बीजगणित हैं। इसके विपरीत यदि S वर्गीकृत बीजगणित है जो क्षेत्र K द्वारा n समरूप तत्व g1, ..., gn डिग्री 1 द्वारा उत्पन्न होता है, फिर मानचित्र जो Xiको gi पर भेजता है, श्रेणीबद्ध वलय के समरूपता को परिभाषित करता है पर S. इसका कर्नेल (बीजगणित) समरूप आदर्श I होते है और यह बीच में वर्गीकृत बीजगणित के समरूपता को परिभाषित करता है और S.

इस प्रकार, डिग्री 1 के तत्वों द्वारा उत्पन्न वर्गीकृत बीजगणित समरूप आदर्शों द्वारा बहुपद के वलय के भागफल, समरूपता तक बिल्कुल होता हैं। इसलिए, इस लेख का शेष भाग आदर्शों द्वारा बहुपद वलयों के भागफल तक ही सीमित रहेगा।

हिल्बर्ट श्रृंखला के गुण

योज्यता

हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद अपेक्षाकृत त्रुटिहीन अनुक्रमों के लिए योगात्मक होता हैं। अधिक त्रुटिहीन, यदि

वर्गीकृत या निस्यंदक किए गए गुणांक का त्रुटिहीन क्रम होता है, जो हमारे पास है

और

यह सदिश समष्टि स्थान के आयाम के लिए उसी संपत्ति से तुरंत अनुसरण करता है।

एक गैर-शून्य भाजक द्वारा भागफल

होने देना A वर्गीकृत बीजगणित हो और f डिग्री का समरूप तत्व d में A जो शून्य भाजक नहीं है। तो हमारे पास हैं

यह त्रुटिहीन क्रम पर योगात्मकता से अनुसरण करता है

जहां f अंकित वाला चिह्न है f द्वारा गुणा है, और ग्रेडेड गुणांक है जो जो A प्राप्त किया जाता है डिग्रियों को स्थानांतरित करके d, जिससे गुणा किया जा सके f की डिग्री 0 है। इसका तात्पर्य है कि

एक बहुपद वलय की हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद

बहुपद वलय की हिल्बर्ट श्रृंखला में अनिश्चित होता है

यह इस प्रकार है कि हिल्बर्ट बहुपद है

प्रमाण है कि हिल्बर्ट श्रृंखला में यह सरल रूप है, गैर शून्य विभाजक द्वारा भागफल के लिए पिछले सूत्र को पुनरावर्ती रूप से लागू करके प्राप्त किया जाता है ) और उस पर टिप्पणी करना

हिल्बर्ट श्रृंखला का आकार और आयाम

डिग्री 1 के समरूप तत्वों द्वारा उत्पन्न वर्गीकृत बीजगणित A में क्रुल आयाम शून्य है यदि उच्चतम समरूप आदर्श, जो कि डिग्री 1 के समरूप तत्वों द्वारा उत्पन्न आदर्श है, नीलपोटेंट आदर्श होता है। इसका तात्पर्य है कि A का K-सदिश के रूप में आयाम परिमित है और A की हिल्बर्ट श्रृंखला बहुपद P(t) है जैसे कि P(1) K-सदिश स्थान के रूप में A के आयाम के बराबर है।

यदि A का क्रुल आयाम धनात्मक है, तो डिग्री का समरूप तत्व f है जो शून्य विभाजक नहीं है (वास्तव में डिग्री के लगभग सभी तत्वों में यह गुण होता है)। A/(f) का क्रुल आयाम है A A माइनस वन का क्रुल आयाम होता है।

हिल्बर्ट श्रृंखला की योगात्मकता यह दर्शाती है . A के क्रुल आयाम के बराबर इसे कई बार दोहराते हुए, हमें अंततः आयाम 0 का बीजगणित मिलता है जिसकी हिल्बर्ट श्रृंखला बहुपद P(t) है। इससे पता चलता है कि A की हिल्बर्ट श्रृंखला होती है।

जहां बहुपद P(t) ऐसा प्रकार है कि P(1) ≠ 0 और d , A का क्रुल आयाम है।

हिल्बर्ट श्रृंखला के लिए यह सूत्र दर्शाता है कि हिल्बर्ट बहुपद की डिग्री d है, और इसका प्रमुख गुणांक है .

प्रक्षेपी बहुरूपता की डिग्री और बेज़ाउट की प्रमेय

हिल्बर्ट श्रृंखला हमें हिल्बर्ट श्रृंखला के अंश के 1 पर मान के रूप में बीजगणितीय विविधता की डिग्री की गणना करने की अनुमति देती है। यह बेज़ाउट के प्रमेय का अपेक्षाकृत सरल प्रमाण भी प्रदान करता है।

प्रक्षेपी बीजगणितीय सेट और हिल्बर्ट श्रृंखला की डिग्री के बीच संबंध दिखाने के लिए, प्रक्षेपी बीजगणितीय सेट V पर विचार करें, जिसे समरूप आदर्श के शून्य के सेट के रूप में परिभाषित किया गया है। , जहाँ k क्षेत्र है, और मान लेते है बीजगणितीय सेट पर नियमित फलनों का वलय हो जाता है।

इस खंड में, किसी को बीजगणितीय सेटों की इरेड्यूसबिलिटी की आवश्यकता नहीं है और न ही आदर्शों की प्रधानता की। इसके अतिरिक्त, जैसा कि हिल्बर्ट श्रृंखला को गुणांक के क्षेत्र का विस्तार करके नहीं बदला जाता है, क्षेत्र k को, व्यापकता की हानि के बिना, बीजगणितीय रूप से संवृत होना माना जाता है।

V का आयाम d, R क्रुल आयाम माइनस के बराबर है, और V की डिग्री प्रतिच्छेदन के बिंदुओं की संख्या है, जिसे बहुगुणों के साथ गिना जाता है, सामान्य स्थिति में हाइपरप्लेन। इसका तात्पर्य है R, नियमित अनुक्रम का का d + 1 डिग्री के समरूप बहुपद होते है। नियमित अनुक्रम की परिभाषा का तात्पर्य त्रुटिहीन अनुक्रमों के अस्तित्व से है

के लिए इसका अर्थ यह है कि

जहाँ , R की हिल्बर्ट श्रेणी का अंश है।

वलय क्रुल आयाम है, और प्रक्षेपीय बीजगणितीय सेट के नियमित फलन का वलय है आयाम 0 जिसमें सीमित संख्या में बिंदु होते हैं, जो कई बिंदु हो सकते हैं। जैसा नियमित अनुक्रम से संबंधित है, इनमें से कोई भी बिंदु समीकरण के हाइपरप्लेन से संबंधित नहीं है इस हाइपरप्लेन का पूरक एफ़िन स्थान है जिसमें सम्मलित किया है यह बनाता है सजातीय बीजगणितीय समुच्चय, जिसमें है इसके नियमित कार्यों की वलय के रूप में। रैखिक बहुपद में शून्य भाजक नहीं है और इस प्रकार त्रुटिहीन अनुक्रम होता है

जिसका तात्पर्य है

यहां हम निस्यंदक्ड बीजगणित की हिल्बर्ट श्रृंखला का उपयोग कर रहे हैं, और तथ्य यह है कि ग्रेडेड बीजगणित की हिल्बर्ट श्रृंखला भी निस्यंदक्ड बीजगणित के रूप में इसकी हिल्बर्ट श्रृंखला है।

इस प्रकार आर्टिनियन वलय है, जो आयाम P(1) का k-सदिश समष्टि होता है, और जॉर्डन-होल्डर प्रमेय का उपयोग यह प्रमाणित करने के लिए किया जा सकता है कि P(1) बीजगणितीय सेट V की डिग्री है। वास्तव में, बिंदु की बहुलता रचना श्रृंखला में संबंधित उच्चतम आदर्श की घटनाओं की संख्या होती है।

बेज़ाउट के प्रमेय को सिद्ध करने के लिए, इसी तरह आगे बढ़ सकते हैं। यदि डिग्री का समरूप बहुपद है , जो शून्य भाजक नहीं है R, त्रुटिहीन अनुक्रम

पता चलता है कि

अंशों को देखते हुए यह बेज़ाउट के प्रमेय के निम्नलिखित सामान्यीकरण को सिद्ध करता है:

प्रमेय - यदि f डिग्री का समरूप बहुपद है , जो R शून्य भाजक नहीं है, तो हाइपरसफेस के साथ V के प्रतिच्छेदन की डिग्री द्वारा परिभाषित की V की डिग्री का गुणनफल है

अधिक ज्यामितीय रूप में, इसे इस प्रकार दोहराया जा सकता है:

प्रमेय - यदि डिग्री की प्रक्षेपीय ऊनविम पृष्ठ d में डिग्री के बीजगणितीय सेट का कोई अलघुकरणीय घटक नहीं होता है δ, तो उनके प्रतिच्छेदन की डिग्री है है।

सामान्य बेज़ाउट के प्रमेय को आसानी से हाइपरसफेस से प्रारंभ करके, और इसे n − 1 अन्य प्रतिच्छेद के साथ करके आसानी से निकाला जा सकता है।

पुर्ण प्रतिच्छेदन

एक अनुमानित बीजगणितीय सेट पूर्ण चौराहे है यदि इसका परिभाषित आदर्श नियमित अनुक्रम द्वारा उत्पन्न होता है। इस स्थिति में, हिल्बर्ट श्रृंखला के लिए सरल स्पष्ट सूत्र है।

मान लेते है k में समरूप बहुपद , संबंधित डिग्री के सेटिंग में निम्नलिखित त्रुटिहीन क्रम होते हैं

हिल्बर्ट श्रृंखला की योज्यता का तात्पर्य इस प्रकार है

एक साधारण प्रत्यावर्तन देता है

इससे पता चलता है कि k बहुपदों के नियमित अनुक्रम द्वारा परिभाषित पूर्ण प्रतिच्छेदन k बहुपद का कोडिमेंशन होता है और इसकी डिग्री अनुक्रम में बहुपदों की डिग्री का गुणनफल होता है।

मुक्त संकल्पों से सम्बन्ध

एक श्रेणीबद्ध नियमित वलय R के प्रत्येक वर्गीकृत गुणांक M हिल्बर्ट के सिज़ीजी प्रमेय के कारण वर्गीकृत मुक्त वियोजन होता है, जिसका अर्थ है कि जिसमे त्रुटिहीन अनुक्रम सम्मलित है

जहां मुक्त गुणांक वर्गीकृत हैं, और चिह्न डिग्री शून्य के रैखिक मानचित्र हैं।

हिल्बर्ट श्रृंखला की योगात्मकता का तात्पर्य है

यदि बहुपद वलय है, और यदि कोई आधार तत्वों की डिग्री जानता है तो पूर्ववर्ती वर्गों के सूत्र परिणाम की अनुमति देते हैं से वास्तव में, इन सूत्रों का अर्थ है कि, यदि श्रेणीबद्ध मुक्त गुणांक L का आधार है h डिग्री के समरूप तत्व तो इसकी हिल्बर्ट श्रृंखला होती है

हिल्बर्ट श्रृंखला की गणना के लिए इन सूत्रों को विधि के रूप में देखा जा सकता है। यह संभवतः ही कभी स्थिति है, जैसा कि ज्ञात एल्गोरिदम के साथ, हिल्बर्ट श्रृंखला की गणना और मुक्त संकल्प की गणना उसी ग्रोबनेर आधार से शुरू होती है, जिससे हिल्बर्ट श्रृंखला सीधे संगणनात्मक जटिलता के साथ गणना की जा सकती है जो उच्चतर नहीं होते है और इससे मुक्त संकल्प की गणना की जटिलता होती है।