फोटॉन ध्रुवीकरण

From Vigyanwiki
Revision as of 10:51, 26 April 2023 by Indicwiki (talk | contribs) (4 revisions imported from alpha:फोटॉन_ध्रुवीकरण)

फोटॉन ध्रुवीकरण पारम्परिक ध्रुवीकृत ज्यावक्रिय समतलविद्युत चुम्बकीय तरंग का क्वांटम यांत्रिकी विवरण है। एक व्यक्तिगत फोटॉन को दाएं या बाएं वृत्ताकार ध्रुवीकरण, या दोनों की अधिस्थापन के रूप में वर्णित किया जा सकता है। समतुल्य रूप से, एक फोटॉन को क्षैतिज या ऊर्ध्वाधर रैखिक ध्रुवीकरण, या दो की एक अधिस्थापन के रूप में वर्णित किया जा सकता है।

फोटॉन ध्रुवीयता का विवरण अधिक विविध क्वांटम वर्णनों, जैसे एक वैद्युत धमनी में इलेक्ट्रॉन के क्वांटम यांत्रिकी के सन्दर्भ में अधिक जटिल भौतिक अवधारणाओं और बहुत सारी गणितीय उपकरणों का उदाहरण है। ध्रुवीयता एक क्यूबिट स्वतंत्रता का उदाहरण है, जो अधिक जटिल क्वांटम घटनाओं की समझ के लिए एक मूल आधार बनाता है। क्लासिकल मैक्सवेल के समीकरणों की विवरण से संभवतः स्थान वेक्टर, प्रासंगिकता घनात्मक, इकाईय ऑपरेटर, और हर्मिटियन संचालक जैसी क्वांटम यांत्रिकी की गणितीय उपकरण अभिप्राय से उत्पन्न होती है। फोटॉन के क्वांटम ध्रुवीयता राशिमंडल, जो सामान्यतः एक क्लासिकल तरंग की ध्रुवीयता का वर्णन करने के लिए प्रयोग किया जाता है, के समान है।, सामान्यतः पारम्परिक तरंग के ध्रुवीकरण का वर्णन करने के लिए प्रयोग किया जाता है। दोषरहित मीडिया के माध्यम से फैलने वाली एक पारम्परिक तरंग की ऊर्जा के संरक्षण की आवश्यकता से एकात्मक संचालक निकलते हैं, जो तरंग के ध्रुवीकरण की स्थिति को परिवर्तित कर देते हैं। हर्मिटियन संचालक तब एक पारम्परिक ध्रुवीकरण राज्य के अतिसूक्ष्म परिवर्तनों का अनुसरण करते हैं।

गणितीय उपकरण के कई निहितार्थ प्रयोगात्मक रूप से सरलता से सत्यापित किए जाते हैं। वास्तव में, कई प्रयोग पोलेरॉइड सनग्लास लेंस के साथ किए जा सकते हैं।

क्वांटम यांत्रिकी के साथ संयोजी विद्युत चुम्बकीय क्षेत्र में ऊर्जा के लिए एक न्यूनतम पैकेट आकार, जिसे फोटॉन कहा जाता है, की पहचान के माध्यम से किया जाता है। पहचान मैक्स प्लैंक के सिद्धांतों और अल्बर्ट आइंस्टीन द्वारा उन सिद्धांतों की व्याख्या पर आधारित है। पत्राचार सिद्धांत तब फोटॉन के साथ संवेग और कोणीय संवेग (जिसे स्पिन (भौतिकी) कहा जाता है), साथ ही ऊर्जा की पहचान की अनुमति देता है।

पारम्परिक विद्युत चुम्बकीय तरंगों का ध्रुवीकरण

ध्रुवीकरण राज्य

रैखिक ध्रुवीकरण

मिट्टी के फ्लैटों से परावर्तन पर ध्रुवीकरण का प्रभाव। पहली तस्वीर में, प्रभाव को कम करने के लिए पोलराइज़र को घुमाया जाता है; दूसरे में इसे अधिकतम करने के लिए 90° घुमाया जाता है: लगभग सभी परावर्तित सूर्य के प्रकाश को समाप्त कर दिया जाता है।

चरण कोणों पर तरंग रैखिक रूप से ध्रुवीकृत (या समतल ध्रुवीकृत) होती है

ध्रुवीकरण (तरंगें) #ध्रुवीकरण राज्य हैं,

यह चरण (तरंगों) के साथ एक तरंग का प्रतिनिधित्व करता है एक कोण पर ध्रुवीकृत एक्स अक्ष के संबंध में। इस मामले में जोन्स वेक्टर

एक चरण के साथ लिखा जा सकता है:

एक्स या वाई में रैखिक ध्रुवीकरण के लिए राज्य वैक्टर इस राज्य वेक्टर के विशेष मामले हैं।

यदि यूनिट वैक्टर को इस तरह परिभाषित किया गया है

और

तब रैखिक रूप से ध्रुवीकृत ध्रुवीकरण अवस्था को xy आधार पर लिखा जा सकता है


परिपत्र ध्रुवीकरण

यदि चरण कोण और बिल्कुल अलग और x आयाम y आयाम के बराबर है, तरंग वृत्ताकार ध्रुवीकरण है। जोन्स वेक्टर तब बन जाता है

जहाँ धन चिह्न बाएँ वृत्तीय ध्रुवीकरण को दर्शाता है और ऋण चिह्न दाएँ वृत्ताकार ध्रुवीकरण को दर्शाता है। परिपत्र ध्रुवीकरण के मामले में, स्थिर परिमाण का विद्युत क्षेत्र वेक्टर एक्स-वाई विमान में घूमता है।

यदि यूनिट वैक्टर को इस तरह परिभाषित किया गया है

और

तो एक मनमाने ढंग से ध्रुवीकरण राज्य को आर-एल के आधार पर लिखा जा सकता है

कहाँ

और

हम देख सकते हैं कि


अण्डाकार ध्रुवीकरण

सामान्य मामला जिसमें विद्युत क्षेत्र एक्स-वाई विमान में घूमता है और चर परिमाण होता है उसे अण्डाकार ध्रुवीकरण कहा जाता है। राज्य वेक्टर द्वारा दिया गया है


मनमाना ध्रुवीकरण राज्य का ज्यामितीय दृश्य

एक ध्रुवीकरण राज्य कैसा दिखता है, इसकी समझ प्राप्त करने के लिए, यदि ध्रुवीकरण की स्थिति को एक चरण कारक से गुणा किया जाता है, तो कक्षा का निरीक्षण किया जा सकता है। और फिर इसके घटकों के वास्तविक भागों को क्रमशः x और y निर्देशांक के रूप में व्याख्या किया गया। वह है:

यदि केवल पता लगाया गया आकार और घूर्णन की दिशा (x(t), y(t)) को ध्रुवीकरण अवस्था की व्याख्या करते समय माना जाता है, अर्थात केवल

(जहाँx(t) और y(t) को ऊपर के रूप में परिभाषित किया गया है) और क्या यह समग्र रूप से अधिक दाएँ वृत्ताकार या बाएँ वृत्ताकार रूप से ध्रुवीकृत है (अर्थात चाहे |ψR| > |ψL| या इसके विपरीत), यह देखा जा सकता है कि भौतिक व्याख्या समान होगी, भले ही राज्य को मनमाने ढंग से चरण कारक से गुणा किया जाए, क्योंकि

और घूर्णन की दिशा समान रहेगी। दूसरे शब्दों में, दो ध्रुवीकरण अवस्थाओं के बीच कोई भौतिक अंतर नहीं है और , जिसके बीच केवल एक चरण कारक भिन्न होता है।

यह देखा जा सकता है कि एक रैखिक रूप से ध्रुवीकृत स्थिति के लिए, M xy समतल में एक रेखा होगी, जिसकी लंबाई 2 होगी और इसका मध्य मूल में होगा, और जिसका ढलान बराबर होगा tan(θ). गोलाकार रूप से ध्रुवीकृत अवस्था के लिए, M त्रिज्या वाला एक वृत्त होगा 1/2 और मूल में मध्य के साथ।

पारम्परिक विद्युत चुम्बकीय तरंग की ऊर्जा, संवेग और कोणीय संवेग

पारम्परिक विद्युत चुम्बकीय तरंगों का ऊर्जा घनत्व

समतल तरंग में ऊर्जा

पारम्परिक विद्युत चुम्बकीय क्षेत्रों में ऊर्जा घनत्व (cgs इकाइयाँ) और प्लैंक इकाई भी है

समतल तरंग के लिए, यह बन जाता है

जहां तरंग की तरंग दैर्ध्य पर ऊर्जा औसत होती है।

प्रत्येक घटक में ऊर्जा का अंश

समतल तरंग के x घटक में ऊर्जा का अंश है

परिणामस्वरूप y घटक के लिए एक समान अभिव्यक्ति के साथ .

दोनों घटकों में अंश है


पारम्परिक विद्युत चुम्बकीय तरंगों का संवेग घनत्व

पॉयंटिंग वेक्टर द्वारा संवेग घनत्व दिया जाता है

Z दिशा में यात्रा करने वाली साइनसॉइडल समतल तरंग के लिए, गति z दिशा में होती है और ऊर्जा घनत्व से संबंधित होती है:

संवेग घनत्व को एक तरंग दैर्ध्य पर औसत किया गया है।

पारम्परिक विद्युत चुम्बकीय तरंगों का कोणीय संवेग घनत्व

विद्युत चुम्बकीय तरंगों में प्रकाश कक्षीय कोणीय गति और लाइट स्पिन कोणीय गति एंगुलर मोमेंटम दोनों हो सकते हैं।[1] कुल कोणीय गति घनत्व है

एक ज्यावक्रीय समतल तरंग के साथ प्रसार के लिए कक्षीय कोणीय संवेग घनत्व गायब हो जाता है। स्पिन कोणीय संवेग घनत्व में है दिशा और द्वारा दिया गया है

जहां फिर से तरंग दैर्ध्य पर घनत्व का औसत होता है।

ऑप्टिकल फिल्टर और क्रिस्टल

पोलेरॉइड फिल्टर के माध्यम से पारम्परिक तरंग का मार्ग

रैखिक ध्रुवीकरण

एक रैखिक फिल्टर एक समतल तरंग के एक घटक को प्रसारित करता है और लंबवत घटक को अवशोषित करता है। उस स्थिति में, यदि फ़िल्टर को x दिशा में ध्रुवीकृत किया जाता है, तो फ़िल्टर से गुजरने वाली ऊर्जा का अंश है


ऊर्जा संरक्षण का उदाहरण: एक द्विप्रतिरोधी क्रिस्टल के माध्यम से पारम्परिक तरंग का मार्ग

एक आदर्श बियरफ्रेंसेंस क्रिस्टल तरंग ऊर्जा के नुकसान के बिना विद्युत चुम्बकीय तरंग के ध्रुवीकरण राज्य को बदल देता है। द्विध्रुवीय क्रिस्टल इसलिए ध्रुवीकरण राज्यों के रूढ़िवादी परिवर्तन की जांच के लिए एक आदर्श परीक्षण समतल प्रदान करते हैं। भले ही यह उपचार अभी भी विशुद्ध रूप से पारम्परिक है, मानक क्वांटम उपकरण जैसे कि एकात्मक और हर्मिटियन संचालक जो समय के साथ राज्य को स्वाभाविक रूप से विकसित करते हैं।

प्रारंभिक और अंतिम स्थिति

एक द्विअर्थी क्रिस्टल एक ऐसी सामग्री है जिसमें संपत्ति के साथ एक ऑप्टिक अक्ष होता है कि प्रकाश में धुरी के समानांतर ध्रुवीकृत प्रकाश के लिए अपवर्तन का एक अलग सूचकांक होता है, जो कि अक्ष के प्रकाश ध्रुवीकृत लंबवत के लिए होता है। अक्ष के समानांतर प्रकाश ध्रुवीकृत को असाधारण किरणें या असाधारण फोटॉन कहा जाता है, जबकि अक्ष के लंबवत प्रकाश ध्रुवीकृत को साधारण किरणें या साधारण फोटॉन कहा जाता है। यदि एक रैखिक रूप से ध्रुवीकृत तरंग क्रिस्टल पर टकराती है, तो तरंग का असाधारण घटक क्रिस्टल से सामान्य घटक की तुलना में एक अलग चरण के साथ निकलेगा। गणितीय भाषा में, यदि घटना तरंग एक कोण पर रैखिक रूप से ध्रुवीकृत होती है ऑप्टिक अक्ष के संबंध में, घटना स्थिति वेक्टर लिखा जा सकता है

और उभरती तरंग के लिए राज्य वेक्टर लिखा जा सकता है

जबकि प्रारंभिक अवस्था रैखिक रूप से ध्रुवीकृत थी, अंतिम अवस्था अण्डाकार रूप से ध्रुवीकृत थी। बिरफ्रेंजेंट क्रिस्टल ध्रुवीकरण के चरित्र को बदल देता है।

अंतिम अवस्था का द्वैत

डबल अपवर्तन दिखाने वाले कुछ अक्षरों के साथ एक पेपर पर रखा गया कैल्साइट क्रिस्टल

प्रारंभिक ध्रुवीकरण राज्य संचालक (भौतिकी) यू के साथ अंतिम राज्य में परिवर्तित हो जाता है। अंतिम राज्य के दोहरे द्वारा दिया जाता है

जहाँ यू का हर्मिटियन आसन्न है, मैट्रिक्स का जटिल संयुग्म स्थानांतरण।

एकात्मक संचालक और ऊर्जा संरक्षण

क्रिस्टल से निकलने वाली ऊर्जा का अंश है

इस आदर्श मामले में, क्रिस्टल पर पड़ने वाली सारी ऊर्जा क्रिस्टल से निकलती है। संपत्ति के साथ एक संचालक यू

जहाँ I तत्समक फलन है और U को एकात्मक संकारक कहा जाता है। राज्य परिवर्तनों में ऊर्जा संरक्षण सुनिश्चित करने के लिए एकात्मक संपत्ति आवश्यक है।

हर्मिटियन संचालक और ऊर्जा संरक्षण

आइसबर्ग दावे, डिक्सन, न्यू मैक्सिको से कैल्साइट का दोहरा अपवर्तन। यह 35 पाउंड (16 किलो) का क्रिस्टल, राष्ट्रीय प्राकृतिक इतिहास संग्रहालय में प्रदर्शित है, संयुक्त राज्य अमेरिका में सबसे बड़े एकल क्रिस्टल में से एक है।

यदि क्रिस्टल बहुत पतला है, तो अंतिम अवस्था प्रारंभिक अवस्था से थोड़ी ही भिन्न होगी। एकात्मक संचालक पहचान संचालक के करीब होगा। हम संचालक एच को परिभाषित कर सकते हैं

और आसन्न द्वारा

तब ऊर्जा संरक्षण की आवश्यकता होती है

इसके लिए इसकी आवश्यकता है

इस तरह के संकारक जो अपने आसन्नों के सामान होते हैं, स्व-संयोजक संकारक या स्व-सम्मिलित कहलाते हैं।

ध्रुवीकरण अवस्था का अत्यल्प संक्रमण है

इस प्रकार, ऊर्जा संरक्षण की आवश्यकता है कि एक ध्रुवीकरण राज्य के अतिसूक्ष्म परिवर्तन हर्मिटियन संचालक की कार्रवाई के माध्यम से होते हैं।

फोटॉन: क्वांटम यांत्रिकी से संबंध

फ़ोटॉन की ऊर्जा, संवेग और कोणीय संवेग

ऊर्जा

इस बिंदु का उपचार पारम्परिक भौतिकी रहा है। यद्यपि, यह विद्युत् गतिकी के लिए मैक्सवेल के समीकरणों की व्यापकता का एक वसीयतनामा है, कि उपचार को केवल पारम्परिक मात्राओं की पुनर्व्याख्या के साथ क्वांटम यांत्रिकी बनाया जा सकता है। पुनर्व्याख्या मैक्स प्लैंक के सिद्धांतों और अल्बर्ट आइंस्टीन द्वारा उन सिद्धांतों और अन्य प्रयोगों की व्याख्या पर आधारित है।

प्रकाश विद्युत प्रभाव पर शुरुआती प्रयोगों से आइंस्टीन का निष्कर्ष यह है कि विद्युत चुम्बकीय विकिरण ऊर्जा के अलघुकरणीय पैकेट से बना होता है, जिसे फोटॉन के रूप में जाना जाता है। प्रत्येक पैकेट की ऊर्जा तरंग की कोणीय आवृत्ति के संबंध से संबंधित है

जहाँ प्रयोगात्मक रूप से निर्धारित मात्रा है जिसे प्लांक स्थिरांक के रूप में जाना जाता है। अगर वहाँ मात्रा के एक बॉक्स में फोटॉन , विद्युत चुम्बकीय क्षेत्र में ऊर्जा है

और ऊर्जा घनत्व है

पत्राचार सिद्धांत के माध्यम से फोटॉन ऊर्जा पारम्परिक क्षेत्रों से संबंधित हो सकती है जो बताती है कि बड़ी संख्या में फोटॉनों के लिए, क्वांटम और पारम्परिक उपचारों को सहमत होना चाहिए। इस प्रकार, बहुत बड़े के लिए , क्वांटम ऊर्जा घनत्व पारम्परिक ऊर्जा घनत्व के समान होना चाहिए

बॉक्स में फोटॉनों की संख्या तब है


गति

पत्राचार सिद्धांत फोटॉन के संवेग और कोणीय संवेग को भी निर्धारित करता है। गति के लिए

जहाँ तरंग संख्या है। इसका तात्पर्य है कि एक फोटॉन की गति है


कोणीय संवेग और स्पिन

इसी प्रकार स्पिन कोणीय गति के लिए

जहाँ फील्ड स्ट्रेंथ है। इसका तात्पर्य है कि फोटॉन का स्पिन कोणीय संवेग है

इस अभिव्यक्ति की क्वांटम व्याख्या यह है, कि फोटॉन की संभावना है की एक स्पिन कोणीय गति होने की और की संभावना है की एक स्पिन कोणीय गति होने की . इसलिए हम फोटॉन के स्पिन कोणीय गति के साथ-साथ ऊर्जा के बारे में सोच सकते हैं। पारम्परिक प्रकाश की कोणीय गति को सत्यापित किया गया है।[2] एक फोटॉन जो रैखिक रूप से ध्रुवीकृत है, बाएं हाथ और दाएं हाथ की अवस्थाओं की समान मात्रा के अधिस्थापन में है।

=स्पिन संचालक

फोटॉन के स्पिन (भौतिकी) को गुणांक के रूप में परिभाषित किया गया है स्पिन कोणीय गति गणना में। एक फोटॉन में स्पिन 1 होता है यदि यह अंदर होता है राज्य और -1 अगर यह में है राज्य। स्पिन संचालक को बाहरी उत्पाद के रूप में परिभाषित किया गया है

स्पिन संचालक के आइजन्वेक्टर हैं और एईगेंवल्युस ​​​​1 और -1 के साथ, क्रमशः।

एक फोटॉन पर एक स्पिन माप का अपेक्षित मूल्य तब होता है

एक संकारक S को एक प्रेक्षणीय मात्रा, चक्रण कोणीय संवेग से संबद्ध किया गया है। संचालक के एईगेंवल्युस ​​अनुमत अवलोकनीय मान हैं। यह स्पिन कोणीय गति के लिए प्रदर्शित किया गया है, लेकिन यह किसी भी अवलोकन योग्य मात्रा के लिए सामान्य रूप से सच है।

घुमाव बताता है

हम चक्रीय रूप से ध्रुवीकृत राज्यों को इस रूप में लिख सकते हैं

जहां एस = 1 के लिए और एस = -1 के लिए . मनमाना राज्य लिखा जा सकता है

जहाँ और चरण कोण हैं, θ वह कोण है जिसके द्वारा संदर्भ के फ्रेम को घुमाया जाता है, और


स्पिन और कोणीय संवेग संचालिका अंतर के रूप में

जब राज्य स्पिन नोटेशन में लिखा जाता है, तो स्पिन संचालक लिखा जा सकता है

अंतर स्पिन संचालक के ईजेनवेक्टर हैं

इस नोट को देखने के लिए

स्पिन कोणीय गति संचालक है


क्वांटम यांत्रिकी में प्रायिकता की प्रकृति

एकल फोटॉन की संभावना

फोटॉनों के व्यवहार पर संभाव्यता को दो विधियों से लागू किया जा सकता है; संभाव्यता का उपयोग किसी विशेष राज्य में फोटॉन की संभावित संख्या की गणना करने के लिए किया जा सकता है, या संभावना का उपयोग किसी विशेष स्थिति में एक फोटॉन की संभावना की गणना के लिए किया जा सकता है। पूर्व व्याख्या ऊर्जा संरक्षण का उल्लंघन करती है। उसके पश्चात की व्याख्या व्यवहार्य है, अगर गैर-सहज, विकल्प हों । डिराक इसे डबल-स्लिट प्रयोग के संदर्भ में समझाता है:

क्वांटम यांत्रिकी की खोज से कुछ समय पहले लोगों ने महसूस किया कि प्रकाश तरंगों और फोटॉनों के बीच संबंध एक सांख्यिकीय चरित्र का होना चाहिए। यद्यपि, उन्हें स्पष्ट रूप से यह एहसास नहीं था कि तरंग कार्य एक विशेष स्थान पर एक फोटॉन के होने की संभावना के बारे में जानकारी देता है, न कि उस स्थान पर फोटॉनों की संभावित संख्या के बारे में। भेद के महत्व को निम्नलिखित विधि से स्पष्ट किया जा सकता है। मान लीजिए कि हमारे पास प्रकाश की एक किरण है जिसमें बड़ी संख्या में फोटॉन समान तीव्रता के दो घटकों में विभाजित हैं। इस धारणा पर कि बीम इसमें फोटॉनों की संभावित संख्या से जुड़ा हुआ है, हमारे पास प्रत्येक घटक में जाने वाली कुल संख्या का आधा होना चाहिए। यदि दो घटकों को अब हस्तक्षेप करने के लिए बनाया गया है, तो हमें एक घटक में एक फोटॉन की आवश्यकता होगी जिससे वह दूसरे में हस्तक्षेप कर सके। कभी-कभी इन दो फोटॉन को एक-दूसरे को नष्ट करना पड़ता था और कभी-कभी उन्हें चार फोटॉन का उत्पादन करना पड़ता था। यह ऊर्जा के संरक्षण के विपरीत होगा। नया सिद्धांत, जो एक फोटॉन के लिए तरंगों के कार्य को संभावनाओं से जोड़ता है, प्रत्येक फोटॉन को दो घटकों में से प्रत्येक में आंशिक रूप से जाने में कठिनाई को दूर करता है। प्रत्येक फोटॉन तब केवल अपने आप में हस्तक्षेप करता है। दो अलग-अलग फोटोन के बीच हस्तक्षेप कभी नहीं होता है।
—पॉल डिराक, क्वांटम यांत्रिकी के सिद्धांत, 1930, अध्याय 1

संभाव्यता आयाम

एक विशेष ध्रुवीकरण अवस्था में एक फोटान होने की संभावना पारम्परिक मैक्सवेल के समीकरणों द्वारा गणना के अनुसार क्षेत्रों पर निर्भर करती है। फोटॉन की ध्रुवीकरण स्थिति क्षेत्र के समानुपाती होती है। प्रायिकता ही खेतों में द्विघात है और फलस्वरूप ध्रुवीकरण की क्वांटम अवस्था में भी द्विघात है। क्वांटम यांत्रिकी में, इसलिए, स्थिति या संभाव्यता आयाम में मूल संभाव्यता जानकारी होती है। सामान्य तौर पर, संभाव्यता आयामों के संयोजन के नियम संभावनाओं की संरचना के लिए पारम्परिक नियमों की तरह दिखते हैं: [निम्नलिखित उद्धरण बेयम, अध्याय 1 से है]

  1. दो क्रमिक संभावनाओं के लिए संभाव्यता आयाम व्यक्तिगत संभावनाओं के लिए आयामों का उत्पाद है। उदाहरण के लिए, एक्स ध्रुवीकृत फोटॉन के लिए सही सर्कुलरली ध्रुवीकृत होने का आयाम और वाई-पोलेरॉइड से गुज़रने के लिए राइट सर्कुलरली पोलराइज़्ड फोटॉन के लिए आयाम है व्यक्तिगत आयामों का उत्पाद।
  2. एक प्रक्रिया के लिए आयाम जो कई अप्रभेद्य तरीकों में से एक में हो सकता है, प्रत्येक अलग-अलग तरीकों के लिए आयामों का योग है। उदाहरण के लिए, x ध्रुवीकृत फोटॉन के लिए वाई -पोलेरॉइड से गुजरने के लिए कुल आयाम इसके लिए दाएं गोलाकार ध्रुवीकृत फोटॉन के रूप में गुजरने के लिए आयामों का योग है, साथ ही इसके बाएं गोलाकार ध्रुवीकृत फोटॉन के रूप में गुजरने के लिए आयाम,
  3. प्रक्रिया के होने की कुल संभावना 1 और 2 द्वारा गणना की गई कुल आयाम का पूर्ण मान है।

</ब्लॉककोट>

अनिश्चितता सिद्धांत

यूक्लिडियन अंतरिक्ष में कॉची-श्वार्ज असमानता। यह संकेत करता है

गणितीय तैयारी

किसी कानूनी के लिए संचालकों के निम्नलिखित असमानता, कॉची-श्वार्ज़ असमानता का एक परिणाम, सच है।

यदि B A ψ और AB ψ परिभाषित हैं, तो माध्य घटाकर और उपरोक्त सूत्र में पुनः सम्मिलित करके, हम यह निष्कर्ष निकालते हैं

कहाँ

सिस्टम स्थिति ψ और में प्रेक्षणीय X का संचालिका माध्य है

यहाँ

A और B का कम्यूटेटर कहा जाता है।

यह विशुद्ध रूप से गणितीय परिणाम है। किसी भी भौतिक मात्रा या सिद्धांत का कोई संदर्भ नहीं दिया गया है। यह बस बताता है कि एक संचालक की अनिश्चितता दूसरे संचालक की अनिश्चितता से कम होती है।

कोणीय गति के लिए आवेदन

भौतिकी से संबंध तब बनाया जा सकता है जब हम भौतिक संचालकों जैसे कि कोणीय गति और ध्रुवीकरण कोण के साथ संकारकों की पहचान करें। हमारे पास तब है

जिसका अर्थ है कि कोणीय गति और ध्रुवीकरण कोण को अनंत सटीकता के साथ एक साथ नहीं मापा जा सकता है। (ध्रुवीकरण कोण को यह जाँच कर मापा जा सकता है कि क्या फोटॉन एक विशेष कोण पर स्थित एक ध्रुवीकरण फिल्टर से गुजर सकता है, या एक ध्रुवीकरण बीम फाड़नेवाला। इसका परिणाम हां / ना में होता है, जो कि अगर फोटॉन किसी अन्य पर समतल-ध्रुवीकृत था कोण, दो कोणों के बीच के अंतर पर निर्भर करता है।)

स्थितियाँ, संभाव्यता आयाम, एकात्मक और हर्मिटियन संचालक, और ईजेनवेक्टर

क्वांटम यांत्रिकी के अधिकांश गणितीय उपकरण एक ध्रुवीकृत ज्यावक्रिय विद्युत चुम्बकीय तरंग के पारम्परिक विवरण में दिखाई देते हैं। एक पारम्परिक तरंग के लिए जोन्स वेक्टर, उदाहरण के लिए, फोटॉन के लिए क्वांटम ध्रुवीकरण राज्य वेक्टर के समान है। जोन्स वेक्टर के दाएं और बाएं परिपत्र घटकों को फोटॉन के स्पिन राज्यों के संभाव्यता आयाम के रूप में व्याख्या किया जा सकता है। ऊर्जा संरक्षण के लिए आवश्यक है कि राज्यों को एकात्मक संचालन के साथ रूपांतरित किया जाए। इसका तात्पर्य यह है कि अत्यल्प रूपांतरण एक हर्मिटियन संचालक के साथ रूपांतरित होते हैं। ये निष्कर्ष पारम्परिक तरंगों के लिए मैक्सवेल के समीकरणों की संरचना का एक स्वाभाविक परिणाम हैं।

क्वांटम यांत्रिकी तस्वीर में प्रवेश करती है जब प्रेक्षित मात्राओं को मापा जाता है और निरंतर के बजाय असतत पाया जाता है। अनुमत अवलोकन योग्य मान अवलोकन योग्य से जुड़े संचालकों के एईगेंवल्युस ​​​​द्वारा निर्धारित किए जाते हैं। मामले में कोणीय गति, उदाहरण के लिए, अनुमत अवलोकनीय मान स्पिन संचालक के एईगेंवल्युस ​​​​हैं।

मैक्सवेल के समीकरणों और प्लैंक और आइंस्टीन के सिद्धांतों से स्वाभाविक रूप से ये अवधारणाएं उभरी हैं। वे कई अन्य भौतिक प्रणालियों के लिए सही पाए गए हैं। वास्तव में, विशिष्ट कार्य इस खंड की अवधारणाओं को ग्रहण करना और उसके पश्चात एक भौतिक प्रणाली की अज्ञात गतिकी का अनुमान लगाना है। यह, उदाहरण के लिए, इलेक्ट्रॉनों की गतिकी के साथ किया गया था। उस परिपेक्ष्य में, इस खंड में सिद्धांतों से वापस काम करते हुए, कणों की क्वांटम गतिकी का अनुमान लगाया गया, जिससे श्रोडिंगर का समीकरण न्यूटोनियन यांत्रिकी से अलग हो गया। परमाणुओं के लिए इस समीकरण के समाधान ने परमाणु स्पेक्ट्रा के लिए बामर श्रृंखला की व्याख्या की और परिणामस्वरूप सभी परमाणु भौतिकी और रसायन विज्ञान के लिए एक आधार तैयार किया।

यह अकेला मौका नहीं है, जिसमें मैक्सवेल के समीकरणों ने न्यूटोनियन यांत्रिकी के पुनर्गठन को विवश किया है। मैक्सवेल के समीकरण आपेक्षिक रूप से सुसंगत हैं। मैक्सवेल के समीकरणों के साथ पारम्परिक यांत्रिकी को संगत बनाने के प्रयासों के परिणामस्वरूप विशेष सापेक्षता है (देखें, उदाहरण के लिए, चलती चुंबक और कंडक्टर समस्या)।

यह भी देखें

संदर्भ

  1. Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. (June 1992). "प्रकाश की कक्षीय कोणीय गति और लैगुएरे-गौसियन लेजर मोड का परिवर्तन". Physical Review A. 45 (11): 8186–9. Bibcode:1992PhRvA..45.8185A. doi:10.1103/PhysRevA.45.8185. PMID 9906912.
  2. Beth, R.A. (1935). "प्रकाश की कोणीय गति का प्रत्यक्ष पता लगाना". Phys. Rev. 48 (5): 471. Bibcode:1935PhRv...48..471B. doi:10.1103/PhysRev.48.471.


अग्रिम पठन

  • Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X.
  • Baym, Gordon (1969). Lectures on Quantum Mechanics. W. A. Benjamin. ISBN 0-8053-0667-6.
  • Dirac, P. A. M. (1958). The Principles of Quantum Mechanics (Fourth ed.). Oxford. ISBN 0-19-851208-2.