तंग अवधि

From Vigyanwiki

मीट्रिक ज्यामिति में, मीट्रिक स्पेस M का मीट्रिक लिफ़ाफ़ा या तंग अवधि एक इंजेक्शन मीट्रिक स्पेस है जिसमें M को एम्बेड किया जा सकता है। कुछ अर्थों में इसमें M के बिंदुओं के मध्य के प्रत्येक बिंदु होते हैं, जो यूक्लिडियन अंतरिक्ष में स्थापित बिंदु के उत्तल हल के समान होते हैं। तंग अवधि को कभी-कभी 'M' के इंजेक्शन एनवेलप या हाइपरकोनवेक्स हल के रूप में भी जाना जाता है। इसे इंजेक्शन पतवार भी कहा जाता है, परंतु बीजगणित में एक मॉड्यूल के इंजेक्शन हल के सापेक्ष भ्रमित नहीं होना चाहिए, एक अवधारणा जिसमें मीट्रिक रिक्त स्पेस के अतिरिक्त 'R '-मॉड्यूल की श्रेणी के सापेक्ष समान विवरण होता है ।

तंग अवधि का वर्णन सबसे पहले इसबेल (1964) द्वारा वर्णित किया गया था , और इसका अध्ययन 1960 के दशक में होल्स्ज़्Tस्की द्वारा प्रारंभ किया गया था। इसके उपरांत में ड्रेस (1984) और क्रोबक और & लारमोर (1994) स्वतंत्र रूप से पुनः से खोजा गया था इस इतिहास के लिए चेपोई (1997) को देखें। तंग अवधि T-सिद्धांत के केंद्रीय निर्माणों में से एक है।

परिभाषा

एक मीट्रिक स्पेस की तंग अवधि को निम्नानुसार परिभाषित किया जा सकता है। माना (X,d) एक मीट्रिक स्पेस हैं, और T(X) को X पर 'चरम फलन' का सेट बनने दे, जहां हम X को 'एक्सट्रीमल फलन' कहते हैं, जिसका अर्थ X से 'R ' तक एक फलन f है जैसे कि

  1. X में किसी x, y के लिए, d(x,y) ≤ f(x) + f(y), और
  2. X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.[1]: 124 

विशेष रूप से (ऊपर विशेषता1 में x = y लेने पर) प्रत्येक x के लिए f(x) ≥ 0। ऊपर दी गई पहली आवश्यकता की व्याख्या करने की एक विधि यह है कि f कुछ नए बिंदु से X के बिंदुओं तक संभावित दूरी के एक सेट को परिभाषित करता है जो कि (X, d) में दूरियों के सापेक्ष त्रिकोण असमानता को पूरा करना चाहता है। दूसरी आवश्यकता बताती है कि त्रिभुज असमानता का उल्लंघन किए बिना इनमें से किसी भी दूरी को न्यूनतम नहीं किया जा सकता है।

(X, d) का 'तंग अवधि' मीट्रिक स्पेस (T (X), δ) है, जहां

मानदंड से प्रेरित मीट्रिक के अनुरूप है। (यदि d बाध्य है, तो δ मानदंड से प्रेरित मीट्रिक द्वारा प्रेरित उप-मीट्रिक मीट्रिक होता है। यदि d बाध्य नहीं है, तो X पर प्रत्येक चरम कार्य असीमित होता है और इसलिए भले ही, यह सच होगा कि T(X) में किसी भी f,g के लिए, अंतर का है यानी बाउंडेड है।

चरम कार्यों की समतुल्य परिभाषाएँ

X से 'R ' तक एक फलन f के लिए पहली आवश्यकता को पूरा करने के लिए, दूसरी आवश्यकता के निम्नलिखित संस्करण समतुल्य हैं:

  • X में प्रत्येक x के लिए, f(x) = sup{d(x,y) - f(y):y in X}.होता हैं
  • f पूर्वोक्त पहली आवश्यकता के संबंध में बिंदुवार न्यूनतम है, अर्थात, X से 'R' तक किसी भी फलन g के लिए ऐसा है कि d(x,y) ≤ g(x) + g(y) प्रत्येक x,y के लिए X में , अगर g≤f बिन्दुवार, तो f=g होता है.[2]
  • X = ∅ या X में उपस्थित है जैसे X में प्रत्येक X के लिए, f (X) ≤ d (a, X) उपस्थित होता है।[3]

मूल गुण और उदाहरण

  • X में प्रत्येक X के लिए, होता हैं।
  • X में प्रत्येक X के लिए, अतिवादी होता है। (प्रमाण: समरूपता और त्रिभुज असमानता मेट्रिक स्पेस का उपयोग करते हैं।)
  • यदि X परिमित है, तो X से 'R' तक किसी भी फलन f के लिए जो पहली आवश्यकता को पूरा करता है, दूसरी आवश्यकता में इस शर्त के समान है कि X में प्रत्येक x के लिए, X में y उपस्थित है जैसे कि f(x) + f (y) = d (X, y)। (अगर तो दोनों स्थितियाँ सत्य हैं। अगर तब श्रेष्ठता ग्रहण की जाती है, और पहली आवश्यकता तुल्यता को दर्शाती है।)
  • |X|=2, और विशिष्ट a, b चुनें जैसे कि X={a, b} चुनते हैं। तब का उत्तल पतवार है{{(a,1),(b,0)},{(a,0),(b,1)}}. [ शीर्षक: यदि X = {0,1}, तो {(0,1),(1,0)} का उत्तल पतवार है।][4]: 124 
  • X पर प्रत्येक चरम कार्य f कातेतोव होता है:[5][6] f पहली आवश्यकता को संतुष्ट करता है और या समकक्ष, f पहली आवश्यकता को पूरा करता है और (1-लिप्सचिट्ज़ निरंतरता है), या समकक्ष, f पहली आवश्यकता को संतुष्ट करता है और [2]
  • T(X)⊆ C(X) लिप्सचिट्ज़ कार्य निरंतर करता हैं।
  • T (X) समान है। (X के 1-लिप्सचिट्ज़ होने पर प्रत्येक चरम कार्य से अनुसरण करता है; cf. इक्विकंटिन्यूटी उदाहरण।)
  • X पर प्रत्येक केटोव कार्य चरम नहीं है। उदाहरण के लिए, a, b को अलग होने दें, X = {a, b}, d = ([x≠y]) देंx,y in X X पर असतत मीट्रिक बनें, और f = {(ए, 1), (बी, 2)} दें। पुनः f कातेतोव है परंतु चरम नहीं है। (यह लगभग तत्काल है कि f कटेटोव है। f चरम नहीं है क्योंकि यह इस खंड की तीसरी बुलेट में विशेषताको विफल करता है।)
  • यदि d परिबद्ध है, तो T(X) में प्रत्येक f परिबद्ध है। वास्तव में, T(X) में प्रत्येक f के लिए, (टिप्पणी ) (उपर्युक्त खंड में तीसरे समकक्ष विशेषतासे अनुसरण करता है।)
  • यदि d अपरिबद्ध है, तो T(X) में प्रत्येक f अपरिबद्ध है। (पहली आवश्यकता से अनुसरण करता है।)
  • बिंदुवार सीमा के तहत बंद है। किसी भी बिंदुवार अभिसरण के लिए
  • अगर (X, d) कॉम्पैक्ट है, तो (T (X), δ) कॉम्पैक्ट है।[7][2]: Proposition 4.6.3  (सबूत: Xट्रीम वैल्यू थ्योरम#मैट्रिक और टोपोलॉजिकल स्पेस का सामान्यीकरण|Xट्रीम-वैल्यू प्रमेय का मतलब है कि d, एक फंक्शन के रूप में निरंतर होना घिरा हुआ है, इसलिए (पिछली गोली देखें) C(X) का परिबद्ध उपसमुच्चय है। हमने दिखाया है कि T (X) समान है, इसलिए अर्जेला-एस्कोली प्रमेय का अर्थ है कि T (X) अपेक्षाकृत कॉम्पैक्ट है। हालाँकि, पिछली बुलेट का तात्पर्य T(X) के तहत बंद है मानदंड, चूंकि अभिसरण का अर्थ बिंदुवार अभिसरण है। इस प्रकार T (X) कॉम्पैक्ट है।)
  • X से 'R' तक के किसी भी फलन g के लिए जो पहली आवश्यकता को पूरा करता है, T(X) में f उपस्थित है जैसे कि f≤g बिंदुवार।[2]: Lemma 4.4 
  • X पर किसी भी चरम समारोह f के लिए, [2]: Proposition 4.6.1 [Note 1]
  • T(X) में किसी भी f,g के लिए अंतर से संबंधित , यानी, बंधा हुआ है। (उपरोक्त गोली का प्रयोग करें।)
  • कुराटोव्स्की मानचित्र[4]: 125  एक आइसोमेट्री है। (जब X=∅, परिणाम स्पष्ट होता है। जब X≠∅, विपरीत त्रिकोण असमानता का अर्थ परिणाम होता है।)
  • मान लीजिए कि T(X) में f है। X में किसी a के लिए, यदि f(a)=0, तो f=e(a).[8]: Lemma 5.1  (X में प्रत्येक X के लिए हमारे पास है f की न्यूनतमता (उपरोक्त खंड में दूसरा समकक्ष लक्षण वर्णन) और तथ्य यह है कि इसके उपरांत की पहली आवश्यकता को पूरा करता है )
  • (X,d) अतिशयोक्तिपूर्ण मीट्रिक स्पेस है यदि और केवल यदि (T(X),δ) अतिशयोक्तिपूर्ण है।[8]: Theorem 5.3 

हाइपरकोन्वेक्सि गुण

  • (T(X),δ) और
    दोनों इंजेक्शन मेट्रिक स्पेस हैं।[2]
  • किसी भी y के लिए
    अतिउत्तल नहीं होता है।[2] ((T (X), δ) (X, d) का एक अतिउत्तल पतवार है।)
  • मन के सापेक्ष एक अतिउत्तल मीट्रिक स्पेस हो और . अगर प्रत्येक के लिए मैं सापेक्ष तब अतिउत्तल नहीं है तो और (T(X),δ) वो आइसोमेट्री की परिभाषा हैं।[2]((X, d) का प्रत्येक हाइपरकॉन्वेक्स हल (T (X), δ) के सापेक्ष आइसोमेट्रिक होता है।)

उदाहरण

  • |X|=3, विशिष्ट a, b, c चुनें जैसे कि X={a,b,c}, और मान लीजिए कि i=d(a,b), j=d(a,c), k=d (b,c) हैं। तब