गेज फिक्सिंग: Difference between revisions

From Vigyanwiki
Line 23: Line 23:
यद्यपि पारम्परिक विद्युत चुंबकत्व को अब प्रायः गेज सिद्धांत के रूप में संदर्भित किया जाता है, यह मूल रूप से इन शर्तों में नहीं माना गया था। पारम्परिक बिंदु आवेश की गति केवल उस बिंदु पर विद्युत और चुंबकीय क्षेत्र की शक्ति से प्रभावित होती है, और संभावितों को कुछ प्रमाणों और गणनाओं को सरल बनाने के लिए केवल गणितीय उपकरण के रूप में माना जा सकता है। क्वांटम क्षेत्र सिद्धांत के आगमन तक यह नहीं कहा जा सकता था कि क्षमताएं स्वयं एक प्रणाली के भौतिक विन्यास का हिस्सा हैं। सटीक रूप से अनुमानित और प्रयोगात्मक रूप से सत्यापित होने वाला सबसे पहला परिणाम अहरोनोव-बोहम प्रभाव था, जिसका कोई पारम्परिक समकक्ष नहीं है। फिर भी, इन सिद्धांतों में गेज स्वतंत्रता अभी भी सत्य है। उदाहरण के लिए, अहरोनोव-बोहम प्रभाव एक बंद कुंडली के चारों ओर A के [[रेखा अभिन्न|रेखा पूर्णांक]] पर निर्भर करता है, और यह पूर्णांक इसके द्वारा नहीं बदला जाता है
यद्यपि पारम्परिक विद्युत चुंबकत्व को अब प्रायः गेज सिद्धांत के रूप में संदर्भित किया जाता है, यह मूल रूप से इन शर्तों में नहीं माना गया था। पारम्परिक बिंदु आवेश की गति केवल उस बिंदु पर विद्युत और चुंबकीय क्षेत्र की शक्ति से प्रभावित होती है, और संभावितों को कुछ प्रमाणों और गणनाओं को सरल बनाने के लिए केवल गणितीय उपकरण के रूप में माना जा सकता है। क्वांटम क्षेत्र सिद्धांत के आगमन तक यह नहीं कहा जा सकता था कि क्षमताएं स्वयं एक प्रणाली के भौतिक विन्यास का हिस्सा हैं। सटीक रूप से अनुमानित और प्रयोगात्मक रूप से सत्यापित होने वाला सबसे पहला परिणाम अहरोनोव-बोहम प्रभाव था, जिसका कोई पारम्परिक समकक्ष नहीं है। फिर भी, इन सिद्धांतों में गेज स्वतंत्रता अभी भी सत्य है। उदाहरण के लिए, अहरोनोव-बोहम प्रभाव एक बंद कुंडली के चारों ओर A के [[रेखा अभिन्न|रेखा पूर्णांक]] पर निर्भर करता है, और यह पूर्णांक इसके द्वारा नहीं बदला जाता है
<math display="block">\mathbf{A} \rightarrow \mathbf{A} + \nabla \psi\,.</math>
<math display="block">\mathbf{A} \rightarrow \mathbf{A} + \nabla \psi\,.</math>
गैर-एबेलियन गेज सिद्धांत, जैसे यांग-मिल्स सिद्धांत और [[सामान्य सापेक्षता]], एक अधिक जटिल विषय है; विवरण के लिए ग्रिबोव अस्पष्टता फैडडीव-पोपोव भूत और [[फ्रेम बंडल]] देखें।
गैर-एबेलियन गेज सिद्धांत, जैसे यांग-मिल्स सिद्धांत और [[सामान्य सापेक्षता]], एक अधिक जटिल विषय है; विवरण के लिए ग्रिबोव अस्पष्टता फैडडीव-पोपोव छाया और [[फ्रेम बंडल]] देखें।


=== एक उदाहरण ===
=== एक उदाहरण ===
Line 125: Line 125:
[[रिचर्ड फेनमैन]] ने सामान्यतः गणना प्रक्रियाओं को सही ठहराने के लिए लगभग इन पंक्तियों के साथ तर्कों का इस्तेमाल किया, जो महत्वपूर्ण अवलोकन योग्य मापदंडों जैसे कि इलेक्ट्रॉन के [[विषम चुंबकीय क्षण]] के लिए सुसंगत, परिमित, उच्च परिशुद्धता परिणाम उत्पन्न करते हैं। यद्यपि उनके तर्कों में कभी-कभी भौतिकविदों के मानकों से भी गणितीय कठोरता का अभाव था और वार्ड-ताकाहाशी पहचान की व्युत्पत्ति जैसे विवरणों पर प्रकाश डाला गया था। [[जूलियन श्विंगर]] और [[हार्ट-इचिरो टोमोनागा]] के साथ फेनमैन ने भौतिकी में 1965 का नोबेल पुरस्कार प्राप्त किया।
[[रिचर्ड फेनमैन]] ने सामान्यतः गणना प्रक्रियाओं को सही ठहराने के लिए लगभग इन पंक्तियों के साथ तर्कों का इस्तेमाल किया, जो महत्वपूर्ण अवलोकन योग्य मापदंडों जैसे कि इलेक्ट्रॉन के [[विषम चुंबकीय क्षण]] के लिए सुसंगत, परिमित, उच्च परिशुद्धता परिणाम उत्पन्न करते हैं। यद्यपि उनके तर्कों में कभी-कभी भौतिकविदों के मानकों से भी गणितीय कठोरता का अभाव था और वार्ड-ताकाहाशी पहचान की व्युत्पत्ति जैसे विवरणों पर प्रकाश डाला गया था। [[जूलियन श्विंगर]] और [[हार्ट-इचिरो टोमोनागा]] के साथ फेनमैन ने भौतिकी में 1965 का नोबेल पुरस्कार प्राप्त किया।


आगे और पीछे के ध्रुवीकृत विकई किरण को क्वांटम क्षेत्र सिद्धांत के स्पर्शोन्मुख अवस्थाओं में छोड़ा जा सकता है (वार्ड-ताकाहाशी पहचान देखें)। इस कारण से, और क्योंकि [[स्पिन राशि]]यों में उनकी उपस्थिति को QED में एक मात्र गणितीय उपकरण के रूप में देखा जा सकता है (क्लासिकल वैद्युतगतिकी में विद्युत चुम्बकीय चार-क्षमता की तरह), उन्हें प्रायः अभौतिक कहा जाता है। लेकिन उपरोक्त बाधा-आधारित गेज फिक्सिंग प्रक्रियाओं के विपरीत, R<sub>ξ</sub>गेज गैर-अबेलियन गेज सिद्धांत | गैर-अबेलियन गेज समूहों जैसे [[क्वांटम क्रोमोडायनामिक्स]] के एसयू (3) के लिए अच्छी तरह से सामान्यीकृत करता है। भौतिक और अभौतिक गड़बड़ी कुल्हाड़ियों के बीच युग्मन चर के संगत परिवर्तन के तहत पूरी तरह से गायब नहीं होते हैं; सही परिणाम प्राप्त करने के लिए, विस्तृत संरूपण  के स्थान के भीतर गैर-तुच्छ जैकोबियन मैट्रिक्स और गेज स्वतंत्रता अक्षों के एम्बेडिंग के निर्धारक के लिए खाता होना चाहिए। इससे फदीदेव-पोपोव भूतों के साथ-साथ फेनमैन आरेखों में आगे और पीछे के ध्रुवीकृत गेज बोसोन की स्पष्ट उपस्थिति होती है, जो कि और भी अभौतिक हैं क्योंकि वे स्पिन-सांख्यिकी प्रमेय का उल्लंघन करते हैं। इन संस्थाओं के बीच संबंध, और वे क्वांटम यांत्रिक अर्थों में कणों के रूप में प्रकट नहीं होने के कारण, परिमाणीकरण के बीआरएसटी औपचारिकता में अधिक स्पष्ट हो जाते हैं।
आगे और पीछे के ध्रुवीकृत किरण को क्वांटम क्षेत्र सिद्धांत के स्पर्शोन्मुख अवस्थाओं में छोड़ा जा सकता है। इस कारण से [[स्पिन राशि]]यों में उनकी उपस्थिति को QED में एक मात्र गणितीय उपकरण के रूप में देखा जा सकता है, उन्हें प्रायः अभौतिक कहा जाता है। लेकिन उपरोक्त बाधा-आधारित गेज फिक्सिंग प्रक्रियाओं के विपरीत, R<sub>ξ</sub>गेज| गैर-अबेलियन गेज समूहों के लिए अच्छी तरह से सामान्यीकृत करता है। भौतिक और अभौतिक गड़बड़ी ध्रुवो के बीच युग्मन चर के संगत परिवर्तन के अंतर्गत पूरी तरह से विलुप्त नहीं होते हैं; सही परिणाम प्राप्त करने के लिए, विस्तृत संरूपण  के स्थान के भीतर गैर-तुच्छ जैकोबियन मैट्रिक्स और गेज स्वतंत्रता अक्षों के एम्बेडिंग के निर्धारक के लिए खुला होना चाहिए। इससे फदीदेव-पोपोव छायाों के साथ-साथ फेनमैन आरेखों में आगे और पीछे के ध्रुवीकृत गेज बोसोन की स्पष्ट उपस्थिति होती है, जो कि और भी अभौतिक हैं क्योंकि वे स्पिन-सांख्यिकी प्रमेय का उल्लंघन करते हैं। इन संस्थाओं के बीच संबंध, और वे क्वांटम यांत्रिक अर्थों में कणों के रूप में प्रकट नहीं होने के कारण, परिमाणीकरण के बीआरएसटी औपचारिकता में अधिक स्पष्ट हो जाते हैं।
 
== मैक्सिमल एबेलियन गेज ==
किसी भी गैर-गेज सिद्धांत में, कोई भी अधिकतम एबेलियन गेज एक ''अपूर्ण'' गेज है जो [[अधिकतम एबेलियन उपसमूह]] के बाहर गेज की स्वतंत्रता को ठीक करता है। उदाहरण हैं
* डी आयामों में एसयू (2) गेज सिद्धांत के लिए, अधिकतम एबेलियन उपसमूह एक यू (1) उपसमूह है। यदि इसे [[पाउली मैट्रिक्स]] ''σ'' द्वारा उत्पन्न होने के लिए चुना जाता है<sub>3</sub>, तो अधिकतम एबेलियन गेज वह है जो फलन को अधिकतम करता है <math display="block">\int d^Dx \left[\left(A_\mu^1\right)^2+\left(A_\mu^2\right)^2\right]\,,</math> जहाँ  <math display="block">{\mathbf A}_\mu = A_\mu^a \sigma_a\,.</math>
*D आयामों में SU(3) गेज सिद्धांत के लिए, अधिकतम एबेलियन उपसमूह एक U(1)×U(1) उपसमूह है। यदि इसे [[गेल-मैन मैट्रिसेस]] λ द्वारा उत्पन्न होने के लिए चुना जाता है<sub>3</sub> और λ<sub>8</sub>, तो अधिकतम एबेलियन गेज वह है जो फलन को अधिकतम करता है <math display="block">\int d^Dx \left[\left(A_\mu^1\right)^2 + \left(A_\mu^2\right)^2 + \left(A_\mu^4\right)^2 + \left(A_\mu^5\right)^2 + \left(A_\mu^6\right)^2 + \left(A_\mu^7\right)^2\right]\,,</math> जहाँ  <math display="block">{\mathbf A}_\mu = A_\mu^a \lambda_a</math>
यह उच्च बीजगणित (बीजगणित में समूहों के) में नियमित रूप से लागू होता है, उदाहरण के लिए क्लिफोर्ड बीजगणित और जैसा कि यह नियमित रूप से होता है।
 
== कम आमतौर पर इस्तेमाल किए जाने वाले गेज ==
<!--The following synonyms are boldfaced as per WP:R#PLA-->
साहित्य में विभिन्न अन्य गेज, जो विशिष्ट परिस्थितियों में फायदेमंद हो सकते हैं, प्रकट हुए हैं।<ref name=Jackson2002 />


=== मैक्सिमल एबेलियन गेज ===
किसी भी गैर-गेज सिद्धांत में, अधिकतम एबेलियन गेज एक ''अपूर्ण''  गेज है जो [[अधिकतम एबेलियन उपसमूह]] के बाहर गेज की स्वतंत्रता को ठीक करता है। उदाहरण हैं
* डी आयामों में एसयू 2 गेज सिद्धांत के लिए, अधिकतम एबेलियन उपसमूह एक यू 1 उपसमूह है। यदि इसे [[पाउली मैट्रिक्स]] ''σ''<sub>3</sub> द्वारा उत्पन्न किया जाता है तो अधिकतम एबेलियन गेज वह है जो फलन को अधिकतम करता है <math display="block">\int d^Dx \left[\left(A_\mu^1\right)^2+\left(A_\mu^2\right)^2\right]\,,</math> जहाँ  <math display="block">{\mathbf A}_\mu = A_\mu^a \sigma_a\,.</math>
*D आयामों में SU(3) गेज सिद्धांत के लिए, अधिकतम एबेलियन उपसमूह एक U(1)×U(1) उपसमूह है। यदि इसे [[गेल-मैन मैट्रिसेस]] λ<sub>3</sub> और λ<sub>8</sub> द्वारा उत्पन्न होने के लिए चुना जाता है तो अधिकतम एबेलियन गेज वह है जो फलन को अधिकतम करता है <math display="block">\int d^Dx \left[\left(A_\mu^1\right)^2 + \left(A_\mu^2\right)^2 + \left(A_\mu^4\right)^2 + \left(A_\mu^5\right)^2 + \left(A_\mu^6\right)^2 + \left(A_\mu^7\right)^2\right]\,,</math> जहाँ  <math display="block">{\mathbf A}_\mu = A_\mu^a \lambda_a</math>
यह उच्च बीजगणित में नियमित रूप से लागू होता है, उदाहरण के लिए क्लिफोर्ड बीजगणित।


=== सामान्यतः कम प्रयोग किए जाने वाले गेज ===
साहित्य में विभिन्न गेज, जो विशिष्ट परिस्थितियों में लाभप्रद हो सकते हैं, प्रकट हुए हैं।<ref name="Jackson2002" />


=== वेइल गेज ===
=== वेइल गेज ===
वेइल गेज (हैमिल्टनियन या टेम्पोरल गेज के रूप में भी जाना जाता है) पसंद से प्राप्त एक ''अपूर्ण'' गेज है
वेइल गेज जिसे हैमिल्टनियन या टेम्पोरल गेज के रूप में भी जाना जाता है एक ''अपूर्ण'' गेज है
<math display="block">\varphi=0</math>
<math display="block">\varphi=0</math>
इसका नाम [[हरमन वेइल]] के नाम पर रखा गया है। यह नकारात्मक-मानक [[भूत (भौतिकी)]] को समाप्त करता है, लोरेन्ट्ज़ इनवेरिएंस को प्रकट नहीं करता है, और अनुदैर्ध्य फोटोन और राज्यों पर एक बाधा की आवश्यकता होती है।<ref>{{cite book |last1=Hatfield |first1=Brian |title=Quantum field theory of point particles and strings |date=1992 |publisher=Addison-Wesley |isbn=0201360799 |pages=210–213}}</ref>
इसका नाम [[हरमन वेइल]] के नाम पर रखा गया है। यह नकारात्मक-मानक [[भूत (भौतिकी)|छाया]] को समाप्त करता है और लोरेन्ट्ज़ इनवेरिएंस को प्रकट नहीं करता हैबी तथा अनुदैर्ध्य फोटोन और राज्यों पर एक बाधा की आवश्यकता होती है।<ref>{{cite book |last1=Hatfield |first1=Brian |title=Quantum field theory of point particles and strings |date=1992 |publisher=Addison-Wesley |isbn=0201360799 |pages=210–213}}</ref>
 




=== बहुध्रुवीय गेज ===
=== बहुध्रुवीय गेज ===
बहुध्रुवीय गेज की गेज स्थिति (जिसे लाइन गेज, पॉइंट गेज या पॉइनकेयर गेज (हेनरी पोंकारे के नाम पर) के रूप में भी जाना जाता है) है:
बहुध्रुवीय गेज की गेज स्थिति जिसे लाइन गेज, पॉइंट गेज या पॉइनकेयर गेज के रूप में भी जाना जाता है:
<math display="block">\mathbf{r}\cdot\mathbf{A} = 0.</math>
<math display="block">\mathbf{r}\cdot\mathbf{A} = 0.</math>
यह एक और गेज है जिसमें तात्क्षणिक क्षेत्रों के संदर्भ में क्षमता को सरल तरीके से व्यक्त किया जा सकता है
यह एक और गेज है जिसमें तात्क्षणिक क्षेत्रों के संदर्भ में क्षमता को सरल तरीके से व्यक्त किया जा सकता है
Line 154: Line 152:


=== फॉक-श्विंगर गेज ===
=== फॉक-श्विंगर गेज ===
फॉक-श्विंगर गेज की गेज स्थिति ([[व्लादिमीर फॉक]] और जूलियन श्विंगर के नाम पर, जिसे कभी-कभी सापेक्षतावादी पोंकारे गेज भी कहा जाता है) है:
फॉक-श्विंगर गेज की गेज स्थिति [[व्लादिमीर फॉक]] और जूलियन श्विंगर के नाम पर, जिसे कभी-कभी सापेक्षतावादी पोंकारे गेज भी कहा जाता है, रखा गया है :
<math display="block">x^{\mu}A_{\mu}=0</math>
<math display="block">x^{\mu}A_{\mu}=0</math>
जहां एक्स<sup>μ</sup> [[स्थिति चार-वेक्टर]] है।
जहां X<sup>μ</sup> [[स्थिति चार-वेक्टर]] है।


=== डायराक गेज ===
=== डायराक गेज ===
नॉनलाइनियर डायराक गेज स्थिति ([[पॉल डिराक]] के नाम पर) है: <math display="block">A_{\mu} A^{\mu} = k^2</math>
नॉनलाइनियर डायराक गेज स्थिति [[पॉल डिराक]] के नाम पर है: <math display="block">A_{\mu} A^{\mu} = k^2</math>





Revision as of 01:06, 13 February 2023

गेज सिद्धांत भौतिकी में, गेज फिक्सिंग क्षेत्र चर में स्वतंत्रता की अनावश्यक डिग्री से तुलना करने के लिए गणितीय प्रक्रिया को दर्शाता है। परिभाषा के अनुसार,गेज सिद्धांत प्रणाली के प्रत्येक भौतिक रूप से विशिष्ट संरूपण को विस्तृत स्थानीय क्षेत्र संरूपण के समतुल्य वर्ग के रूप में दर्शाता है। एक ही तुल्यता वर्ग में कोई भी दो विस्तृत विन्यास गेज परिवर्तन से संबंधित हैं और विन्यास स्थान में अभौतिक अक्षांसो के साथ समरूपता परिवर्तन के बराबर है। गेज सिद्धांत की अधिकांश मात्रात्मक भौतिक अनुमानों को केवल स्वतंत्रता की इन अभौतिक श्रेणी को दबाने या अनदेखा करने के लिए एक सुसंगत उपाय के अंतर्गत प्राप्त किया जा सकता है।

यद्यपि विस्तृत विन्यास के स्थान में अभौतिक अक्षांश भौतिक प्रारूप की मौलिक संपत्ति हैं, इनके लिए लंबवत दिशाओं का कोई विशेष समुच्चय नहीं है। इसलिए एक विशेष विस्तृत विन्यास द्वारा प्रत्येक भौतिक विन्यास का प्रतिनिधित्व करने वाले अनुप्रस्थ काट के भारी मात्रा में स्वतंत्रता सम्मिलित है। विवेकपूर्ण गेज फिक्सिंग, गणनाओं को अत्यधिक सरल बना सकती है, लेकिन उत्तरोत्तर कठिन हो जाती है क्योंकि भौतिक प्रारूप अधिक यथार्थवादी हो जाता है; क्वांटम क्षेत्र सिद्धांत के लिए इसका अनुप्रयोग पुनर्सामान्यीकरण से संबंधित जटिलताओं से भरा होता है, विशेषतः जब गणना उच्च क्रम में जारी रहती है। ऐतिहासिक रूप से, तार्किक सुसंगत और अभिकलनीयतः ट्रैक्टेबल गेज फिक्सिंग प्रक्रियाओं की खोज, और विभिन्न प्रकार की तकनीकी कठिनाइयों के सामने उनकी समानता प्रदर्शित करने का प्रयास, उन्नीसवीं शताब्दी के उत्तरार्ध से लेकर धारा तक गणितीय भौतिकी का एक प्रमुख चालक रहा है।[citation needed]


गेज स्वतंत्रता

पुरातन गेज सिद्धांत विद्युत चुम्बकीय चर-क्षमता के संदर्भ में हेविसाइड-गिब्स की निरंतर विद्युत् गतिविज्ञान का सूत्रीकरण है, जिसे यहां अंतरिक्ष और समय के असममित हीविसाइड संख्या में प्रस्तुत किया गया है; अंतरिक्ष मैक्सवेल के समीकरणों के विद्युतीय क्षेत्र और चुंबकीय क्षेत्र बी में स्वतंत्रता की केवल भौतिक डिग्री होती है, इस अर्थ में विद्युत चुम्बकीय क्षेत्र विन्यास में स्वतंत्रता की प्रत्येक 'गणितीय' डिग्री के आसपास के क्षेत्र में परीक्षण आवेशों की गति पर अलग से मापने योग्य प्रभाव होता है। इन क्षेत्र शक्ति चर विद्युत क्षमता p और चुंबकीय सदिश क्षमता A के माध्यम से व्यक्त किया जा सकता है।

यदि परिवर्तन

 

 

 

 

(1)

बना दिया जाता है, तब B अपरिवर्तित रहता है, क्योंकि पहचान के साथ

यद्यपि, यह परिवर्तन E के अनुसार बदलता है
यदि कोई अन्य परिवर्तन

 

 

 

 

(2)

बना दिया जाता है तो E भी वही रहता है। इसलिए, यदि कोई कार्य होता है तो E और B क्षेत्र अपरिवर्तित रहते हैं ψ(r, t) और साथ ही रूपांतरणों के माध्यम से A और φ को रूपांतरित करता है।

स्केलर और वेक्टर क्षमता का एक विशेष विकल्प, गेज क्षमता है और इसे परिवर्तित करने के लिए उपयोग किए जाने वाले अदिश फलन ψ को गेज फलन कहा जाता है। गेज कार्यों की मनमानी संख्या का अस्तित्व ψ(r, t) सिद्धांत यू 1 गेज स्वतंत्रता से मेल खाती है। गेज फिक्सिंग कई तरीकों से की जा सकती है, जिनमें से कुछ को हम नीचे प्रदर्शित कर रहे हैं।

यद्यपि पारम्परिक विद्युत चुंबकत्व को अब प्रायः गेज सिद्धांत के रूप में संदर्भित किया जाता है, यह मूल रूप से इन शर्तों में नहीं माना गया था। पारम्परिक बिंदु आवेश की गति केवल उस बिंदु पर विद्युत और चुंबकीय क्षेत्र की शक्ति से प्रभावित होती है, और संभावितों को कुछ प्रमाणों और गणनाओं को सरल बनाने के लिए केवल गणितीय उपकरण के रूप में माना जा सकता है। क्वांटम क्षेत्र सिद्धांत के आगमन तक यह नहीं कहा जा सकता था कि क्षमताएं स्वयं एक प्रणाली के भौतिक विन्यास का हिस्सा हैं। सटीक रूप से अनुमानित और प्रयोगात्मक रूप से सत्यापित होने वाला सबसे पहला परिणाम अहरोनोव-बोहम प्रभाव था, जिसका कोई पारम्परिक समकक्ष नहीं है। फिर भी, इन सिद्धांतों में गेज स्वतंत्रता अभी भी सत्य है। उदाहरण के लिए, अहरोनोव-बोहम प्रभाव एक बंद कुंडली के चारों ओर A के रेखा पूर्णांक पर निर्भर करता है, और यह पूर्णांक इसके द्वारा नहीं बदला जाता है

गैर-एबेलियन गेज सिद्धांत, जैसे यांग-मिल्स सिद्धांत और सामान्य सापेक्षता, एक अधिक जटिल विषय है; विवरण के लिए ग्रिबोव अस्पष्टता फैडडीव-पोपोव छाया और फ्रेम बंडल देखें।

एक उदाहरण

File:Gauge.png
एक मुड़े हुए सिलेंडर का गेज फिक्सिंग। (ध्यान दें: लाइन सिलेंडर की सतह पर है, उसके अंदर नहीं।)

गेज फिक्सिंग के उदाहरण के रूप में, बेलनाकार छड़ को देख सकते हैं और यह बताने का प्रयास कर सकते हैं कि यह मुड़ा हुआ है या नहीं। यदि छड़ पूरी तरह से बेलनाकार है, तो अनुप्रस्थ काट की गोलाकार समरूपता यह बताना असंभव बना देती है कि यह मुड़ी हुई है या नहीं। यद्यपि, यदि छड़ की लंबाई के साथ एक सीधी रेखा खींची जाती, तो रेखा की स्थिति को देखकर यह आसानी से कहा जा सकता था कि कोई मोड़ है या नहीं। रेखा खींचना गेज फिक्सिंग है। रेखा खींचना गेज समरूपता को बिगाड़ता है, अर्थात छड़ के प्रत्येक बिंदु पर अनुप्रस्थ काट की वृत्ताकार समरूपता रेखा गेज फलन के समतुल्य है; यह सीधा नहीं होना चाहिए। लगभग कोई भी लाइन वैध गेज फिक्सिंग है, संक्षेप में, गेज ज्ञात होना चाहिए यह बताने के लिए कि क्या छड़ मुड़ी हुई है, भौतिक मात्राएँ, जैसे कि अपरूपण ऊर्जा, गेज पर निर्भर नहीं करती हैं, अर्थात वे अचर गेज हैं।

कूलम्ब गेज

कूलम्ब गेज जिसे अनुदैर्ध्य और अनुप्रस्थ क्षेत्र के रूप में भी जाना जाता है, का उपयोग क्वांटम रसायन विज्ञान और संघनित पदार्थ भौतिकी में किया जाता है और इसे गेज स्थिति द्वारा परिभाषित किया जाता है।

यह क्वांटम यांत्रिकी में अर्ध-शास्त्रीय गणनाओं के लिए विशेष रूप से उपयोगी है, जिसमें सदिश क्षमता परिमाणीकरण है, लेकिन कूलम्ब सहभागिता नहीं है।

कूलम्ब गेज में कई गुण हैं:

  1. इसे संभावनाओं के क्षेत्रों और घनत्व के तात्कालिक मूल्यों के संदर्भ में व्यक्त किया जा सकता है

    जहाँ ρ(r, t) विद्युत आवेश घनत्व है, (जहाँ r अंतरिक्ष में कोई स्थिति वेक्टर है और r′ आवेश या वर्तमान वितरण में एक बिंदु है), r और dr मात्रा तत्व r पर संचालित होता है।

    इन संभावनाओं की तात्कालिक प्रकृति, पहली दृष्टि में, कारण-कार्य का उल्लंघन करने के लिए प्रकट होती है, क्योंकि विद्युत आवेश या चुंबकीय क्षेत्र की गति सभी स्थानों पर संभावित परिवर्तन के रूप में तुरंत दिखाई देती है। यह ध्यान देने योग्य है कि अदिश और सदिश क्षमताएं स्वयं आवेशों की गति को प्रभावित नहीं करती हैं, केवल उनके व्युत्पत्ति के संयोजन को विद्युत चुम्बकीय क्षेत्र की शक्ति बनाती हैं। यद्यपि कूलम्ब गेज में स्पष्ट रूप से क्षेत्र की s की गणना कर सकता है और प्रदर्शित कर सकता है कि उनमें परिवर्तन प्रकाश की गति से फैलता है, यह निरीक्षण करना बहुत आसान है कि क्षेत्र की ताकत गेज परिवर्तनों के तहत शक्ति परिवर्तित होती है और स्पष्ट रूप से लोरेंत्ज़ सहसंयोजक लॉरेंज में कार्य-कारण का प्रदर्शन करती है। गेज नीचे वर्णित है।

    सदिश क्षमता के लिए एक और अभिव्यक्ति, समय-मंद विद्युत प्रवाह घनत्व के संदर्भ में J(r, t), को प्राप्त किया गया है।

  2. कूलम्ब गेज की स्थिति को बनाए रखने वाले और गेज परिवर्तन गेज कार्यों के साथ किए जा सकते हैं जो 2ψ = 0 को संतुष्ट करते हैं, लेकिन जैसा इस समीकरण का एकमात्र समाधान जो अनंत पर गायब हो जाता है (जहां सभी क्षेत्रों को गायब होना आवश्यक है) ψ(r, t) = 0 , कोई गेज की मनमानी नहीं रहती। इस वजह से, कूलम्ब गेज को एक पूर्ण गेज कहा जाता है, गेज के विपरीत जहां कुछ गेज की मनमानी बनी रहती है, जैसे नीचे लॉरेंज गेज।
  3. कूलम्ब गेज इस अर्थ में एक न्यूनतम गेज है कि इस गेज के लिए A2 का इंटीग्रल पूरे स्थान पर न्यूनतम है: अन्य सभी गेज एक बड़ा इंटीग्रल देते हैं।[1] कूलम्ब गेज द्वारा दिया गया न्यूनतम मान है
  4. विद्युत आवेश से दूर के क्षेत्रों में अदिश विभव शून्य हो जाता है। इसे विकिरण गेज के रूप में जाना जाता है। विद्युत चुम्बकीय विकिरण को सबसे पहले इस गेज में परिमाणित किया गया था।
  5. कूलम्ब गेज विद्युत चुम्बकीय क्षेत्र के विकास समीकरणों के एक संरक्षित वर्तमान के साथ बातचीत के एक प्राकृतिक हैमिल्टनियन फॉर्मूलेशन को स्वीकार करता है, जो सिद्धांत के परिमाणीकरण के लिए एक फायदा है। कूलम्ब गेज, हालांकि, लोरेंत्ज़ सहसंयोजक नहीं है। यदि एक लोरेंत्ज़ परिवर्तन को एक नए जड़त्वीय फ्रेम में किया जाता है, तो कूलम्ब गेज की स्थिति को बनाए रखने के लिए एक और गेज परिवर्तन करना पड़ता है। इस वजह से, Coulomb गेज का उपयोग सहसंयोजक गड़बड़ी सिद्धांत में नहीं किया जाता है, जो सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत जैसे क्वांटम इलेक्ट्रोडायनामिक्स (QED) के उपचार के लिए मानक बन गया है। लोरेंत्ज़ सहसंयोजक गेज जैसे लोरेंज गेज आमतौर पर इन सिद्धांतों में उपयोग किए जाते हैं। गैर सहपरिवर्ती कूलम्ब गेज में क्यूईडी में भौतिक प्रक्रियाओं के आयाम सहपरिवर्ती लॉरेंज गेज के परिमाण से मेल खाते हैं।[2]
  6. एक समान और स्थिर चुंबकीय क्षेत्र बी के लिए कूलम्ब गेज में वेक्टर क्षमता को तथाकथित सममित गेज के रूप में व्यक्त किया जा सकता है
    साथ ही किसी भी अदिश क्षेत्र (गेज फ़ंक्शन) का ग्रेडिएंट, जिसकी पुष्टि A के div और curl की गणना करके की जा सकती है। अनंत पर का अपसरण अभौतिक धारणा का परिणाम है कि चुंबकीय क्षेत्र पूरे अंतरिक्ष में एक समान है। हालांकि यह वेक्टर क्षमता सामान्य रूप से अवास्तविक है, लेकिन यह अंतरिक्ष की सीमित मात्रा में क्षमता के लिए एक अच्छा सन्निकटन प्रदान कर सकती है जिसमें चुंबकीय क्षेत्र एक समान है।
  7. उपरोक्त विचारों के परिणामस्वरूप, विद्युत चुम्बकीय क्षमता को विद्युत चुम्बकीय क्षेत्र के रूप में उनके सबसे सामान्य रूपों में व्यक्त किया जा सकता है
    मीट्रिक प्रदर्शन = खंड > \mathbf{A}(\mathbf{r},t) = \nabla\times\int\frac{\mathbf{B}(\mathbf{r}',t)}{4\pi R }\operatorname{d}\!^3\mathbf{r}'+\nabla\psi(\mathbf{r},t)</math> कहां ψ(r, t) एक मनमाना अदिश क्षेत्र है जिसे गाजर कहा जाता है। फ़ील्ड जो दस्तावेज़ वर्णों के व्युत्पन्न होते हैं, उन्हें शुद्ध गेज फ़ील्ड के रूप में जाना जाता है और दस्तावेज़ वर्णों से संबंधित मन को गेज स्वतंत्रता के रूप में जाना जाता है। एक गणना में जो सही तरीके से की जाती है, शुद्ध गैज शब्दों का किसी भौतिक अवलोकन पर कोई प्रभाव नहीं पड़ता है। एक मात्रा या अभिव्यंजना जो पैकेज पर टिकी हुई नहीं होती है, उसे गैर-भिन्न कहा जाता है: सभी भौतिक अवलोकनों को गैज इनवेरिएंट होना आवश्यक है। कूलाम्ब गैज से दूसरे गैज में गैज चेंज अजरेज को एक विशिष्ट पासवर्ड के योग के रूप में ले लिया जाता है जो कि चेंज हो जाता है और मनमाना लॉगिन हो जाता है। यदि मनमाना कार्य शून्य पर सेट किया जाता है, तो गैज को स्थिर कहा जाता है। गणना एक निश्चित गैज में की जा सकती है लेकिन गैज इनवेरिएंट के तरीकों से जानी जानी चाहिए।

लॉरेंज गेज

एसआई इकाइयों में लॉरेंज गेज की स्थिति दी गई है:

और गॉसियन इकाइयों में:
इसे पुनः लिखा जा सकता है:
जहाँ विद्युत चुम्बकीय चार-क्षमता है, ∂μ 4-ढाल मीट्रिक हस्ताक्षर (+, −, −, −)] का उपयोग करके

लोरेंट्ज़ इनवेरिएंस को बनाए रखने में बाधा गेज के बीच अद्वितीय है। यद्यपि इस गेज का नाम मूल रूप से डेनिश भौतिक विज्ञानी लुडविग लॉरेंज के नाम पर रखा गया था न कि हेंड्रिक लोरेंत्ज़ के नाम पर; प्रायः इसे लोरेंत्ज़ गेज की गलत वर्तनी दी जाती है। गणना में इसका उपयोग करने वाले पहले व्यक्ति नहीं थे; इसे 1888 में जॉर्ज फ्रांसिस फिट्जगेराल्ड द्वारा पेश किया गया था।

लॉरेंज गेज संभावितो के लिए निम्नलिखित तरंग असमांगी समीकरणों की ओर ले जाता है।

यह इन समीकरणों से देखा जा सकता है कि, धारा और आवेश की अनुपस्थिति में, समाधान वे क्षमताएँ हैं जो प्रकाश की गति से फैलती हैं।

लॉरेंज गेज कुछ अर्थों में अधूरा है। गेज परिवर्तनों का एक उप-स्थान बना रहता है जो बाधा को भी संरक्षित कर सकता है। स्वतंत्रता की ये शेष डिग्री गेज कार्यों से मेल खाती हैं जो तरंग समीकरण को संतुष्ट करती हैं

स्वतंत्रता की ये शेष गेज डिग्री प्रकाश की गति से फैलती हैं। और पूरी तरह से निश्चित गेज प्राप्त करने के लिए, प्रयोगात्मक क्षेत्र के प्रकाश शंकु के साथ सीमा शर्तों को जोड़ती है इसीलिए लॉरेंज गेज में मैक्सवेल के समीकरण सरल होते हैं
जहाँ चार धारा है।

एक ही धारा संरूपण के लिए इन समीकरणों के दो समाधान निर्वात तरंग समीकरण के समाधान से भिन्न होते हैं।

अतः यह स्पष्ट है कि क्षमता के घटक अलग-अलग क्लेन-गॉर्डन समीकरण को पालन करते हैं, और इसलिए लॉरेंज गेज की स्थिति चार-संभावित में अनुप्रस्थ,अनुदैर्ध्य और समय-समान ध्रुवीकरण तरंगों की अनुमति देती है। अनुप्रस्थ ध्रुवीकरण पारम्परिक पारम्परिक विकिरण के अनुरूप हैं, अर्थात, क्षेत्र की उर्जा में अनुप्रस्थ ध्रुवीकृत तरंगें अभौतिक अनुदैर्ध्य और समय की तरह ध्रुवी स्थिति को दबाने के लिए, पारम्परिक दूरी के पैमाने के प्रयोगों में नहीं देखा जाता है, प्रतिपाल्य पहचान के रूप में ज्ञात सहायक बाधाओं को भी नियोजित करना चाहिए। पारम्परिक रूप से, ये सर्वसमिकाएँ निरंतरता समीकरण के समतुल्य पारम्परिक और क्वांटम वैद्युतगतिकी के बीच अंतरों को उस भूमिका के लिए जिम्मेदार ठहराया जा सकता है जो अनुदैर्ध्य और समय-जैसे ध्रुवीकरण सूक्ष्म दूरी पर आवेशित कणों के बीच परस्पर क्रिया करते हैं।

आरξगेज

आरξ गेज लॉरेंज गेज का सामान्यीकरण है जो लैग्रैंगियन घनत्व के साथ एक क्रिया सिद्धांत के संदर्भ में व्यक्त सिद्धांतों पर लागू होता है। 𝐿 . एक सहायक समीकरण के माध्यम से गेज क्षेत्र को प्राथमिकता से बाधित करके गेज को ठीक करने के अतिरिक्त, "भौतिक" लैग्रैंगियन में गेज ब्रेकिंग शब्द जोड़ा जाता है

पैरामीटर ξ का चुनाव गेज की पसंद को निर्धारित करता है। 'लैंडौ गेज' लोरेन्ज गेज के पारम्परिक रूप से समतुल्य है यह सीमा ξ→ 0 में प्राप्त किया जाता है, लेकिन उस सीमा को तब तक के लिए स्थगित कर दिया जाता है जब तक कि सिद्धांत को परिमाणित नहीं किया जाता है। यह कुछ अस्तित्व और तुल्यता प्रमाणों की कठोरता में सुधार करता है। अधिकांश क्वांटम क्षेत्र सिद्धांत संगणनाएँ 'फेनमैन-टी हूफ्ट गेज' में सबसे सरल हैं, जिसमें ξ = 1; कुछ अन्य आर में अधिक ट्रैक्टेबल हैंξ गेज, जैसे कि डोनाल्ड आर. येनी गेज ξ = 3.

आर का एक समकक्ष सूत्रीकरणξ गेज सहायक क्षेत्र का उपयोग करता है,अतः अदिश क्षेत्र B जिसमें कोई स्वतंत्र गतिकी नहीं है।

सहायक क्षेत्र, जिसे कभी-कभी नकानिशी-लॉट्रुप क्षेत्र कहा जाता है, के पिछले रूप को प्राप्त करने के लिए वर्ग को पूरा करके समाप्त किया जा सकता है। गणितीय दृष्टिकोण से सहायक क्षेत्र गोल्डस्टोन बोसोन की किस्म है, और इसके उपयोग के कई लाभ है जब सिद्धांत के स्पर्शोन्मुख अवस्थाओं की पहचान की जाती है,और विशेष रूप से जब सामान्यीकरण किया जाता है। तो ऐतिहासिक रूप से, आर का उपयोग क्वांटम वैद्युतगतिकी संगणनाओं को विस्तारित करने में एक महत्वपूर्ण तकनीकी प्रगति थी। मैनिफ़ेस्ट लोरेंत्ज़ इनवेरिएंस को बनाए रखने के अतिरिक्त,आरξनुस्खा किसी भी दो भौतिक रूप से अलग गेज संरूपण के कार्यात्मक उपायों के अनुपात को संरक्षित करते हुए स्थानीय गेज परिवर्तनों के तहत समरूपता को तोड़ता है। यह अचरो के परिवर्तन की अनुमति देता है जिसमें विन्यास स्थान में भौतिक दिशाओं के साथ कमियाँ पूरी तरह से अभौतिक दिशाओं के साथ अयुग्मित होती है, जिससे उत्तरार्द्ध को कार्यात्मक अभिन्न के शारीरिक रूप से अर्थहीन सामान्यीकृत स्थिरांक में अवशोषित किया जा सकता है। जब गेज परिमित होता है, तो प्रत्येक भौतिक विन्यास गेज परिवर्तनों के समूह की कक्षा को बाधा समीकरण के समाधान द्वारा नहीं बल्कि गेज ब्रेकिंग टर्म के चरम पर केंद्रित गॉसियन वितरण द्वारा दर्शाया जाता है। गेज-फिक्स्ड सिद्दांत के फेनमैन नियमो के संदर्भ में, यह अभौतिक ध्रुवीकरण तरंगों के आभासी फोटॉनो से आंतरिक लाइनों के लिए फोटॉन प्रचारक के योगदान के रूप में प्रकट होता है।होता

फोटॉन प्रवर्धक जो एक क्यूईडी गणना के फेनमैन आरेख विस्तार में एक आंतरिक फोटॉन के अनुरूप गुणक कारक है, मिन्कोव्स्की मीट्रिक के अनुरूप फोटॉन ध्रुवीकरणों के योग के रूप में इस कारक के विस्तार में सभी चार संभावित ध्रुवीकरण वाले शब्द सम्मिलित हैं।आंशिक रूप से ध्रुवीकृत विकिरण को गणितीय रूप से एक रैखिक ध्रुवीकरण या गोलाकार ध्रुवीकृत आधार पर योग के रूप में व्यक्त किया जा सकता है। इसी तरह, आगे और पीछे ध्रुवीकरण प्राप्त करने के लिए अनुदैर्ध्य और समय की तरह गेज ध्रुवीकरणों को जोड़ सकते हैं; ये प्रकाश-शंकु निर्देशांक का एक रूप हैं जिसमें मीट्रिक विकर्ण होता है। gμν का विस्तार चक्रीय रूप से ध्रुवीकृत स्पिन ±1 और प्रकाश-शंकु निर्देशांक के संदर्भ में कारक को स्पिन योग कहा जाता है। प्रचक्रण योग व्यंजकों को सरल बनाने और सैद्धांतिक परिकलन में विभिन्न शब्दों से जुड़े प्रयोगात्मक प्रभावों की भौतिक समझ प्राप्त करने में बहुत सहायक हो सकता है।

रिचर्ड फेनमैन ने सामान्यतः गणना प्रक्रियाओं को सही ठहराने के लिए लगभग इन पंक्तियों के साथ तर्कों का इस्तेमाल किया, जो महत्वपूर्ण अवलोकन योग्य मापदंडों जैसे कि इलेक्ट्रॉन के विषम चुंबकीय क्षण के लिए सुसंगत, परिमित, उच्च परिशुद्धता परिणाम उत्पन्न करते हैं। यद्यपि उनके तर्कों में कभी-कभी भौतिकविदों के मानकों से भी गणितीय कठोरता का अभाव था और वार्ड-ताकाहाशी पहचान की व्युत्पत्ति जैसे विवरणों पर प्रकाश डाला गया था। जूलियन श्विंगर और हार्ट-इचिरो टोमोनागा के साथ फेनमैन ने भौतिकी में 1965 का नोबेल पुरस्कार प्राप्त किया।

आगे और पीछे के ध्रुवीकृत किरण को क्वांटम क्षेत्र सिद्धांत के स्पर्शोन्मुख अवस्थाओं में छोड़ा जा सकता है। इस कारण से स्पिन राशियों में उनकी उपस्थिति को QED में एक मात्र गणितीय उपकरण के रूप में देखा जा सकता है, उन्हें प्रायः अभौतिक कहा जाता है। लेकिन उपरोक्त बाधा-आधारित गेज फिक्सिंग प्रक्रियाओं के विपरीत, Rξगेज| गैर-अबेलियन गेज समूहों के लिए अच्छी तरह से सामान्यीकृत करता है। भौतिक और अभौतिक गड़बड़ी ध्रुवो के बीच युग्मन चर के संगत परिवर्तन के अंतर्गत पूरी तरह से विलुप्त नहीं होते हैं; सही परिणाम प्राप्त करने के लिए, विस्तृत संरूपण के स्थान के भीतर गैर-तुच्छ जैकोबियन मैट्रिक्स और गेज स्वतंत्रता अक्षों के एम्बेडिंग के निर्धारक के लिए खुला होना चाहिए। इससे फदीदेव-पोपोव छायाों के साथ-साथ फेनमैन आरेखों में आगे और पीछे के ध्रुवीकृत गेज बोसोन की स्पष्ट उपस्थिति होती है, जो कि और भी अभौतिक हैं क्योंकि वे स्पिन-सांख्यिकी प्रमेय का उल्लंघन करते हैं। इन संस्थाओं के बीच संबंध, और वे क्वांटम यांत्रिक अर्थों में कणों के रूप में प्रकट नहीं होने के कारण, परिमाणीकरण के बीआरएसटी औपचारिकता में अधिक स्पष्ट हो जाते हैं।

मैक्सिमल एबेलियन गेज

किसी भी गैर-गेज सिद्धांत में, अधिकतम एबेलियन गेज एक अपूर्ण गेज है जो अधिकतम एबेलियन उपसमूह के बाहर गेज की स्वतंत्रता को ठीक करता है। उदाहरण हैं

  • डी आयामों में एसयू 2 गेज सिद्धांत के लिए, अधिकतम एबेलियन उपसमूह एक यू 1 उपसमूह है। यदि इसे पाउली मैट्रिक्स σ3 द्वारा उत्पन्न किया जाता है तो अधिकतम एबेलियन गेज वह है जो फलन को अधिकतम करता है
    जहाँ
  • D आयामों में SU(3) गेज सिद्धांत के लिए, अधिकतम एबेलियन उपसमूह एक U(1)×U(1) उपसमूह है। यदि इसे गेल-मैन मैट्रिसेस λ3 और λ8 द्वारा उत्पन्न होने के लिए चुना जाता है तो अधिकतम एबेलियन गेज वह है जो फलन को अधिकतम करता है
    जहाँ

यह उच्च बीजगणित में नियमित रूप से लागू होता है, उदाहरण के लिए क्लिफोर्ड बीजगणित।

सामान्यतः कम प्रयोग किए जाने वाले गेज

साहित्य में विभिन्न गेज, जो विशिष्ट परिस्थितियों में लाभप्रद हो सकते हैं, प्रकट हुए हैं।[3]

वेइल गेज

वेइल गेज जिसे हैमिल्टनियन या टेम्पोरल गेज के रूप में भी जाना जाता है एक अपूर्ण गेज है

इसका नाम हरमन वेइल के नाम पर रखा गया है। यह नकारात्मक-मानक छाया को समाप्त करता है और लोरेन्ट्ज़ इनवेरिएंस को प्रकट नहीं करता हैबी तथा अनुदैर्ध्य फोटोन और राज्यों पर एक बाधा की आवश्यकता होती है।[4]


बहुध्रुवीय गेज

बहुध्रुवीय गेज की गेज स्थिति जिसे लाइन गेज, पॉइंट गेज या पॉइनकेयर गेज के रूप में भी जाना जाता है:

यह एक और गेज है जिसमें तात्क्षणिक क्षेत्रों के संदर्भ में क्षमता को सरल तरीके से व्यक्त किया जा सकता है


फॉक-श्विंगर गेज

फॉक-श्विंगर गेज की गेज स्थिति व्लादिमीर फॉक और जूलियन श्विंगर के नाम पर, जिसे कभी-कभी सापेक्षतावादी पोंकारे गेज भी कहा जाता है, रखा गया है :

जहां Xμ स्थिति चार-वेक्टर है।

डायराक गेज

नॉनलाइनियर डायराक गेज स्थिति पॉल डिराक के नाम पर है:


संदर्भ

  1. { {जर्नल उद्धृत करें |last1=गुबारेव |first1=F. V. |last2=Stodolsky |first2=L. |last3=ज़खारोव |first3=V. I. |year=2001 |title=वेक्टर पोटेंशियल स्क्वेर्ड के महत्व पर |journal=Phys. Rev. Lett. |volume=86 |issue=11 |pages=2220–2222 |doi=10.1103/PhysRevLett.86.2220 |pmid=11289894 |arxiv = hep-ph/0010057 |bibcode = 2001PhRvL..86.2220G |s2cid =45172403 }}
  2. Template:उद्धृत जर्नल
  3. Cite error: Invalid <ref> tag; no text was provided for refs named Jackson2002
  4. Hatfield, Brian (1992). Quantum field theory of point particles and strings. Addison-Wesley. pp. 210–213. ISBN 0201360799.


अग्रिम पठन