लेवल सेट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 32: Line 32:
{{math|''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, …, ''x{{sub|n}}''}}) in {{math|(''n'' + 1)}}-आयामी यूक्लिडियन अंतरिक्ष, के लिए
{{math|''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, …, ''x{{sub|n}}''}}) in {{math|(''n'' + 1)}}-आयामी यूक्लिडियन अंतरिक्ष, के लिए
{{math|1=''n'' = 1, 2, 3}}.}}
{{math|1=''n'' = 1, 2, 3}}.}}
गणित में, वास्तविक-मूल्यवान फलन का स्तर समुच्चय {{mvar|f}} का {{mvar|n}} कई वास्तविक चरों का फलन एक समुच्चय (गणित) है जहाँ फलन दिए गए स्थिरांक (गणित) मान पर ले जाता है {{mvar|c}}, वह है:
गणित में, वास्तविक-मूल्यवान फलन का स्तर समुच्चय {{mvar|f}} का {{mvar|n}} कई वास्तविक चरों का फलन एक समुच्चय (गणित) है जहाँ फलन दिए गए स्थिरांक (गणित) मान {{mvar|c}} पर ले जाता है, अर्थात्:


: <math> L_c(f) = \left\{ (x_1, \ldots, x_n)  \mid  f(x_1, \ldots, x_n) = c \right\}~, </math>
: <math> L_c(f) = \left\{ (x_1, \ldots, x_n)  \mid  f(x_1, \ldots, x_n) = c \right\}~, </math>
जब स्वतंत्र चरों की संख्या दो होती है, तो स्तर सेट को स्तर [[वक्र]] कहा जाता है, जिसे ''[[समोच्च रेखा]]'' या ''आइसोलाइन'' भी कहा जाता है; इसलिए एक स्तर वक्र दो चरों में एक समीकरण के सभी वास्तविक-मूल्यवान समाधानों का समुच्चय है {{math|''x''{{sub|1}}}} तथा {{math|''x''{{sub|2}}}}. कब {{math|1=''n'' = 3}}, लेवल सेट को लेवल सरफेस (गणित) (या ''[[isosurface]]'') कहा जाता है; इसलिए एक समतल सतह तीन चरों में एक समीकरण के सभी वास्तविक-मूल्यवान मूलों का समुच्चय है {{math|''x''{{sub|1}}}}, {{math|''x''{{sub|2}}}} तथा {{math|''x''{{sub|3}}}}. के उच्च मूल्यों के लिए {{mvar|n}}, स्तर सेट एक स्तर [[ऊनविम पृष्ठ]] है, एक समीकरण के सभी वास्तविक-मूल्यवान जड़ों का सेट {{math|''n'' > 3}} चर।
जब स्वतंत्र चरों की संख्या दो होती है, तो स्तर समूह को स्तर [[वक्र]] कहा जाता है, जिसे ''[[समोच्च रेखा]]'' या ''आइसोलाइन'' भी कहा जाता है; इसलिए एक स्तर वक्र दो चरों में एक समीकरण के सभी वास्तविक-मूल्यवान समाधानों का समुच्चय है {{math|''x''{{sub|1}}}} तथा {{math|''x''{{sub|2}}}}. कब {{math|1=''n'' = 3}}, स्तर समूह को स्तर      की सतह (गणित) (या ''[[isosurface|आइसोसफेस]]'') कहा जाता है; इसलिए एक समतल सतह तीन चरों में एक समीकरण के सभी वास्तविक-मूल्यवान मूलों का समुच्चय है {{math|''x''{{sub|1}}}}, {{math|''x''{{sub|2}}}} तथा {{math|''x''{{sub|3}}}}. के उच्च मूल्यों के लिए {{mvar|n}}, स्तर समूह एक स्तर [[ऊनविम पृष्ठ]] है, एक समीकरण के सभी वास्तविक-मूल्यवान जड़ों का समूह {{math|''n'' > 3}} चर।


एक स्तर सेट [[फाइबर (गणित)]] का एक विशेष मामला है।
एक स्तर समूह [[फाइबर (गणित)]] की एक विशेष स्तिथि है।


== वैकल्पिक नाम ==
== वैकल्पिक नाम ==

Revision as of 10:45, 3 December 2022

के निरंतर स्लाइस पर अंकx2 = f (x1).
के निरंतर स्लाइस पर रेखाएँ x3 = f (x1, x2).
के लगातार स्लाइस पर विमानx4 = f (x1, x2, x3).
(n − 1)-प्रपत्र के कार्यों के लिए आयामी स्तर सेट f (x1, x2, …, xn) = a1x1 + a2x2 + ⋯ + anxn where a1, a2, …, an स्थिरांक हैं, में(n + 1)-आयामी यूक्लिडियन अंतरिक्ष, के लिए n = 1, 2, 3.
के निरंतर स्लाइस पर अंक x2 = f (x1).
के निरंतर स्लाइस पर समोच्च वक्रx3 = f (x1, x2).
के निरंतर स्लाइस पर घुमावदार सतहें x4 = f (x1, x2, x3).
(n − 1)-गैर-रैखिक कार्यों के आयामी स्तर सेट

f (x1, x2, …, xn) in (n + 1)-आयामी यूक्लिडियन अंतरिक्ष, के लिए

n = 1, 2, 3.

गणित में, वास्तविक-मूल्यवान फलन का स्तर समुच्चय f का n कई वास्तविक चरों का फलन एक समुच्चय (गणित) है जहाँ फलन दिए गए स्थिरांक (गणित) मान c पर ले जाता है, अर्थात्:

जब स्वतंत्र चरों की संख्या दो होती है, तो स्तर समूह को स्तर वक्र कहा जाता है, जिसे समोच्च रेखा या आइसोलाइन भी कहा जाता है; इसलिए एक स्तर वक्र दो चरों में एक समीकरण के सभी वास्तविक-मूल्यवान समाधानों का समुच्चय है x1 तथा x2. कब n = 3, स्तर समूह को स्तर की सतह (गणित) (या आइसोसफेस) कहा जाता है; इसलिए एक समतल सतह तीन चरों में एक समीकरण के सभी वास्तविक-मूल्यवान मूलों का समुच्चय है x1, x2 तथा x3. के उच्च मूल्यों के लिए n, स्तर समूह एक स्तर ऊनविम पृष्ठ है, एक समीकरण के सभी वास्तविक-मूल्यवान जड़ों का समूह n > 3 चर।

एक स्तर समूह फाइबर (गणित) की एक विशेष स्तिथि है।

वैकल्पिक नाम

एक ट्रेफिल गाँठ के साथ एक समन्वय समारोह के स्तर की सतहों के चौराहे। लाल वक्र दर्शक के सबसे करीब होते हैं, जबकि पीले वक्र सबसे दूर होते हैं।

स्तर सेट कई अनुप्रयोगों में अक्सर अलग-अलग नामों के तहत दिखाई देते हैं। उदाहरण के लिए, एक अंतर्निहित वक्र एक स्तर वक्र है, जिसे इसके पड़ोसी वक्रों से स्वतंत्र रूप से माना जाता है, इस बात पर बल देते हुए कि इस तरह के वक्र को एक अंतर्निहित समीकरण द्वारा परिभाषित किया गया है। समान रूप से, एक स्तर की सतह को कभी-कभी अंतर्निहित सतह या आइसोसफेस कहा जाता है।

आइसोकॉन्टूर नाम का भी उपयोग किया जाता है, जिसका अर्थ है समान ऊंचाई का समोच्च। विभिन्न अनुप्रयोग क्षेत्रों में, आइसोकॉन्टोर को विशिष्ट नाम प्राप्त हुए हैं, जो अक्सर माने गए फ़ंक्शन के मूल्यों की प्रकृति को इंगित करते हैं, जैसे कि आइसोबार (मौसम विज्ञान), आइसोथर्म (समोच्च रेखा), कंटूर लाइन # प्रकार, आइसोक्रोन नक्शा, समोत्पाद और उदासीनता वक्र।

उदाहरण

2-आयामी यूक्लिडियन दूरी पर विचार करें:

एक स्तर सेट इस फ़ंक्शन के उन बिंदुओं से मिलकर बनता है जो की दूरी पर स्थित हैं मूल से, जो एक वृत्त बनाता है। उदाहरण के लिए, , इसलिये . ज्यामितीय रूप से, इसका मतलब है कि बिंदु मूल बिंदु पर केन्द्रित त्रिज्या 5 के वृत्त पर स्थित है। अधिक आम तौर पर, एक मीट्रिक अंतरिक्ष में एक क्षेत्र त्रिज्या के साथ पर केंद्रित है स्तर सेट के रूप में परिभाषित किया जा सकता है .

एक दूसरा उदाहरण दाईं ओर की आकृति में दिखाए गए हिममेलब्लौ के कार्य का प्लॉट है। दिखाया गया प्रत्येक वक्र फ़ंक्शन का एक स्तर वक्र है, और वे लॉगरिदमिक रूप से स्थान पर हैं: यदि एक वक्र का प्रतिनिधित्व करता है , वक्र सीधे भीतर दर्शाता है , और वक्र सीधे बाहर का प्रतिनिधित्व करता है .

हिमेलब्लाऊ का कार्य का लॉग-स्पेस लेवल कर्व प्लॉट[1]

स्तर समूह बनाम ढाल

एक फलन f पर विचार करें जिसका ग्राफ पहाड़ी जैसा दिखाई देता है। नीले वक्र स्तर सेट हैं; लाल वक्र ग्रेडिएंट की दिशा का अनुसरण करते हैं। सतर्क यात्री नीले रास्तों का अनुसरण करता है; बोल्ड हाइकर लाल रास्तों का अनुसरण करता है। ध्यान दें कि नीले और लाल रास्ते हमेशा समकोण पर काटते हैं।

: प्रमेय: यदि कार्य f अवकलनीय कार्य है, की ढाल f एक बिंदु पर या तो शून्य है, या के स्तर के सेट के लंबवत है f उस बिंदु पर।

इसका अर्थ समझने के लिए, कल्पना करें कि दो पर्वतारोही पहाड़ पर एक ही स्थान पर हैं। उनमें से एक बोल्ड है, और वह उस दिशा में जाने का फैसला करता है जहां ढलान सबसे तेज है। दूसरा अधिक सतर्क है; वह न तो चढ़ना चाहता है और न ही उतरना, ऐसा रास्ता चुनना जो उसे उसी ऊंचाई पर रखे। हमारी सादृश्यता में, उपरोक्त प्रमेय कहता है कि दो पर्वतारोही एक दूसरे के लंबवत दिशाओं में प्रस्थान करेंगे।

इस प्रमेय का एक परिणाम (और इसकी उपपत्ति) यह है कि यदि f अलग-अलग है, एक स्तर सेट एक हाइपरसफेस है और महत्वपूर्ण बिंदु (गणित) के बाहर कई गुना है f. एक महत्वपूर्ण बिंदु पर, एक स्तर सेट को एक बिंदु तक कम किया जा सकता है (उदाहरण के लिए स्थानीय चरम पर f ) या हो सकता है एक बीजगणितीय विविधता का एकवचन बिंदु जैसे कि एक प्रतिच्छेदन सिद्धांत | स्व-प्रतिच्छेदन बिंदु या एक कस्प (विलक्षणता)।

उप स्तर और उत्तम स्तर समूह

फॉर्म का एक समूह

f का एक उप स्तर समूह (या, वैकल्पिक रूप से, एक निचला स्तर समूह या f का ट्रेंच) कहा जाता है। f का एक कठोर उप स्तर समूह है

उसी प्रकार

f का उत्तम स्तर समूह (या, वैकल्पिक रूप से, f का ऊपरी स्तर समूह ) कहा जाता है। और 'f' का एक कठोर उत्तम स्तर समूह है

गणितीय अनुकूलन में उप स्तर समूह महत्वपूर्ण हैं। अत्यधिक मूल्य प्रमेय द्वारा अर्ध-निरंतर कार्यों के लिए विस्तार | वीयरस्ट्रैस प्रमेय के द्वारा, कुछ खाली समूह का पूरी तरह से घिरा हुआ समूह | गैर-रिक्त उप स्तर समूह और फलन के निचले-अर्ध-निरंतरता का अर्थ है कि एक फलन अपने न्यूनतम को प्राप्त करता है। सभी उप स्तर समूह के उत्तल समूह के कार्यों की विशेषता है। [2]


यह भी देखें

संदर्भ

  1. Simionescu, P.A. (2011). "प्रतिबंधित कार्यों और दो चरों की असमानताओं की कल्पना करने के लिए कुछ प्रगति". Journal of Computing and Information Science in Engineering. 11 (1). doi:10.1115/1.3570770.
  2. Kiwiel, Krzysztof C. (2001). "क्वैसिकोनवेक्स मिनिमाइजेशन के लिए सबग्रेडिएंट विधियों का अभिसरण और दक्षता". Mathematical Programming, Series A. Berlin, Heidelberg: Springer. 90 (1): 1–25. doi:10.1007/PL00011414. ISSN 0025-5610. MR 1819784. S2CID 10043417.