कस्प (विलक्षणता): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Point on a curve where motion must move backwards}} {{No footnotes|date=April 2021}} File:cusp.svg|thumb|right|200px|[[सेमीक्यूबिक...")
 
No edit summary
Line 62: Line 62:




==इस पेज में लापता आंतरिक लिंक की सूची==
*अंक शास्त्र
*एक वक्र का एकवचन बिंदु
*टेलर विस्तार
*चिकना समारोह
*अलग करने योग्य समारोह
*डिफियोमोर्फिज्म
*वास्तविक मूल्यवान समारोह
*समारोह (गणित)
*एक समारोह की सीमा
*समारोह स्थान
*कानूनी फॉर्म
*लहर सामने
*वर्ग को पूरा करो
*कंप्यूटर दृष्टी
*तरंग बिंदु
*संक्रमण का बिन्दु
==बाहरी संबंध==
==बाहरी संबंध==
*[https://www.sciencedaily.com/releases/2009/04/090414160801.htm Physicists See The Cosmos In A Coffee Cup]
*[https://www.sciencedaily.com/releases/2009/04/090414160801.htm Physicists See The Cosmos In A Coffee Cup]

Revision as of 21:42, 28 November 2022

सेमीक्यूबिक पैराबोला पर (0, 0) पर एक सामान्य पुच्छल x3y2 = 0

गणित में, एक कस्प, जिसे कभी-कभी पुराने ग्रंथों में स्पिनोड कहा जाता है, एक वक्र पर एक बिंदु होता है जहां एक गतिमान बिंदु को दिशा उलटनी चाहिए। एक विशिष्ट उदाहरण चित्र में दिया गया है। इस प्रकार पुच्छल वक्र का एक प्रकार का विलक्षण बिंदु है।

एक विश्लेषणात्मक कार्य, पैरामीट्रिक समीकरण द्वारा परिभाषित समतल वक्र के लिए

एक पुच्छल एक बिंदु है जहां दोनों के यौगिक हैं f तथा g शून्य हैं, और दिशात्मक व्युत्पन्न, स्पर्शरेखा की दिशा में, परिवर्तन चिन्ह (स्पर्शरेखा की दिशा ढलान की दिशा है ). Cusps इस मायने में स्थानीय विलक्षणताएं हैं कि उनमें पैरामीटर का केवल एक मान शामिल है t, स्व-प्रतिच्छेदन बिंदुओं के विपरीत जिसमें एक से अधिक मान शामिल होते हैं। कुछ संदर्भों में, दिशात्मक व्युत्पन्न पर स्थिति को छोड़ा जा सकता है, हालांकि, इस मामले में, विलक्षणता एक नियमित बिंदु की तरह दिख सकती है।

निहित समीकरण द्वारा परिभाषित वक्र के लिए

जो सुचारू कार्य है, पुच्छल ऐसे बिंदु हैं जहां टेलर के विस्तार की निम्नतम डिग्री की शर्तें हैं F एक रैखिक बहुपद की शक्ति हैं; हालाँकि, सभी एकवचन बिंदु जिनके पास यह संपत्ति है वे पुच्छल नहीं हैं। प्यूसेक्स श्रृंखला के सिद्धांत का तात्पर्य है कि, यदि F एक विश्लेषणात्मक कार्य है (उदाहरण के लिए एक बहुपद), निर्देशांक का एक रैखिक परिवर्तन वक्र को पैरामीट्रिजेशन (ज्यामिति) होने की अनुमति देता है, कस्प के एक पड़ोस (गणित) में, जैसा कि

कहाँ पे a एक वास्तविक संख्या है, m एक सकारात्मक समता (गणित) पूर्णांक है, और S(t) बिजली की श्रृंखला की एक पावर सीरीज़ # पावर सीरीज़ का ऑर्डर है k (न्यूनतम डिग्री के नॉनजीरो टर्म की डिग्री) से बड़ा m. जो नंबर m कभी-कभी कस्प का क्रम या बहुलता कहा जाता है, और सबसे कम डिग्री के गैर-शून्य भाग की डिग्री के बराबर होता है F. कुछ संदर्भों में, पुच्छल की परिभाषा आदेश दो के पुच्छ के मामले तक ही सीमित है- अर्थात, जहां मामला m = 2.

रेने थॉम और व्लादिमीर अर्नोल्ड द्वारा अलग-अलग कार्यों द्वारा परिभाषित घटता के लिए समतल घटता और अंतर्निहित रूप से परिभाषित वक्रों की परिभाषाएँ सामान्यीकृत की गई हैं: एक वक्र में एक बिंदु पर एक पुच्छ होता है यदि बिंदु के पड़ोस (टोपोलॉजी) का एक अंतर है। परिवेश स्थान, जो वक्र को ऊपर परिभाषित क्यूप्स में से एक पर मैप करता है।

अंतर ज्यामिति में वर्गीकरण

दो चर (गणित) के एक चिकने फलन के वास्तविक-मूल्यवान फलन पर विचार करें, मान लीजिए f(x,-y) जहां x और y वास्तविक संख्याएं हैं। अतः f तल से रेखा तक एक फलन (गणित) है। इस तरह के सभी सुचारू कार्यों का स्थान समूह क्रिया (गणित) पर समूह (गणित) द्वारा विमान के डिफियोमोर्फिज्म और लाइन के डिफियोमोर्फिज्म, यानी एक फ़ंक्शन के किसी फ़ंक्शन का डोमेन की सीमा दोनों में समन्वय के डिफ़ोमोर्फिक परिवर्तन हैं। . यह क्रिया पूरे कार्य स्थान को समतुल्य वर्गों में विभाजित करती है, अर्थात Group_orbit#Orbits_and_stabilizerss of the Group Action (गणित)।

तुल्यता वर्गों के ऐसे एक परिवार को अक विलक्षणता द्वारा निरूपित किया जाता है|एk±, जहाँ k एक गैर-ऋणात्मक पूर्णांक है। यह अंकन V. I. अर्नोल्ड द्वारा पेश किया गया था। एक फलन f को A प्रकार का कहा जाता हैk± यदि यह x की कक्षा में स्थित है2 ± औरk+1 , यानी स्रोत और लक्ष्य में समन्वय का एक भिन्न परिवर्तन मौजूद है जो इन रूपों में से एक में f लेता है। ये सरल रूप x2 ± औरk+1 के बारे में कहा जाता है कि वे टाइप A के लिए कैननिकल रूप देते हैंk±- विलक्षणताएं। ध्यान दें कि ए2n+ A के समान हैं2n चूंकि स्रोत में निर्देशांक (x, y) → (x, −y) का डिफियोमॉर्फिक परिवर्तन x लेता है2 + और2n+1 से x2 - और2n+1. अतः हम A से ± को हटा सकते हैं2n± अंकन।

कस्प्स तब ए के प्रतिनिधियों के शून्य-स्तर-सेट द्वारा दिए जाते हैं2n तुल्यता वर्ग, जहाँ n ≥ 1 एक पूर्णांक है।[citation needed]


उदाहरण

  • एक साधारण पुच्छ x द्वारा दिया गया है2 - और3 = 0, यानी ए प्रकार का शून्य-स्तर-सेट2- विलक्षणता। चलो f(x,-y) एक्स और वाई का एक चिकनी कार्य हो और सादगी के लिए मान लें, कि f(0,-0) = 0. फिर एक प्रकार ए2(0, 0) पर f की विलक्षणता की विशेषता हो सकती है:
  1. एक पतित द्विघात भाग होने के नाते, यानी f की टेलर श्रृंखला में द्विघात शब्द एक पूर्ण वर्ग बनाते हैं, कहते हैं L(x, y)2, जहां L(x, y) x और y में रैखिक है, और
  2. एल (एक्स, वाई) एफ (एक्स, -वाई) की टेलर श्रृंखला में क्यूबिक शर्तों को विभाजित नहीं करता है।
  • एक 'रैम्फॉइड कस्प' (ग्रीक अर्थ चोंच से आ रहा है) मूल रूप से एक कस्प को दर्शाता है जैसे कि दोनों शाखाएं स्पर्शरेखा के एक ही तरफ हैं, जैसे कि समीकरण के वक्र के लिए जैसे कि सिंग्युलेरिटी उसी डिफरेंशियल क्लास में है जो समीकरण के पुच्छल के समान है जो कि A प्रकार की विलक्षणता है4, इस शब्द को ऐसी सभी विलक्षणताओं के लिए बढ़ा दिया गया है। ये कूप्स कास्टिक (गणित) और तरंग मोर्चों के रूप में गैर-सामान्य हैं। रैम्फॉइड पुच्छल और साधारण पुच्छ गैर-विरूपक हैं। पैरामीट्रिक रूप है .

एक प्रकार के लिए ए4-एकवचनता के लिए हमें f की आवश्यकता है कि एक पतित द्विघात भाग हो (यह प्रकार A देता है≥2), कि एल घन शर्तों को विभाजित करता है (यह प्रकार ए देता है≥3), एक अन्य विभाज्यता स्थिति (टाइप ए दे रही है≥4), और एक अंतिम गैर-विभाज्यता स्थिति (बिल्कुल ए प्रकार देते हुए4).

यह देखने के लिए कि ये अतिरिक्त विभाज्यता की स्थितियाँ कहाँ से आती हैं, मान लें कि f में एक पतित द्विघात भाग L है2 और वह L घन पदों को विभाजित करता है। यह अनुसरण करता है कि एफ की तीसरी ऑर्डर टेलर श्रृंखला एल द्वारा दी गई है2 ± LQ जहां Q x और y में द्विघात है। हम यह दिखाने के लिए वर्ग को पूरा कर सकते हैं कि L2 ± एलक्यू = (एल ± ½ क्यू)2 - ¼ क्यू4</उप>। अब हम परिवर्तनशील परिवर्तन कर सकते हैं (इस मामले में हम रैखिक रूप से स्वतंत्र रैखिक भागों के साथ बहुपदों को प्रतिस्थापित करते हैं) ताकि (L ± ½Q)2 − ¼Q4 → x12 + पी1 जहां पी1 x में चतुर्थक बहुपद (क्रम चार) है1 और वाई1. प्रकार ए के लिए विभाज्यता की स्थिति≥4 क्या वह एक्स है1 पी को विभाजित करता है1. अगर एक्स1 P को विभाजित नहीं करता है1 तो हमारे पास टाइप ए है3 (शून्य-स्तर-सेट यहाँ एक fancode है)। अगर एक्स1 पी को विभाजित करता है1 हम x पर वर्ग पूरा करते हैं12 + पी1 और निर्देशांक बदलें ताकि हमारे पास x हो22 + पी2 जहां पी2 x में क्विंटिक बहुपद (पांच क्रम) है2 और वाई2. अगर एक्स2 P को विभाजित नहीं करता है2 तो हमारे पास बिल्कुल टाइप ए है4, यानी जीरो-लेवल-सेट एक रैम्फॉइड पुच्छल होगा।

अनुप्रयोग

एक चायपत्ती के तल में प्रकाश किरणों के कास्टिक (प्रकाशिकी) के रूप में होने वाला एक सामान्य पुच्छ।

Cusps स्वाभाविक रूप से दिखाई देते हैं जब एक विमान में प्रक्षेपण (गणित) त्रि-आयामी यूक्लिडियन अंतरिक्ष में एक चिकनी वक्र होता है। सामान्य तौर पर, इस तरह का प्रक्षेपण एक वक्र होता है जिसकी विलक्षणता स्व-क्रॉसिंग पॉइंट और साधारण क्यूसेप होती है। स्व-क्रॉसिंग पॉइंट तब दिखाई देते हैं जब वक्र के दो अलग-अलग बिंदुओं का एक ही प्रक्षेपण होता है। साधारण कस्प्स तब दिखाई देते हैं जब वक्र की स्पर्शरेखा प्रक्षेपण की दिशा के समानांतर होती है (अर्थात जब स्पर्शरेखा एक बिंदु पर प्रोजेक्ट होती है)। अधिक जटिल विलक्षणताएँ तब होती हैं जब कई घटनाएँ एक साथ घटित होती हैं। उदाहरण के लिए, विभक्ति बिंदुओं (और लहरदार बिंदुओं के लिए) के लिए रैम्फॉइड क्यूप्स होते हैं, जिसके लिए स्पर्शरेखा प्रक्षेपण की दिशा के समानांतर होती है।

कई मामलों में, और आमतौर पर कंप्यूटर दृष्टि और कंप्यूटर ग्राफिक्स में, अनुमानित वक्र प्रक्षेपण के एक (चिकनी) स्थानिक वस्तु के प्रतिबंध के महत्वपूर्ण बिंदु (गणित) का वक्र है। एक पुच्छ इस प्रकार वस्तु (दृष्टि) या उसकी छाया (कंप्यूटर ग्राफिक्स) की छवि के समोच्च की विलक्षणता के रूप में प्रकट होता है।

कास्टिक (गणित) और लहर मोर्चों वक्रों के अन्य उदाहरण हैं जो वास्तविक दुनिया में दिखाई दे रहे हैं।

यह भी देखें

संदर्भ

  • Bruce, J. W.; Giblin, Peter (1984). Curves and Singularities. Cambridge University Press. ISBN 978-0-521-42999-3.
  • Porteous, Ian (1994). Geometric Differentiation. Cambridge University Press. ISBN 978-0-521-39063-7.


बाहरी संबंध