टौटोक्रोन वक्र: Difference between revisions
| Line 157: | Line 157: | ||
dt & = \pm \frac{d\ell}{\sqrt{2g(y_0-y)}} \\ | dt & = \pm \frac{d\ell}{\sqrt{2g(y_0-y)}} \\ | ||
dt & = - \frac{1}{\sqrt{2g(y_0-y)}} \frac{d\ell}{dy} \,dy | dt & = - \frac{1}{\sqrt{2g(y_0-y)}} \frac{d\ell}{dy} \,dy | ||
\ | \end{align} | ||
</ | </math>}} | ||
पिछले समीकरण में, हमने ऊंचाई के एक समारोह के रूप में वक्र के साथ शेष दूरी को लिखने का अनुमान लगाया है (<math>\ell(y))</math>, माना कि समय बढ़ने के साथ-साथ शेष दूरी घटनी चाहिए (इस प्रकार ऋण चिह्न), और प्रपत्र में [[श्रृंखला नियम]] का उपयोग किया <math display="inline">d\ell = \frac{d\ell}{dy} dy</math>. | पिछले समीकरण में, हमने ऊंचाई के एक समारोह के रूप में वक्र के साथ शेष दूरी को लिखने का अनुमान लगाया है (<math>\ell(y))</math>, माना कि समय बढ़ने के साथ-साथ शेष दूरी घटनी चाहिए (इस प्रकार ऋण चिह्न), और प्रपत्र में [[श्रृंखला नियम]] का उपयोग किया <math display="inline">d\ell = \frac{d\ell}{dy} dy</math>. | ||
| Line 199: | Line 199: | ||
(सीमन्स, धारा 54)। | (सीमन्स, धारा 54)। | ||
[[Category:Articles with short description]] | |||
[[Category:Created On 25/11/2022]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with math errors]] | |||
[[Category:Pages with math render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:यांत्रिकी]] | |||
[[Category:विमान वक्र]] | |||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 11:28, 2 December 2022
आइसोक्रोन कर्व (यूनानी उपसर्ग से टॉटो- जिसका अर्थ है समान या आइसो- बराबर, और क्रोनो टाइम) वह कर्व है जिसके लिए किसी वस्तु द्वारा एकसमान गुरुत्व में घर्षण के बिना उसके निम्नतम बिंदु तक फिसलने में लगने वाला समय उसके शुरुआती बिंदु से स्वतंत्र होता है। वक्र एक चक्रज है, और गुरुत्वाकर्षण के समय त्वरण पर त्रिज्या के वर्गमूल (वृत्त जो चक्रवात उत्पन्न करता है) के वर्गमूल के बराबर होता है। टॉटोक्रोन वक्र ब्राचिस्टोक्रोन वक्र से संबंधित है, जो एक चक्रज भी है।
टॉटोक्रोन समस्या
It was in the left hand try-pot of the Pequod, with the soapstone diligently circling round me, that I was first indirectly struck by the remarkable fact, that in geometry all bodies gliding along the cycloid, my soapstone for example, will descend from any point in precisely the same time.
Moby Dick by Herman Melville, 1851
टौटोक्रोन समस्या, इस वक्र की पहचान करने का प्रयास, 1659 में क्रिस्टियान ह्यूजेंस द्वारा हल किया गया था। उन्होंने मूल रूप से 1673 में प्रकाशित अपने होरोलोजियम ऑस्किलेटोरियम में ज्यामितीय रूप से साबित किया था कि वक्र एक चक्रवात है।
On a cycloid whose axis is erected on the perpendicular and whose vertex is located at the bottom, the times of descent, in which a body arrives at the lowest point at the vertex after having departed from any point on the cycloid, are equal to each other ...[1]
चक्रज त्रिज्या के एक वृत्त पर बिंदु द्वारा दिया जाता है, जो एक वक्र का पता लगाता है, क्योंकि वृत्त x अक्ष के साथ घूमता है, जैसे:
बाद में इस समाधान का उपयोग ब्राचिस्टोक्रोन वक्र की समस्या को हल करने के लिए किया गया था। जोहान बर्नौली ने एक पेपर (एक्टा एरुडिटोरियम, 1697) में समस्या का समाधान किया।
टौटोक्रोन समस्या ह्यूजेंस द्वारा अधिक बारीकी से अध्ययन किया गया था जब यह महसूस किया गया था कि एक पेंडुलम, जो एक गोलाकार पथ का अनुसरण करता है, आइसोक्रोनस नहीं था और इस प्रकार उसकी पेंडुलम घड़ी अलग-अलग समय बताएगी, जो इस बात पर निर्भर करता है कि पेंडुलम कितनी दूर तक घूमता है। सही रास्ते का निर्धारण करने के बाद, क्रिस्टियान ह्यूजेन्स ने पेंडुलम घड़ियों को बनाने का प्रयास किया जो बॉब को निलंबित करने के लिए एक स्ट्रिंग का इस्तेमाल करते थे और स्ट्रिंग के शीर्ष के निकट गोलों को कसने के लिए टॉटोक्रोन वक्र के मार्ग को बदलते थे। ये प्रयास कई कारणों से अनुपयोगी साबित हुए। सबसे पहले, स्ट्रिंग का झुकाव घर्षण का कारण बनता है, दूसरा, समय की त्रुटियों के बहुत अधिक महत्वपूर्ण स्रोत थे जो किसी भी सैद्धांतिक सुधार को अभिभूत कर देते थे जो कि टौटोक्रोन वक्र पर यात्रा करने में मदद करता है। अंत में, एक पेंडुलम की "परिपत्र त्रुटि" कम हो जाती है, क्योंकि झूले की लंबाई कम हो जाती है, इसलिए घड़ी की अशुद्धि के इस स्रोत को बहुत कम कर सकता है।
बाद में, गणितज्ञ जोसेफ लुइस लाग्रेंज और लियोनहार्ड यूलर ने समस्या का एक विश्लेषणात्मक समाधान प्रदान किया।
लग्रांजी समाधान
यदि कण की स्थिति को सबसे कम बिंदु से आर्क की लंबाई s(t) द्वारा पैरामीट्रिज किया जाता है, तो गतिज ऊर्जा स्थितिज ऊर्जा ऊँचाई y(s).के समानुपाती होती है। एक तरह से वक्र एक आइसोक्रोन हो सकता है, यदि लैग्रेंजियन एक साधारण हार्मोनिक ऑसिलेटर का है: वक्र की ऊंचाई चाप की लंबाई के वर्ग के समानुपाती होनी चाहिए।
जहां लंबाई की इकाइयों को बदलकर आनुपातिकता के स्थिरांक को 1 पर सेट किया गया है।
इस संबंध का विभेदक रूप है
जो s को हटा देता है और dx और dy के लिए अवकल समीकरण छोड़ देता है। समाधान खोजने के लिए, x को y के संदर्भ में एकीकृत करें:
जहां पे . यह अभिन्न एक वृत्त के नीचे का क्षेत्र है, जिसे स्वाभाविक रूप से एक त्रिभुज और एक वृत्ताकार पच्चर में काटा जा सकता है:
यह देखने के लिए कि यह एक अजीब पैरामीट्रिज्ड साइक्लोइड है, कोण परिभाषित करके पारलौकिक और बीजगणितीय भागों को अलग करने के लिए चर बदलें। यह प्रदान करता है
जो x, y और θ के पैमाने को छोड़कर मानक पैरामीट्रिजेशन है।
आभासी गुरुत्व समाधान
टौटोक्रोन समस्या का सबसे सरल समाधान एक झुकाव के कोण और झुकाव पर एक कण द्वारा महसूस किए गए गुरुत्वाकर्षण के बीच सीधा संबंध नोट करना है। 90° ऊर्ध्वाधर झुकाव पर एक कण पूर्ण गुरुत्वीय त्वरण , से गुजरता हैजबकि क्षैतिज तल पर एक कण शून्य गुरुत्वाकर्षण त्वरण से गुजरता है। मध्यवर्ती कोणों पर, कण द्वारा "वर्चुअल ग्रेविटी" के कारण त्वरण . ध्यान दें कि वक्र और क्षैतिज के स्पर्शरेखा के बीच मापा जाता है, इस प्रकार, बदलता है प्रति .क्षैतिज के ऊपर के कोणों को धनात्मक कोणों के रूप में माना जाता है।
टॉटोक्रोन वक्र के साथ मापे गए द्रव्यमान की स्थिति, , निम्नलिखित अंतर समीकरण का पालन करना चाहिए:
जो, प्रारंभिक शर्तों के साथ and , समाधान है:
यह आसानी से सत्यापित किया जा सकता है कि यह समाधान अंतर समीकरण को हल करता है और एक कण पहुंच जाएगा at time किसी भी शुरुआती स्थिति से . समस्या अब एक वक्र बनाने की है जो द्रव्यमान को उपरोक्त गति का पालन करने का कारण बनेगी। न्यूटन के दूसरे नियम से पता चलता है कि गुरुत्वाकर्षण बल और द्रव्यमान के त्वरण से संबंधित हैं:
दूरी का स्पष्ट रूप, ,कष्टप्रद है, लेकिन हम अधिक प्रबंधनीय रूप प्राप्त करने के लिए अंतर कर सकते हैं:
यह समीकरण वक्र के कोण में परिवर्तन को वक्र के साथ दूरी में परिवर्तन से संबंधित करता है। अब हम कोण को अंतर लंबाई dx, dyऔर ds से संबंधित करने के लिए त्रिकोणमिति का उपयोग करते हैं:
उपरोक्त समीकरण में ds को dx से बदलने पर हम x के लिए :
इसी तरह, हम ds को dy के संदर्भ में भी व्यक्त कर सकते हैं और y के लिए के संदर्भ में हल कर सकते हैं:
स्थानापन्न and , हम देखते हैं कि इन पैरामीट्रिक समीकरणों के लिए x तथा y त्रिज्या के एक वृत्त पर एक बिंदु के हैं r निर्देशांक पर सर्कल केंद्र के साथ एक क्षैतिज रेखा (एक चक्रवात) के साथ रोलिंग पर करता है :
ध्यान दें कि से लेकर .यह सेट करना सामान्य है and ताकि वक्र पर सबसे निचला बिंदु मूल बिंदु के साथ मेल खाता हो। इसलिए:
को हल करना और उसे याद रखना डिसेंट के लिए आवश्यक समय है, एक पूरे चक्र का एक चौथाई होने के कारण, हम डिसेंट टाइम को त्रिज्या r के संदर्भ में पाते हैं:
(प्रोक्टर पर आधारित, पीपी. 135–139)
हाबिल का हल
नील्स हेनरिक एबेल ने टौटोक्रोन समस्या (एबेल की यांत्रिक समस्या) के एक सामान्यीकृत संस्करण पर हमला किया, अर्थात्, एक फ़ंक्शन दिया गया है जो दी गई शुरुआती ऊंचाई के लिए वंश के कुल समय को निर्दिष्ट करता है। , इस परिणाम को प्राप्त करने वाले वक्र का समीकरण ज्ञात कीजिए। टौटोक्रोन समस्या हाबिल की यांत्रिक समस्या का एक विशेष मामला है जब एक स्थिरांक है।
एबेल का समाधान ऊर्जा के संरक्षण के सिद्धांत से शुरू होता है - चूंकि कण घर्षण रहित है, और इस प्रकार गर्मी के लिए कोई ऊर्जा नहीं खोता है, किसी भी बिंदु पर इसकी गतिज ऊर्जा इसके शुरुआती बिंदु से गुरुत्वाकर्षण ऊर्जा के अंतर के बराबर होती है। गतिज ऊर्जा है , और चूंकि कण एक वक्र के साथ चलने के लिए विवश है, इसका वेग सरल है , कहाँ पे वक्र के साथ मापी गई दूरी है। इसी तरह, प्रारंभिक ऊंचाई से गिरने में प्राप्त गुरुत्वाकर्षण संभावित ऊर्जा ऊंचाई तक है , इस प्रकार:
पिछले समीकरण में, हमने ऊंचाई के एक समारोह के रूप में वक्र के साथ शेष दूरी को लिखने का अनुमान लगाया है (, माना कि समय बढ़ने के साथ-साथ शेष दूरी घटनी चाहिए (इस प्रकार ऋण चिह्न), और प्रपत्र में श्रृंखला नियम का उपयोग किया .
अब हम से एकीकृत करते हैं प्रति कण के गिरने के लिए आवश्यक कुल समय प्राप्त करने के लिए:
{{block indent|1=Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ड" found.in 2:113"): {\displaystyle T(y_0) = \int_{y=y_0}^{y=0} \, dt = \frac{1}{\sqrt{2g}} \int_0^{y_0} \frac{1}{\sqrt{y_0-y}} \frac{d\ell}{dy} \, डाई </गणित>}} इसे एबेल का अभिन्न समीकरण कहा जाता है और हमें किसी कण को दिए गए वक्र के साथ गिरने के लिए आवश्यक कुल समय की गणना करने की अनुमति देता है (जिसके लिए <math>{d\ell}/{dy}} गणना करना आसान होगा)। लेकिन हाबिल की यांत्रिक समस्या को इसके विपरीत की आवश्यकता है - दिया गया , हम खोजना चाहते हैं , जिससे वक्र के लिए एक समीकरण सीधे तरीके से अनुसरण करेगा। आगे बढ़ने के लिए, हम ध्यान दें कि दाईं ओर का समाकल का घुमाव है साथ और इस प्रकार चर के संबंध में दोनों पक्षों के लाप्लास परिवर्तन को लें :
{{block indent|1=Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "ब" found.in 2:56"): {\displaystyle \mathcal{L}[T(y_0)] = \frac{1}{\sqrt{2g}} \mathcal{L} \बाएं [ \frac{1}{\sqrt{y}} \दाएं]F(s) </गणित>}} कहाँ पे <math>F(s) = \mathcal{L} {\left[ {d\ell}/{dy} \right ]}} . तब से , अब हमारे पास के लाप्लास रूपांतरण के लिए एक व्यंजक है लाप्लास के परिवर्तन के संदर्भ में :
{{block indent|1=Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 3:3"): {\displaystyle \mathcal{L}\left [ \frac{d\ell}{dy} \right ] = \sqrt{\frac{2g}{\pi}} s^{\frac{1}{2}} \mathcal{L}[T(y_0)] </गणित>}} यह वह सीमा है जहाँ तक हम निर्दिष्ट किए बिना जा सकते हैं <math>T(y_0)} . एक बार ज्ञात है, हम इसके लाप्लास परिवर्तन की गणना कर सकते हैं, के लाप्लास परिवर्तन की गणना कर सकते हैं और उसके बाद खोजने के लिए उलटा परिवर्तन (या करने का प्रयास करें) लें .
टौटोक्रोन समस्या के लिए, स्थिर है। चूँकि 1 का लाप्लास रूपांतरण है , अर्थात।, , हम आकार समारोह पाते हैं :
यह दिखाया जा सकता है कि चक्रज इस समीकरण का पालन करता है। इसके संबंध में समाकलन करने के लिए इसे एक कदम और आगे बढ़ाने की आवश्यकता है पथ आकार की अभिव्यक्ति प्राप्त करने के लिए।
(सीमन्स, धारा 54)।
यह भी देखें
- बेल्ट्रामी पहचान
- ब्रचिस्टोक्रोन वक्र
- विविधताओं की गणना
- ज़ंजीर का
- चक्रवात
- गति के समीकरण # समान रूप से त्वरित रैखिक गति के समीकरण
संदर्भ
- ↑ Blackwell, Richard J. (1986). Christiaan Huygens' The Pendulum Clock. Ames, Iowa: Iowa State University Press. Part II, Proposition XXV, p. 69. ISBN 0-8138-0933-9.
ग्रन्थसूची
- Simmons, George (1972). Differential Equations with Applications and Historical Notes. McGraw–Hill. ISBN 0-07-057540-1.
- Proctor, Richard Anthony (1878). A Treatise on the Cycloid and All Forms of Cycloidal Curves, and on the Use of Such Curves in Dealing with the Motions of Planets, Comets, etc., and of Matter Projected from the Sun.
