अम्ल: Difference between revisions
| Line 9: | Line 9: | ||
अम्ल की पहली श्रेणी प्रोटॉन दाता, या ब्रोंस्टेड-लोरी अम्ल हैं। [[ जलीय घोल |जलीय घोल]] के विशेष मामले में, प्रोटॉन दाता[[ हाइड्रोनियम आयन | हाइड्रोनियम आयन]] H3O+ बनाते हैं और उन्हें अरहेनियस अम्ल के रूप में जाना जाता है। ब्रोंस्टेड और लोरी ने गैर-जलीय विलायक को सम्मिलित करने के लिए अरहेनियस सिद्धांत को सामान्यीकृत किया। ब्रोंस्टेड या [[ थॉमस मार्टिन लोरी |अरहेनियस अम्ल]] में सामान्यतः रासायनिक संरचना से बंधे हाइड्रोजन परमाणु होते हैं जो H<sup>+</sup> के नुकसान के बाद भी ऊर्जावान रूप से अनुकूल होते हैं। | अम्ल की पहली श्रेणी प्रोटॉन दाता, या ब्रोंस्टेड-लोरी अम्ल हैं। [[ जलीय घोल |जलीय घोल]] के विशेष मामले में, प्रोटॉन दाता[[ हाइड्रोनियम आयन | हाइड्रोनियम आयन]] H3O+ बनाते हैं और उन्हें अरहेनियस अम्ल के रूप में जाना जाता है। ब्रोंस्टेड और लोरी ने गैर-जलीय विलायक को सम्मिलित करने के लिए अरहेनियस सिद्धांत को सामान्यीकृत किया। ब्रोंस्टेड या [[ थॉमस मार्टिन लोरी |अरहेनियस अम्ल]] में सामान्यतः रासायनिक संरचना से बंधे हाइड्रोजन परमाणु होते हैं जो H<sup>+</sup> के नुकसान के बाद भी ऊर्जावान रूप से अनुकूल होते हैं। | ||
जलीय अरहेनियस अम्ल में विशिष्ट गुण होते हैं जो अम्ल का व्यावहारिक विवरण प्रदान करते हैं।<ref>{{cite book |last1=Petrucci |first1=R. H. |last2=Harwood |first2=R. S. |last3=Herring |first3=F. G. |title=सामान्य रसायन विज्ञान: सिद्धांत और आधुनिक अनुप्रयोग|date=2002 |publisher=Prentice Hall |isbn=0-13-014329-4 |page=146 |edition=8th}}</ref>अम्ल खट्टे स्वाद के साथ जलीय घोल बनाते हैं, नीले [[ लिटमस |लिटमस]] को लाल कर सकते हैं, और लवण बनाने के लिए क्षार और कुछ धातुओं (जैसे [[ कैल्शियम |कैल्शियम]]) के साथ प्रतिक्रिया कर सकते हैं। अम्ल शब्द [[ लैटिन |लैटिन]] एसिडस से लिया गया है, जिसका अर्थ है 'खट्टा'। <ref>[http://www.merriam-webster.com/dictionary/acid Merriam-Webster's Online Dictionary: ''acid'']</ref>अम्ल के जलीय घोल का [[ पीएच | | जलीय अरहेनियस अम्ल में विशिष्ट गुण होते हैं जो अम्ल का व्यावहारिक विवरण प्रदान करते हैं।<ref>{{cite book |last1=Petrucci |first1=R. H. |last2=Harwood |first2=R. S. |last3=Herring |first3=F. G. |title=सामान्य रसायन विज्ञान: सिद्धांत और आधुनिक अनुप्रयोग|date=2002 |publisher=Prentice Hall |isbn=0-13-014329-4 |page=146 |edition=8th}}</ref>अम्ल खट्टे स्वाद के साथ जलीय घोल बनाते हैं, नीले [[ लिटमस |लिटमस]] को लाल कर सकते हैं, और लवण बनाने के लिए क्षार और कुछ धातुओं (जैसे [[ कैल्शियम |कैल्शियम]]) के साथ प्रतिक्रिया कर सकते हैं। अम्ल शब्द [[ लैटिन |लैटिन]] एसिडस से लिया गया है, जिसका अर्थ है 'खट्टा'। <ref>[http://www.merriam-webster.com/dictionary/acid Merriam-Webster's Online Dictionary: ''acid'']</ref>अम्ल के जलीय घोल का [[ पीएच |pH]] 7 से कम होता है और इसे बोलचाल की भाषा में "अम्ल" (जैसा कि "अम्ल में घुला हुआ") भी कहा जाता है, जबकि सख्त परिभाषा केवल विलेय को संदर्भित करती है।<ref name="IUPAC_acid"/>कम pH का अर्थ है उच्च अम्लता, और इस प्रकार समाधान में सकारात्मक हाइड्रोजन आयनों की उच्च सांद्रता है। अम्ल के गुण वाले रसायन या पदार्थ अम्लीय कहलाते हैं। | ||
सामान्य जलीय अम्लों में हाइड्रोक्लोरिक अम्ल ([[ हाईड्रोजन क्लोराईड |हाईड्रोजन क्लोराईड]] का घोल जो पेट में[[ गैस्ट्रिक अम्ल | गैस्ट्रिक अम्ल]] में पाया जाता है और पाचन एंजाइमों को सक्रिय करता है), [[ सिरका अम्ल |एसिटिक]] अम्ल (सिरका इस तरल का एक पतला जलीय घोल है), [[ सल्फ्यूरिक एसिड |सल्फ्यूरिक]] अम्ल ([[ कार बैटरी |कार बैटरी]] में प्रयुक्त) सम्मिलित हैं। और [[ साइट्रिक एसिड |साइट्रिक अम्ल]] (खट्टे फलों में पाया जाता है)। जैसा कि इन उदाहरणों से पता चलता है, अम्ल (बोलचाल के अर्थ में) समाधान या शुद्ध पदार्थ हो सकते हैं, और अम्ल से प्राप्त किया जा सकता है (सख्त<ref name="IUPAC_acid"/>अर्थ में) जो ठोस, तरल या गैस हैं। ठोस अम्ल और कुछ केंद्रित कमजोर अम्ल [[ संक्षारक पदार्थ |संक्षारक पदार्थ]] हैं, लेकिन [[ कार्बोरेन |कार्बोरेन]]और[[ बोरिक एसिड | बोरिक अम्ल]] जैसे अपवाद हैं। | सामान्य जलीय अम्लों में हाइड्रोक्लोरिक अम्ल ([[ हाईड्रोजन क्लोराईड |हाईड्रोजन क्लोराईड]] का घोल जो पेट में[[ गैस्ट्रिक अम्ल | गैस्ट्रिक अम्ल]] में पाया जाता है और पाचन एंजाइमों को सक्रिय करता है), [[ सिरका अम्ल |एसिटिक]] अम्ल (सिरका इस तरल का एक पतला जलीय घोल है), [[ सल्फ्यूरिक एसिड |सल्फ्यूरिक]] अम्ल ([[ कार बैटरी |कार बैटरी]] में प्रयुक्त) सम्मिलित हैं। और [[ साइट्रिक एसिड |साइट्रिक अम्ल]] (खट्टे फलों में पाया जाता है)। जैसा कि इन उदाहरणों से पता चलता है, अम्ल (बोलचाल के अर्थ में) समाधान या शुद्ध पदार्थ हो सकते हैं, और अम्ल से प्राप्त किया जा सकता है (सख्त<ref name="IUPAC_acid"/>अर्थ में) जो ठोस, तरल या गैस हैं। ठोस अम्ल और कुछ केंद्रित कमजोर अम्ल [[ संक्षारक पदार्थ |संक्षारक पदार्थ]] हैं, लेकिन [[ कार्बोरेन |कार्बोरेन]]और[[ बोरिक एसिड | बोरिक अम्ल]] जैसे अपवाद हैं। | ||
| Line 32: | Line 32: | ||
इस संतुलन के कारण, हाइड्रोनियम की सांद्रता में कोई भी वृद्धि हाइड्रॉक्साइड की सांद्रता में कमी के साथ होती है। इस प्रकार, अरहेनियस अम्ल को भी कहा जा सकता है जो हाइड्रॉक्साइड एकाग्रता को कम करता है, जबकि अरहेनियस क्षार इसे बढ़ाता है। | इस संतुलन के कारण, हाइड्रोनियम की सांद्रता में कोई भी वृद्धि हाइड्रॉक्साइड की सांद्रता में कमी के साथ होती है। इस प्रकार, अरहेनियस अम्ल को भी कहा जा सकता है जो हाइड्रॉक्साइड एकाग्रता को कम करता है, जबकि अरहेनियस क्षार इसे बढ़ाता है। | ||
अम्लीय घोल में, हाइड्रोनियम आयनों की सांद्रता 10−7 मोल प्रति लीटर से अधिक होती है। चूँकि | अम्लीय घोल में, हाइड्रोनियम आयनों की सांद्रता 10−7 मोल प्रति लीटर से अधिक होती है। चूँकि pH को हाइड्रोनियम आयनों की सांद्रता के ऋणात्मक लघुगणक के रूप में परिभाषित किया जाता है, इसलिए अम्लीय विलयनों का pH 7 से कम होता है। | ||
===ब्रोंस्टेड-लोरी अम्ल=== | ===ब्रोंस्टेड-लोरी अम्ल=== | ||
| Line 112: | Line 112: | ||
ठोस अम्ल में बड़ा अम्ल पृथक्करण स्थिरांक, K<sub>a</sub> और कमजोर अम्ल की तुलना में अधिक नकारात्मक pK<sub>a</sub>होता है। | ठोस अम्ल में बड़ा अम्ल पृथक्करण स्थिरांक, K<sub>a</sub> और कमजोर अम्ल की तुलना में अधिक नकारात्मक pK<sub>a</sub>होता है। | ||
[[ सल्फोनिक एसिड |सल्फोनिक अम्ल]],जो कार्बनिक | [[ सल्फोनिक एसिड |सल्फोनिक अम्ल]], जो कार्बनिक ऑक्सीअम्ल हैं, ठोस अम्ल का वर्ग है। सामान्य उदाहरण [[ टोल्यूनिसल्फ़ोनिक एसिड |टोल्यूनिसल्फ़ोनिक अम्ल]] (टॉसिलिक अम्ल) है। सल्फ्यूरिक अम्ल के विपरीत, सल्फोनिक अम्ल ठोस हो सकते हैं। वास्तव में, [[ polystyrene |पॉलीस्टाइनिन]] सल्फोनेट में क्रियाशील पॉलीस्टाइनिन ठोस दृढ़ता से अम्लीय प्लास्टिक है जो निस्यंदक करने योग्य है। | ||
[[ सुपर एसिड | | [[ सुपर एसिड |अतिअम्ल]] 100% सल्फ्यूरिक अम्ल से अधिक ठोस अम्ल होते हैं। अतिअम्ल के उदाहरण [[ फ्लोरोएंटिमोनिक एसिड | फ्लोरोएंटिमोनिक अम्ल]], [[ मैजिक एसिड |मैजिक अम्ल]] और पर्क्लोरिक अम्ल हैं। अतिअम्ल आयनिक, क्रिस्टलीय हाइड्रोनियम लवण देने के लिए पानी को स्थायी रूप से प्रोटॉन कर सकते हैं। वे [[ कार्बोकेशन | कार्बनीकरण]] को मात्रात्मक रूप से स्थिर भी कर सकते हैं। | ||
जबकि | जबकि ''K''<sub>a</sub> अम्ल यौगिक की गुण को मापता है, जलीय अम्ल समाधान की गुण pH द्वारा मापी जाती है, जो समाधान में हाइड्रोनियम की एकाग्रता का संकेत है। पानी में अम्ल यौगिक के एक साधारण समाधान का pH यौगिक के कमजोर पड़ने और यौगिक के के द्वारा निर्धारित किया जाता है। | ||
== गैर-जलीय घोल में [[ लुईस एसिड | लुईस अम्ल]] की गुण == | == गैर-जलीय घोल में [[ लुईस एसिड | लुईस अम्ल]] की गुण == | ||
लुईस अम्लको [[ ईसीडब्ल्यू मॉडल | ईसीडब्ल्यू मॉडल]] | लुईस अम्लको[[ ईसीडब्ल्यू मॉडल | ईसीडब्ल्यू मॉडल]] में वर्गीकृत किया गया है और यह दिखाया गया है कि अम्ल गुण का कोई एक क्रम नहीं है।<ref>{{cite journal|author1=Vogel G. C. |author2=Drago, R. S. |year=1996|journal=Journal of Chemical Education|volume=73|pages=701–707|title=ईसीडब्ल्यू मॉडल|issue=8 |bibcode=1996JChEd..73..701V|doi=10.1021/ed073p701}}</ref> लुईस अम्ल की अन्य लुईस अम्ल की तुलना में क्षार की श्रृंखला की सापेक्ष स्वीकर्ता गुण को C-B प्लॉट द्वारा चित्रित किया जा सकता है।<ref>Laurence, C. and Gal, J-F. Lewis Basicity and Affinity Scales, Data and Measurement, (Wiley 2010) pp 50-51 ISBN 978-0-470-74957-9</ref><ref>{{cite journal|author1=Cramer, R. E. |author2=Bopp, T. T. |year=1977|title= लुईस एसिड और बेस के लिए एडक्ट फॉर्मेशन की एन्थैल्पी का ग्राफिकल डिस्प्ले|journal= Journal of Chemical Education |volume=54|pages=612–613|doi= 10.1021/ed054p612}} The plots shown in this paper used older parameters. Improved E&C parameters are listed in [[ECW model]].</ref> यह दिखाया गया है कि लुईस अम्ल की गुण के क्रम को परिभाषित करने के लिए कम से कम दो गुणों पर विचार किया जाना चाहिए। पियर्सन के गुणात्मक एचएसएबी सिद्धांत के लिए दो गुण कठोरता और गुण हैं जबकि ड्रैगो के मात्रात्मक ईसीडब्ल्यू मॉडल के लिए दो गुण स्थिरवैद्युत और सहसंयोजक हैं। | ||
==रासायनिक विशेषताएं == | ==रासायनिक विशेषताएं == | ||
| Line 125: | Line 125: | ||
=== मोनोप्रोटिक अम्ल === | === मोनोप्रोटिक अम्ल === | ||
{{See also|Acid dissociation constant#Monoprotic acids}} | {{See also|Acid dissociation constant#Monoprotic acids}} | ||
मोनोप्रोटिक अम्ल, जिन्हें मोनोबैसिक | मोनोप्रोटिक अम्ल, जिन्हें मोनोबैसिक अम्ल के रूप में भी जाना जाता है, वे अम्ल होते हैं जो पृथक्करण की प्रक्रिया के दौरान प्रति अणु प्रोटॉन दान करने में सक्षम होते हैं (कभी-कभी आयनीकरण कहा जाता है) जैसा कि नीचे दिखाया गया है (HA द्वारा दर्शाया गया है): | ||
:{{chem2|HA (aq) + H2O (l) <-> H3O+ (aq) + A- (aq)}} | :{{chem2|HA (aq) + H2O (l) <-> H3O+ (aq) + A- (aq)}} ''K''<sub>a</sub> | ||
[[ खनिज अम्ल ]] | [[ खनिज अम्ल | खनिज अम्ल]] में मोनोप्रोटिक अम्लों के सामान्य उदाहरणों में हाइड्रोक्लोरिक अम्ल (HCl) और नाइट्रिक अम्ल (HNO<sub>3</sub>) सम्मिलित हैं दूसरी ओर,[[ कार्बनिक अम्ल | कार्बनिक अम्ल]] के लिए शब्द मुख्य रूप से [[ कार्बोज़ाइलिक तेजाब |कार्बोज़ाइलिक तेजाब]] समूह की उपस्थिति को इंगित करता है और कभी-कभी इन अम्ल को मोनोकारबॉक्सिलिक अम्ल के रूप में जाना जाता है। जैविक अम्ल के उदाहरणों में [[ चींटी का तेजाब |फॉर्मिक अम्ल]] (HCOOH), एसिटिक अम्ल(CH<sub>3</sub>COOH) और [[ बेंज़ोइक अम्ल | बेंज़ोइक अम्ल]](C<sub>6</sub>H<sub>5</sub>COOH) सम्मिलित हैं। | ||
=== पॉलीप्रोटिक अम्ल === | === पॉलीप्रोटिक अम्ल === | ||
{{See also|Acid dissociation constant#Polyprotic acids}} | {{See also|Acid dissociation constant#Polyprotic acids}} | ||
पॉलीप्रोटिक अम्ल, जिसे पॉलीबेसिक | पॉलीप्रोटिक अम्ल, जिसे पॉलीबेसिक अम्ल भी कहा जाता है, मोनोप्रोटिक अम्ल के विपरीत, प्रति अम्ल अणु में एक से अधिक प्रोटॉन दान करने में सक्षम होते हैं, जो प्रति अणु केवल एक प्रोटॉन दान करते हैं। विशिष्ट प्रकार के पॉलीप्रोटिक अम्ल के अधिक विशिष्ट नाम होते हैं, जैसे कि द्विध्रुवीय (या डिबासिक) अम्ल (दान करने के लिए दो संभावित प्रोटॉन), और ट्राइप्रोटिक (या ट्राइबेसिक) अम्ल (दान करने के लिए तीन संभावित प्रोटॉन)। कुछ बृहदणु जैसे प्रोटीन और न्यूक्लिक अम्ल में बहुत बड़ी संख्या में अम्लीय प्रोटॉन हो सकते हैं।<ref>{{cite book |title=बायोफिजिकल केमिस्ट्री - वॉल्यूम 1|first1=Jeffries|last1= Wyman|first2= John |last2=Tileston Edsall |chapter=Chapter 9: Polybasic Acids, Bases, and Ampholytes, Including Proteins | page=477 }}</ref> | ||
:{{chem2|H2A (aq) + H2O (l) <-> H3O+ (aq) + HA- (aq)}} | द्विध्रुवीय अम्ल (यहाँ H<sub>2</sub>A द्वारा दर्शाया गया है) pH के आधार पर एक या दो पृथक्करण से निकास कर सकता है। प्रत्येक पृथक्करण का अपना पृथक्करण स्थिरांक K<sub>a1</sub> और K<sub>a2</sub> होता है। | ||
:{{chem2|HA- (aq) + H2O (l) <-> H3O+ (aq) + A(2−) (aq)}} | :{{chem2|H2A (aq) + H2O (l) <-> H3O+ (aq) + HA- (aq)}} K<sub>a1</sub> | ||
:{{chem2|HA- (aq) + H2O (l) <-> H3O+ (aq) + A(2−) (aq)}} K<sub>a2</sub> | |||
पहला पृथक्करण स्थिरांक सामान्यतः दूसरे (यानी, K .) से अधिक होता है<sub>a1</sub> > के<sub>a2</sub>) उदाहरण के लिए, सल्फ्यूरिक अम्ल(H .)<sub>2</sub>इसलिए<sub>4</sub>) [[ बाइसल्फेट ]] आयन (HSO .) बनाने के लिए एक प्रोटॉन दान कर सकता है{{su|b=4|p=−}}), जिसके लिए K<sub>a1</sub> बहुत बड़ी है, फिर यह [[ सल्फेट ]] आयन (SO .) बनाने के लिए दूसरा प्रोटॉन दान कर सकता है{{su|b=4|p=2−}}), जिसमें K<sub>a2</sub> मध्यवर्ती गुण है। बड़ा कू<sub>a1</sub> पहले पृथक्करण के लिए सल्फ्यूरिक को एक ठोसअम्लबनाता है। इसी तरह, कमजोर अस्थिर [[ कार्बोनिक एसिड | कार्बोनिक अम्ल]] {{nowrap|(H<sub>2</sub>CO<sub>3</sub>)}} [[ बिकारबोनिट ]] आयन बनाने के लिए एक प्रोटॉन खो सकता है {{nowrap|(HCO{{su|b=3|p=−}})}} और [[ कार्बोनेट ]] आयन बनाने के लिए एक सेकंड खो देते हैं (CO .){{su|b=3|p=2−}}) दोनों के<sub>a</sub> मान छोटे हैं, लेकिन K<sub>a1</sub> > के<sub>a2</sub> . | पहला पृथक्करण स्थिरांक सामान्यतः दूसरे (यानी, K .) से अधिक होता है<sub>a1</sub> > के<sub>a2</sub>) उदाहरण के लिए, सल्फ्यूरिक अम्ल(H .)<sub>2</sub>इसलिए<sub>4</sub>) [[ बाइसल्फेट ]] आयन (HSO .) बनाने के लिए एक प्रोटॉन दान कर सकता है{{su|b=4|p=−}}), जिसके लिए K<sub>a1</sub> बहुत बड़ी है, फिर यह [[ सल्फेट ]] आयन (SO .) बनाने के लिए दूसरा प्रोटॉन दान कर सकता है{{su|b=4|p=2−}}), जिसमें K<sub>a2</sub> मध्यवर्ती गुण है। बड़ा कू<sub>a1</sub> पहले पृथक्करण के लिए सल्फ्यूरिक को एक ठोसअम्लबनाता है। इसी तरह, कमजोर अस्थिर [[ कार्बोनिक एसिड | कार्बोनिक अम्ल]] {{nowrap|(H<sub>2</sub>CO<sub>3</sub>)}} [[ बिकारबोनिट ]] आयन बनाने के लिए एक प्रोटॉन खो सकता है {{nowrap|(HCO{{su|b=3|p=−}})}} और [[ कार्बोनेट ]] आयन बनाने के लिए एक सेकंड खो देते हैं (CO .){{su|b=3|p=2−}}) दोनों के<sub>a</sub> मान छोटे हैं, लेकिन K<sub>a1</sub> > के<sub>a2</sub> . | ||
एक ट्राइप्रोटिक अम्ल(H .)<sub>3</sub>ए) एक, दो, या तीन हदबंदी से | एक ट्राइप्रोटिक अम्ल(H .)<sub>3</sub>ए) एक, दो, या तीन हदबंदी से निकास सकता है और तीन हदबंदी स्थिरांक हैं, जहां K<sub>a1</sub> > के<sub>a2</sub> > के<sub>a3</sub>. | ||
:{{chem2|H3A (aq) + H2O (l) <-> H3O+ (aq) + H2A− (aq)}} क<sub>a1</sub> | :{{chem2|H3A (aq) + H2O (l) <-> H3O+ (aq) + H2A− (aq)}} क<sub>a1</sub> | ||
:{{chem2|H2A− (aq) + H2O (l) <-> H3O+ (aq) + HA(2−) (aq)}} क<sub>a2</sub> | :{{chem2|H2A− (aq) + H2O (l) <-> H3O+ (aq) + HA(2−) (aq)}} क<sub>a2</sub> | ||
| Line 143: | Line 144: | ||
ट्राइप्रोटिक अम्लका एक [[ अकार्बनिक ]] उदाहरण ऑर्थोफोस्फोरिक अम्ल(H .) है<sub>3</sub>बाद में<sub>4</sub>), सामान्यतः सिर्फ [[ फॉस्फोरिक एसिड | फॉस्फोरिक अम्ल]] कहा जाता है। H . प्राप्त करने के लिए तीनों प्रोटॉन क्रमिक रूप से नष्ट हो सकते हैं<sub>2</sub>बाद में{{su|b=4|p=−}}, फिर एचपीओ{{su|b=4|p=2−}}, और अंत में पीओ{{su|b=4|p=3−}}, ऑर्थो[[ फास्फेट ]] आयन, जिसे सामान्यतः केवल फॉस्फेट कहा जाता है। भले ही मूल फॉस्फोरिक अम्लअणु पर तीन प्रोटॉन की स्थिति समतुल्य हो, क्रमिक K<sub>a</sub> मान भिन्न होते हैं क्योंकि यदि संयुग्म आधार अधिक नकारात्मक रूप से चार्ज होता है तो प्रोटॉन खोने के लिए यह ऊर्जावान रूप से कम अनुकूल होता है। ट्राइप्रोटिक अम्लका एक कार्बनिक यौगिक उदाहरण साइट्रिक अम्लहै, जो अंत में [[ सिट्रट ]] आयन बनाने के लिए क्रमिक रूप से तीन प्रोटॉन खो सकता है। | ट्राइप्रोटिक अम्लका एक [[ अकार्बनिक ]] उदाहरण ऑर्थोफोस्फोरिक अम्ल(H .) है<sub>3</sub>बाद में<sub>4</sub>), सामान्यतः सिर्फ [[ फॉस्फोरिक एसिड | फॉस्फोरिक अम्ल]] कहा जाता है। H . प्राप्त करने के लिए तीनों प्रोटॉन क्रमिक रूप से नष्ट हो सकते हैं<sub>2</sub>बाद में{{su|b=4|p=−}}, फिर एचपीओ{{su|b=4|p=2−}}, और अंत में पीओ{{su|b=4|p=3−}}, ऑर्थो[[ फास्फेट ]] आयन, जिसे सामान्यतः केवल फॉस्फेट कहा जाता है। भले ही मूल फॉस्फोरिक अम्लअणु पर तीन प्रोटॉन की स्थिति समतुल्य हो, क्रमिक K<sub>a</sub> मान भिन्न होते हैं क्योंकि यदि संयुग्म आधार अधिक नकारात्मक रूप से चार्ज होता है तो प्रोटॉन खोने के लिए यह ऊर्जावान रूप से कम अनुकूल होता है। ट्राइप्रोटिक अम्लका एक कार्बनिक यौगिक उदाहरण साइट्रिक अम्लहै, जो अंत में [[ सिट्रट ]] आयन बनाने के लिए क्रमिक रूप से तीन प्रोटॉन खो सकता है। | ||
हालांकि प्रत्येक हाइड्रोजन आयन का बाद में नुकसान कम अनुकूल है, सभी संयुग्म आधार समाधान में विद्यमान हैं। प्रत्येक प्रजाति के लिए भिन्नात्मक एकाग्रता, α (अल्फा) की गणना की जा सकती है। उदाहरण के लिए, एक सामान्य | हालांकि प्रत्येक हाइड्रोजन आयन का बाद में नुकसान कम अनुकूल है, सभी संयुग्म आधार समाधान में विद्यमान हैं। प्रत्येक प्रजाति के लिए भिन्नात्मक एकाग्रता, α (अल्फा) की गणना की जा सकती है। उदाहरण के लिए, एक सामान्य द्विध्रुवीयअम्लसमाधान में 3 प्रजातियां उत्पन्न करेगा: एच<sub>2</sub>ए, एचए<sup>-</sup>, और A<sup>2−</sup>. आंशिक सांद्रता की गणना नीचे दी गई है जब या तो pH दिया जाता है (जिसे [एच . में परिवर्तित किया जा सकता है)<sup>+</sup>]) या अम्लकी सांद्रता इसके सभी संयुग्म आधारों के साथ: | ||
:<math chem>\begin{align} | :<math chem>\begin{align} | ||
\alpha_\ce{H2A} &= \frac{\ce{[H+]^2}}{\ce{[H+]^2} + [\ce{H+}]K_1 + K_1 K_2} = \frac{\ce{[H2A]}}{\ce{{[H2A]}} + [HA^-] + [A^{2-}]}\\ | \alpha_\ce{H2A} &= \frac{\ce{[H+]^2}}{\ce{[H+]^2} + [\ce{H+}]K_1 + K_1 K_2} = \frac{\ce{[H2A]}}{\ce{{[H2A]}} + [HA^-] + [A^{2-}]}\\ | ||
| Line 158: | Line 159: | ||
[[Image:Hydrochloric acid ammonia.jpg|thumb|हाइड्रोक्लोरिक अम्ल([[ बीकर (कांच के बने पदार्थ) ]] में) अमोनिया के धुएं के साथ प्रतिक्रिया करके अमोनियम क्लोराइड (सफेद धुआं) का उत्पादन करता है।]]न्यूट्रलाइज़ेशन (रसायन विज्ञान) एक अम्लऔर एक क्षार के बीच की प्रतिक्रिया है, जो एक नमक (रसायन विज्ञान) और न्यूट्रलाइज़्ड क्षार का उत्पादन करता है, उदाहरण के लिए, हाइड्रोक्लोरिक अम्लऔर [[ सोडियम हाइड्रॉक्साइड ]] [[ सोडियम क्लोराइड ]] और पानी बनाते हैं: | [[Image:Hydrochloric acid ammonia.jpg|thumb|हाइड्रोक्लोरिक अम्ल([[ बीकर (कांच के बने पदार्थ) ]] में) अमोनिया के धुएं के साथ प्रतिक्रिया करके अमोनियम क्लोराइड (सफेद धुआं) का उत्पादन करता है।]]न्यूट्रलाइज़ेशन (रसायन विज्ञान) एक अम्लऔर एक क्षार के बीच की प्रतिक्रिया है, जो एक नमक (रसायन विज्ञान) और न्यूट्रलाइज़्ड क्षार का उत्पादन करता है, उदाहरण के लिए, हाइड्रोक्लोरिक अम्लऔर [[ सोडियम हाइड्रॉक्साइड ]] [[ सोडियम क्लोराइड ]] और पानी बनाते हैं: | ||
:HCl<sub>(aq)</sub> + NaOH<sub>(aq)</sub> → एच<sub>2</sub>O<sub>(l)</sub> + NaCl<sub>(aq)</sub> | :HCl<sub>(aq)</sub> + NaOH<sub>(aq)</sub> → एच<sub>2</sub>O<sub>(l)</sub> + NaCl<sub>(aq)</sub> | ||
न्यूट्रलाइजेशन अनुमापन का आधार है, जहां एक [[ पीएच संकेतक ]] तुल्यता बिंदु दिखाता है जब एक अम्लमें एक आधार के मोल की समान संख्या जोड़ दी जाती है। अक्सर यह गलत तरीके से माना जाता है कि न्यूट्रलाइजेशन का परिणाम | न्यूट्रलाइजेशन अनुमापन का आधार है, जहां एक [[ पीएच संकेतक | pH संकेतक]] तुल्यता बिंदु दिखाता है जब एक अम्लमें एक आधार के मोल की समान संख्या जोड़ दी जाती है। अक्सर यह गलत तरीके से माना जाता है कि न्यूट्रलाइजेशन का परिणाम pH 7.0 के साथ होना चाहिए, जो कि प्रतिक्रिया के दौरान समान अम्लऔर क्षार गुण के साथ ही होता है। | ||
अम्ल से कमजोर क्षार के साथ उदासीनीकरण से दुर्बल अम्लीय लवण प्राप्त होता है। एक उदाहरण कमजोर अम्लीय अमोनियम क्लोराइड है, जो ठोसअम्लहाइड्रोजन क्लोराइड और कमजोर आधार अमोनिया से उत्पन्न होता है। इसके विपरीत, एक कमजोर अम्लको एक ठोसआधार के साथ बेअसर करने से एक कमजोर मूल नमक (जैसे, [[ हाइड्रोजिन फ्लोराइड ]] और सोडियम हाइड्रॉक्साइड से [[ सोडियम फ्लोराइड ]]) मिलता है। | अम्ल से कमजोर क्षार के साथ उदासीनीकरण से दुर्बल अम्लीय लवण प्राप्त होता है। एक उदाहरण कमजोर अम्लीय अमोनियम क्लोराइड है, जो ठोसअम्लहाइड्रोजन क्लोराइड और कमजोर आधार अमोनिया से उत्पन्न होता है। इसके विपरीत, एक कमजोर अम्लको एक ठोसआधार के साथ बेअसर करने से एक कमजोर मूल नमक (जैसे, [[ हाइड्रोजिन फ्लोराइड ]] और सोडियम हाइड्रॉक्साइड से [[ सोडियम फ्लोराइड ]]) मिलता है। | ||
| Line 164: | Line 165: | ||
===कमजोर अम्ल-कमजोर क्षार संतुलन=== | ===कमजोर अम्ल-कमजोर क्षार संतुलन=== | ||
{{main|Henderson–Hasselbalch equation}} | {{main|Henderson–Hasselbalch equation}} | ||
एक प्रोटोनितअम्लके लिए एक प्रोटॉन खोने के लिए, सिस्टम का | एक प्रोटोनितअम्लके लिए एक प्रोटॉन खोने के लिए, सिस्टम का pH pK . से ऊपर उठना चाहिए<sub>a</sub> अम्लका। H . की घटी हुई सांद्रता<sup>उस मूल समाधान में +</sup> संतुलन को संयुग्मित आधार रूप (अम्लका अवक्षेपित रूप) की ओर स्थानांतरित कर देता है। निचले-pH (अधिक अम्लीय) समाधानों में, पर्याप्त मात्रा में एच . होता है<sup>+</sup> घोल में सांद्रण जिससे अम्ल अपने प्रोटोनितरूप में बना रहता है। | ||
दुर्बल अम्लों और उनके संयुग्मी क्षारकों के लवणों के विलयन बफर विलयन बनाते हैं। | दुर्बल अम्लों और उनके संयुग्मी क्षारकों के लवणों के विलयन बफर विलयन बनाते हैं। | ||
| Line 172: | Line 173: | ||
एक जलीय घोल में एक अम्लकी एकाग्रता का निर्धारण करने के लिए, एक अम्ल-क्षार टाइट्रेशन सामान्यतः किया जाता है। एक ज्ञात सांद्रता के साथ एक ठोसआधार समाधान, सामान्यतः NaOH या KOH, जोड़ा गया आधार की मात्रा के साथ संकेतक के रंग परिवर्तन के अनुसार अम्लसमाधान को बेअसर करने के लिए जोड़ा जाता है।<ref>{{Cite book|title = जलीय अम्ल-क्षार संतुलन और अनुमापन|first = Robert|last = de Levie|author-link = Robert de Levie |publisher = Oxford University Press|year = 1999|location = New York}}</ref> किसी क्षार द्वारा अनुमापित अम्ल के अनुमापन वक्र में दो अक्ष होते हैं, जिसमें आधार आयतन x-अक्ष पर और विलयन कापीएचमान y-अक्ष पर होता है। विलयन में क्षार मिलाने पर विलयन कापीएचहमेशा ऊपर जाता है। | एक जलीय घोल में एक अम्लकी एकाग्रता का निर्धारण करने के लिए, एक अम्ल-क्षार टाइट्रेशन सामान्यतः किया जाता है। एक ज्ञात सांद्रता के साथ एक ठोसआधार समाधान, सामान्यतः NaOH या KOH, जोड़ा गया आधार की मात्रा के साथ संकेतक के रंग परिवर्तन के अनुसार अम्लसमाधान को बेअसर करने के लिए जोड़ा जाता है।<ref>{{Cite book|title = जलीय अम्ल-क्षार संतुलन और अनुमापन|first = Robert|last = de Levie|author-link = Robert de Levie |publisher = Oxford University Press|year = 1999|location = New York}}</ref> किसी क्षार द्वारा अनुमापित अम्ल के अनुमापन वक्र में दो अक्ष होते हैं, जिसमें आधार आयतन x-अक्ष पर और विलयन कापीएचमान y-अक्ष पर होता है। विलयन में क्षार मिलाने पर विलयन कापीएचहमेशा ऊपर जाता है। | ||
=== उदाहरण: | === उदाहरण: द्विध्रुवीयअम्ल === | ||
[[File:Titration alanine.jpg|thumb|यह [[ ऐलेनिन ]], एक द्विप्रोटिक अमीनो अम्ल के लिए एक आदर्श अनुमापन वक्र है।<ref>{{Cite journal|title = 3-(3,4-डायहाइड्रोक्सीफेनिल) ऐलेनिन (एल-डोपा) के लिए प्रोटॉन-एसोसिएशन स्थिरांक का असाइनमेंट|journal = Journal of the Chemical Society, Dalton Transactions|volume = |issue = 1|pages = 43–45|doi = 10.1039/DT9780000043|language = en|first = Reginald F.|last = Jameson|year = 1978}}</ref> बिंदु 2 पहला समतुल्य बिंदु है जहां जोड़ा गया NaOH की मात्रा मूल समाधान में ऐलेनिन की मात्रा के बराबर होती है।]]प्रत्येक | [[File:Titration alanine.jpg|thumb|यह [[ ऐलेनिन ]], एक द्विप्रोटिक अमीनो अम्ल के लिए एक आदर्श अनुमापन वक्र है।<ref>{{Cite journal|title = 3-(3,4-डायहाइड्रोक्सीफेनिल) ऐलेनिन (एल-डोपा) के लिए प्रोटॉन-एसोसिएशन स्थिरांक का असाइनमेंट|journal = Journal of the Chemical Society, Dalton Transactions|volume = |issue = 1|pages = 43–45|doi = 10.1039/DT9780000043|language = en|first = Reginald F.|last = Jameson|year = 1978}}</ref> बिंदु 2 पहला समतुल्य बिंदु है जहां जोड़ा गया NaOH की मात्रा मूल समाधान में ऐलेनिन की मात्रा के बराबर होती है।]]प्रत्येक द्विध्रुवीयअम्लअनुमापन वक्र के लिए, बाएं से दाएं, दो मध्य बिंदु, दो तुल्यता बिंदु और दो बफर क्षेत्र हैं।<ref>{{Cite book|title = आयन विनिमय|url = https://books.google.com/books?id=F9OQMEA88CAC|publisher = Courier Corporation|date = 1962-01-01|isbn = 9780486687841|language = en|first = Friedrich G.|last = Helfferich}}</ref> | ||
==== तुल्यता अंक ==== | ==== तुल्यता अंक ==== | ||
क्रमिक वियोजन प्रक्रियाओं के कारण, द्विप्रोटिक अम्ल के अनुमापन वक्र में दो तुल्यता बिंदु होते हैं।<ref>{{Cite web|title = डिप्रोटिक एसिड का अनुमापन|url = http://dwb.unl.edu/calculators/activities/diproticacid.html|website = dwb.unl.edu |access-date = 2016-01-24|archive-url = https://web.archive.org/web/20160207011433/http://dwb.unl.edu/calculators/activities/diproticacid.html|archive-date = 7 February 2016|url-status = dead}}</ref> पहला तुल्यता बिंदु तब होता है जब पहले आयनीकरण से सभी पहले हाइड्रोजन आयनों का अनुमापन किया जाता है।<ref name = learning>{{Cite book|title = रसायन विज्ञान और रासायनिक प्रतिक्रियाशीलता|url = https://books.google.com/books?id=i1g8AwAAQBAJ|publisher = Cengage Learning|date = 2014-01-24|isbn = 9781305176461|language = en|first1 = John C.|last1 = Kotz|first2 = Paul M.|last2 = Treichel|first3 = John|last3 = Townsend|first4 = David|last4 = Treichel}}</ref> दूसरे शब्दों में, OH . की मात्रा<sup>−</sup> जोड़ा गया H . की मूल राशि के बराबर है<sub>2</sub>पहले तुल्यता बिंदु पर ए। दूसरा तुल्यता बिंदु तब होता है जब सभी हाइड्रोजन आयनों का अनुमापन किया जाता है। इसलिए, OH . की मात्रा<sup>−</sup> जोड़ा गया H . की मात्रा के दोगुने के बराबर है<sub>2</sub>इस समय ए. एक ठोसआधार द्वारा अनुमापित एक कमजोर | क्रमिक वियोजन प्रक्रियाओं के कारण, द्विप्रोटिक अम्ल के अनुमापन वक्र में दो तुल्यता बिंदु होते हैं।<ref>{{Cite web|title = डिप्रोटिक एसिड का अनुमापन|url = http://dwb.unl.edu/calculators/activities/diproticacid.html|website = dwb.unl.edu |access-date = 2016-01-24|archive-url = https://web.archive.org/web/20160207011433/http://dwb.unl.edu/calculators/activities/diproticacid.html|archive-date = 7 February 2016|url-status = dead}}</ref> पहला तुल्यता बिंदु तब होता है जब पहले आयनीकरण से सभी पहले हाइड्रोजन आयनों का अनुमापन किया जाता है।<ref name = learning>{{Cite book|title = रसायन विज्ञान और रासायनिक प्रतिक्रियाशीलता|url = https://books.google.com/books?id=i1g8AwAAQBAJ|publisher = Cengage Learning|date = 2014-01-24|isbn = 9781305176461|language = en|first1 = John C.|last1 = Kotz|first2 = Paul M.|last2 = Treichel|first3 = John|last3 = Townsend|first4 = David|last4 = Treichel}}</ref> दूसरे शब्दों में, OH . की मात्रा<sup>−</sup> जोड़ा गया H . की मूल राशि के बराबर है<sub>2</sub>पहले तुल्यता बिंदु पर ए। दूसरा तुल्यता बिंदु तब होता है जब सभी हाइड्रोजन आयनों का अनुमापन किया जाता है। इसलिए, OH . की मात्रा<sup>−</sup> जोड़ा गया H . की मात्रा के दोगुने के बराबर है<sub>2</sub>इस समय ए. एक ठोसआधार द्वारा अनुमापित एक कमजोर द्विध्रुवीयअम्लके लिए, दूसरा तुल्यता बिंदु समाधान में परिणामी लवण के हाइड्रोलिसिस के कारण 7 से ऊपर pH पर होना चाहिए।<ref name = learning/>किसी भी तुल्यता बिंदु पर, आधार की एक बूंद जोड़ने से प्रणाली में pH मान में सबसे तेज वृद्धि होगी। | ||
==== बफर क्षेत्र और मध्य बिंदु ==== | ==== बफर क्षेत्र और मध्य बिंदु ==== | ||
द्विप्रोटिक अम्ल के अनुमापन वक्र में दो मध्यबिंदु होते हैं जहां pH=pK<sub>a</sub>. चूँकि दो भिन्न K . हैं<sub>a</sub> मान, पहला मध्यबिंदु pH=pK . पर होता है<sub>a1</sub> और दूसरा pH=pK . पर होता है<sub>a2</sub>.<ref>{{Cite book|title = जैव रसायन के लेहनिंगर सिद्धांत|url = https://books.google.com/books?id=7chAN0UY0LYC|publisher = Macmillan|date = 2005-01-01|isbn = 9780716743392|language = en|first1 = Albert L.|last1 = Lehninger|first2 = David L.|last2 = Nelson|first3 = Michael M.|last3 = Cox}}</ref> वक्र का प्रत्येक खंड जिसके केंद्र में एक मध्य बिंदु होता है, बफर क्षेत्र कहलाता है। क्योंकि बफर क्षेत्रों में अम्लऔर उसके संयुग्म आधार होते हैं, यह | द्विप्रोटिक अम्ल के अनुमापन वक्र में दो मध्यबिंदु होते हैं जहां pH=pK<sub>a</sub>. चूँकि दो भिन्न K . हैं<sub>a</sub> मान, पहला मध्यबिंदु pH=pK . पर होता है<sub>a1</sub> और दूसरा pH=pK . पर होता है<sub>a2</sub>.<ref>{{Cite book|title = जैव रसायन के लेहनिंगर सिद्धांत|url = https://books.google.com/books?id=7chAN0UY0LYC|publisher = Macmillan|date = 2005-01-01|isbn = 9780716743392|language = en|first1 = Albert L.|last1 = Lehninger|first2 = David L.|last2 = Nelson|first3 = Michael M.|last3 = Cox}}</ref> वक्र का प्रत्येक खंड जिसके केंद्र में एक मध्य बिंदु होता है, बफर क्षेत्र कहलाता है। क्योंकि बफर क्षेत्रों में अम्लऔर उसके संयुग्म आधार होते हैं, यह pH परिवर्तनों का विरोध कर सकता है जब आधार को अगले समकक्ष बिंदुओं तक जोड़ा जाता है।<ref name="Ebbing">{{Cite book|title = सामान्य रसायन शास्त्र|url = https://books.google.com/books?id=BnccCgAAQBAJ|publisher = Cengage Learning|date = 2016-01-01|isbn = 9781305887299|language = en|first1 = Darrell|last1 = Ebbing|first2 = Steven D.|last2 = Gammon|edition=11th}}</ref> | ||
| Line 186: | Line 187: | ||
=== उद्योग में === | === उद्योग में === | ||
आधुनिक उद्योग में लगभग सभी प्रक्रियाओं के उपचार में अम्लमौलिक अभिकर्मक हैं। सल्फ्यूरिक अम्ल, एक | आधुनिक उद्योग में लगभग सभी प्रक्रियाओं के उपचार में अम्लमौलिक अभिकर्मक हैं। सल्फ्यूरिक अम्ल, एक द्विध्रुवीयअम्ल, उद्योग में सबसे व्यापक रूप से प्रयोग किया जाने वाला अम्लहै, और यह दुनिया में सबसे अधिक उत्पादित औद्योगिक रसायन भी है। यह मुख्य रूप से उर्वरक, डिटर्जेंट, बैटरी और रंगों के उत्पादन में उपयोग किया जाता है, साथ ही अशुद्धियों को दूर करने जैसे कई उत्पादों के प्रसंस्करण में भी उपयोग किया जाता है।<ref>{{Cite web|title = शीर्ष 10 औद्योगिक रसायन - डमी के लिए|url = http://www.dummies.com/how-to/content/the-top-10-industrial-chemicals.html|website = dummies.com|access-date = 2016-02-05}}</ref> 2011 के आंकड़ों के अनुसार, दुनिया में सल्फ्यूरिक अम्लका वार्षिक उत्पादन लगभग 200 मिलियन टन था।<ref>{{Cite web|title = सल्फ्यूरिक एसिड|url = http://www.essentialchemicalindustry.org/chemicals/sulfuric-acid.html|website = essentialchemicalindustry.org|access-date = 2016-02-06}}</ref> उदाहरण के लिए, फॉस्फेट खनिज फॉस्फेट उर्वरकों के उत्पादन के लिए फॉस्फोरिक अम्लका उत्पादन करने के लिए सल्फ्यूरिक अम्लके साथ प्रतिक्रिया करते हैं, और जिंक ऑक्साइड को सल्फ्यूरिक अम्लमें घोलकर, घोल को शुद्ध करके और इलेक्ट्रोइनिंग द्वारा जस्ता का उत्पादन किया जाता है। | ||
रासायनिक उद्योग में, अम्ल उदासीनीकरण अभिक्रिया में लवण उत्पन्न करने के लिए अभिक्रिया करते हैं। उदाहरण के लिए, नाइट्रिक अम्लअमोनिया के साथ प्रतिक्रिया करके [[ अमोनियम नाइट्रेट ]], एक उर्वरक का उत्पादन करता है। इसके अतिरिक्त, [[ एस्टर ]] का उत्पादन करने के लिए कार्बोक्जिलिक अम्लअल्कोहल के साथ [[ एस्टरीफिकेशन ]] हो सकता है। | रासायनिक उद्योग में, अम्ल उदासीनीकरण अभिक्रिया में लवण उत्पन्न करने के लिए अभिक्रिया करते हैं। उदाहरण के लिए, नाइट्रिक अम्लअमोनिया के साथ प्रतिक्रिया करके [[ अमोनियम नाइट्रेट ]], एक उर्वरक का उत्पादन करता है। इसके अतिरिक्त, [[ एस्टर ]] का उत्पादन करने के लिए कार्बोक्जिलिक अम्लअल्कोहल के साथ [[ एस्टरीफिकेशन ]] हो सकता है। | ||
| Line 201: | Line 202: | ||
=== मानव शरीर में === | === मानव शरीर में === | ||
मानव शरीर में अम्ल महत्वपूर्ण भूमिका निभाते हैं। पेट में विद्यमान हाइड्रोक्लोरिक अम्लबड़े और जटिल खाद्य अणुओं को तोड़कर पाचन में सहायता करता है। शरीर के ऊतकों की वृद्धि और मरम्मत के लिए आवश्यक प्रोटीन के संश्लेषण के लिए [[ अमीनो अम्ल ]] की आवश्यकता होती है। शरीर के ऊतकों की वृद्धि और मरम्मत के लिए भी फैटी अम्लकी आवश्यकता होती है। न्यूक्लिक अम्लडीएनए और आरएनए के निर्माण और जीन के माध्यम से संतानों को लक्षणों के संचारण के लिए महत्वपूर्ण हैं। कार्बोनिक अम्लशरीर में | मानव शरीर में अम्ल महत्वपूर्ण भूमिका निभाते हैं। पेट में विद्यमान हाइड्रोक्लोरिक अम्लबड़े और जटिल खाद्य अणुओं को तोड़कर पाचन में सहायता करता है। शरीर के ऊतकों की वृद्धि और मरम्मत के लिए आवश्यक प्रोटीन के संश्लेषण के लिए [[ अमीनो अम्ल ]] की आवश्यकता होती है। शरीर के ऊतकों की वृद्धि और मरम्मत के लिए भी फैटी अम्लकी आवश्यकता होती है। न्यूक्लिक अम्लडीएनए और आरएनए के निर्माण और जीन के माध्यम से संतानों को लक्षणों के संचारण के लिए महत्वपूर्ण हैं। कार्बोनिक अम्लशरीर में pH संतुलन बनाए रखने के लिए महत्वपूर्ण है। | ||
मानव शरीर में विभिन्न प्रकार के कार्बनिक और अकार्बनिक यौगिक होते हैं, उनमें से [[ डाइकारबॉक्सिलिक अम्ल ]] कई जैविक व्यवहारों में एक आवश्यक भूमिका निभाते हैं। उनमें से कई अम्लअमीनो अम्लहोते हैं, जो मुख्य रूप से प्रोटीन के संश्लेषण के लिए सामग्री के रूप में काम करते हैं।<ref>{{Cite book|title = 8 - अमीनो एसिड और पेप्टाइड्स की जैविक भूमिकाएँ - विश्वविद्यालय प्रकाशन ऑनलाइन|url = http://ebooks.cambridge.org/chapter.jsf?bid=CBO9781139163828&cid=CBO9781139163828A114 |date=June 2012|doi = 10.1017/CBO9781139163828|last1 = Barrett|first1 = G. C.|last2 = Elmore|first2 = D. T.|isbn = 9780521462921}}</ref> अन्य कमजोर अम्लशरीर के | मानव शरीर में विभिन्न प्रकार के कार्बनिक और अकार्बनिक यौगिक होते हैं, उनमें से [[ डाइकारबॉक्सिलिक अम्ल ]] कई जैविक व्यवहारों में एक आवश्यक भूमिका निभाते हैं। उनमें से कई अम्लअमीनो अम्लहोते हैं, जो मुख्य रूप से प्रोटीन के संश्लेषण के लिए सामग्री के रूप में काम करते हैं।<ref>{{Cite book|title = 8 - अमीनो एसिड और पेप्टाइड्स की जैविक भूमिकाएँ - विश्वविद्यालय प्रकाशन ऑनलाइन|url = http://ebooks.cambridge.org/chapter.jsf?bid=CBO9781139163828&cid=CBO9781139163828A114 |date=June 2012|doi = 10.1017/CBO9781139163828|last1 = Barrett|first1 = G. C.|last2 = Elmore|first2 = D. T.|isbn = 9780521462921}}</ref> अन्य कमजोर अम्लशरीर के pH को बड़े पैमाने पर होने वाले परिवर्तनों से बचाने के लिए अपने संयुग्म आधारों के साथ बफर के रूप में काम करते हैं जो कोशिकाओं के लिए हानिकारक होंगे।<ref>{{Cite web|url = http://fitsweb.uchc.edu/student/selectives/TimurGraham/Acid_Buffering.html|title = एसिड बफरिंग|year = 2006|access-date = 2016-02-06|website = Acid Base Online Tutorial|publisher = University of Connecticut|last = Graham|first = Timur|archive-url = https://web.archive.org/web/20160213132105/http://fitsweb.uchc.edu/student/selectives/TimurGraham/Acid_Buffering.html|archive-date = 13 February 2016|url-status = dead}}</ref> बाकी डाइकारबॉक्सिलिक अम्लभी मानव शरीर में विभिन्न जैविक रूप से महत्वपूर्ण यौगिकों के संश्लेषण में भाग लेते हैं। | ||
=== अम्ल उत्प्रेरण === | === अम्ल उत्प्रेरण === | ||
| Line 213: | Line 214: | ||
[[Image:Aminoacid.png|thumb|left|[[ एमिनो एसिड | एमिनो अम्ल]] की मूल संरचना।]]कई जैविक रूप से महत्वपूर्ण अणु अम्ल होते हैं। [[ न्यूक्लिक अम्ल ]], जिसमें अम्लीय फॉस्फेट होता है, में [[ डीएनए ]] और आरएनए सम्मिलित हैं। न्यूक्लिक अम्लमें आनुवंशिक कोड होता है जो जीव की कई विशेषताओं को निर्धारित करता है, और माता-पिता से संतानों को पारित किया जाता है। डीएनए में [[ प्रोटीन ]] के संश्लेषण के लिए रासायनिक खाका होता है, जो अमीनो अम्लसबयूनिट्स से बना होता है। [[ कोशिका झिल्ली ]] में [[ फॉस्फोलिपिड ]] जैसे [[ वसा अम्ल ]] एस्टर होते हैं। | [[Image:Aminoacid.png|thumb|left|[[ एमिनो एसिड | एमिनो अम्ल]] की मूल संरचना।]]कई जैविक रूप से महत्वपूर्ण अणु अम्ल होते हैं। [[ न्यूक्लिक अम्ल ]], जिसमें अम्लीय फॉस्फेट होता है, में [[ डीएनए ]] और आरएनए सम्मिलित हैं। न्यूक्लिक अम्लमें आनुवंशिक कोड होता है जो जीव की कई विशेषताओं को निर्धारित करता है, और माता-पिता से संतानों को पारित किया जाता है। डीएनए में [[ प्रोटीन ]] के संश्लेषण के लिए रासायनिक खाका होता है, जो अमीनो अम्लसबयूनिट्स से बना होता है। [[ कोशिका झिल्ली ]] में [[ फॉस्फोलिपिड ]] जैसे [[ वसा अम्ल ]] एस्टर होते हैं। | ||
एक α-एमिनो अम्लमें एक केंद्रीय कार्बन (α या अल्फा और बीटा कार्बन) होता है जो एक [[ कार्बाक्सिल ]] समूह (इस प्रकार वे कार्बोक्जिलिक अम्लहोते हैं), एक [[ अमाइन ]] समूह, एक हाइड्रोजन परमाणु और एक चर समूह के साथ सहसंयोजक बंधित होता है। चर समूह, जिसे आर समूह या साइड चेन भी कहा जाता है, एक विशिष्ट अमीनो अम्लकी पहचान और कई गुणों को निर्धारित करता है। [[ ग्लाइसिन ]] में, सबसे सरल अमीनो अम्ल, आर समूह एक हाइड्रोजन परमाणु है, लेकिन अन्य सभी अमीनो अम्लमें हाइड्रोजन से बंधे एक या अधिक कार्बन परमाणु होते हैं, और इसमें सल्फर, ऑक्सीजन या नाइट्रोजन जैसे अन्य तत्व हो सकते हैं। ग्लाइसीन के अपवाद के साथ, प्राकृतिक रूप से पाए जाने वाले अमीनो अम्लचिरलिटी (रसायन विज्ञान) हैं और लगभग हमेशा [[ चिरायता (रसायन विज्ञान) ]] # कॉन्फ़िगरेशन द्वारा: डी- और एल-|<छोटा>एल</छोटा>-कॉन्फ़िगरेशन में पाए जाते हैं। कुछ जीवाणु [[ कोशिका भित्ति ]] में पाए जाने वाले [[ पेप्टिडोग्लाइकन ]] में कुछ <छोटे>डी</छोटे> -एमिनो अम्लहोते हैं। शारीरिक | एक α-एमिनो अम्लमें एक केंद्रीय कार्बन (α या अल्फा और बीटा कार्बन) होता है जो एक [[ कार्बाक्सिल ]] समूह (इस प्रकार वे कार्बोक्जिलिक अम्लहोते हैं), एक [[ अमाइन ]] समूह, एक हाइड्रोजन परमाणु और एक चर समूह के साथ सहसंयोजक बंधित होता है। चर समूह, जिसे आर समूह या साइड चेन भी कहा जाता है, एक विशिष्ट अमीनो अम्लकी पहचान और कई गुणों को निर्धारित करता है। [[ ग्लाइसिन ]] में, सबसे सरल अमीनो अम्ल, आर समूह एक हाइड्रोजन परमाणु है, लेकिन अन्य सभी अमीनो अम्लमें हाइड्रोजन से बंधे एक या अधिक कार्बन परमाणु होते हैं, और इसमें सल्फर, ऑक्सीजन या नाइट्रोजन जैसे अन्य तत्व हो सकते हैं। ग्लाइसीन के अपवाद के साथ, प्राकृतिक रूप से पाए जाने वाले अमीनो अम्लचिरलिटी (रसायन विज्ञान) हैं और लगभग हमेशा [[ चिरायता (रसायन विज्ञान) ]] # कॉन्फ़िगरेशन द्वारा: डी- और एल-|<छोटा>एल</छोटा>-कॉन्फ़िगरेशन में पाए जाते हैं। कुछ जीवाणु [[ कोशिका भित्ति ]] में पाए जाने वाले [[ पेप्टिडोग्लाइकन ]] में कुछ <छोटे>डी</छोटे> -एमिनो अम्लहोते हैं। शारीरिक pH पर, सामान्यतः लगभग 7, मुक्त अमीनो अम्लएक आवेशित रूप में विद्यमान होते हैं, जहां अम्लीय कार्बोक्सिल समूह (-COOH) एक प्रोटॉन (-COO) खो देता है।<sup>−</sup>) और मूल अमीन समूह (-NH .)<sub>2</sub>) एक प्रोटॉन प्राप्त करता है (-NH{{su|b=3|p=+}}) मूल या अम्लीय साइड चेन वाले अमीनो अम्लके अपवाद के साथ पूरे अणु में एक शुद्ध तटस्थ चार्ज होता है और एक [[ ज़्विटेरियन ]] होता है। उदाहरण के लिए, [[ एस्पार्टिक अम्ल ]] में एक प्रोटोनितएमाइन और दो डिप्रोटोनेटेड कार्बोक्सिल समूह होते हैं, जो शारीरिक pH पर −1 के शुद्ध चार्ज के लिए होते हैं। | ||
फैटी अम्लऔर फैटी अम्लडेरिवेटिव कार्बोक्जिलिक अम्लका एक और समूह है जो जीव विज्ञान में महत्वपूर्ण भूमिका निभाते हैं। इनमें लंबी हाइड्रोकार्बन श्रृंखलाएं और एक सिरे पर एक कार्बोक्जिलिक अम्लसमूह होता है। लगभग सभी जीवों की कोशिका झिल्ली मुख्य रूप से [[ फ़ॉस्फ़ोलिपिड बाइलेयर ]] से बनी होती है, जो ध्रुवीय, हाइड्रोफिलिक फॉस्फेट प्रमुख समूहों के साथ हाइड्रोफोबिक फैटी अम्लएस्टर का एक [[ मिसेल ]] है। झिल्ली में अतिरिक्त घटक होते हैं, जिनमें से कुछ अम्ल-क्षार प्रतिक्रियाओं में भाग ले सकते हैं। | फैटी अम्लऔर फैटी अम्लडेरिवेटिव कार्बोक्जिलिक अम्लका एक और समूह है जो जीव विज्ञान में महत्वपूर्ण भूमिका निभाते हैं। इनमें लंबी हाइड्रोकार्बन श्रृंखलाएं और एक सिरे पर एक कार्बोक्जिलिक अम्लसमूह होता है। लगभग सभी जीवों की कोशिका झिल्ली मुख्य रूप से [[ फ़ॉस्फ़ोलिपिड बाइलेयर ]] से बनी होती है, जो ध्रुवीय, हाइड्रोफिलिक फॉस्फेट प्रमुख समूहों के साथ हाइड्रोफोबिक फैटी अम्लएस्टर का एक [[ मिसेल ]] है। झिल्ली में अतिरिक्त घटक होते हैं, जिनमें से कुछ अम्ल-क्षार प्रतिक्रियाओं में भाग ले सकते हैं। | ||
| Line 221: | Line 222: | ||
अम्ल-क्षार संतुलन स्तनधारी श्वास को विनियमित करने में महत्वपूर्ण भूमिका निभाता है। [[ आणविक ऑक्सीजन ]] गैस (O<sub>2</sub>) सेलुलर श्वसन को संचालित करता है, वह प्रक्रिया जिसके द्वारा जानवर भोजन में संग्रहीत रासायनिक [[ संभावित ऊर्जा ]] को छोड़ते हैं, [[ कार्बन डाइआक्साइड ]] (CO .) का उत्पादन करते हैं<sub>2</sub>) उपोत्पाद के रूप में। फेफड़ों में ऑक्सीजन और कार्बन डाइऑक्साइड का आदान-प्रदान होता है, और शरीर [[ वेंटिलेशन (फिजियोलॉजी) ]] की दर को समायोजित करके ऊर्जा की बदलती मांगों का जवाब देता है। उदाहरण के लिए, परिश्रम की अवधि के दौरान शरीर तेजी से संग्रहित [[ कार्बोहाइड्रेट ]] और वसा को तोड़ता है, जिससे CO . निकलता है<sub>2</sub> रक्त प्रवाह में। रक्त CO . जैसे जलीय घोलों में<sub>2</sub> कार्बोनिक अम्लऔर बाइकार्बोनेट आयन के साथ संतुलन में विद्यमान है। | अम्ल-क्षार संतुलन स्तनधारी श्वास को विनियमित करने में महत्वपूर्ण भूमिका निभाता है। [[ आणविक ऑक्सीजन ]] गैस (O<sub>2</sub>) सेलुलर श्वसन को संचालित करता है, वह प्रक्रिया जिसके द्वारा जानवर भोजन में संग्रहीत रासायनिक [[ संभावित ऊर्जा ]] को छोड़ते हैं, [[ कार्बन डाइआक्साइड ]] (CO .) का उत्पादन करते हैं<sub>2</sub>) उपोत्पाद के रूप में। फेफड़ों में ऑक्सीजन और कार्बन डाइऑक्साइड का आदान-प्रदान होता है, और शरीर [[ वेंटिलेशन (फिजियोलॉजी) ]] की दर को समायोजित करके ऊर्जा की बदलती मांगों का जवाब देता है। उदाहरण के लिए, परिश्रम की अवधि के दौरान शरीर तेजी से संग्रहित [[ कार्बोहाइड्रेट ]] और वसा को तोड़ता है, जिससे CO . निकलता है<sub>2</sub> रक्त प्रवाह में। रक्त CO . जैसे जलीय घोलों में<sub>2</sub> कार्बोनिक अम्लऔर बाइकार्बोनेट आयन के साथ संतुलन में विद्यमान है। | ||
: {{chem2|CO2 + H2O <-> H2CO3 <-> H+ + HCO3−}} | : {{chem2|CO2 + H2O <-> H2CO3 <-> H+ + HCO3−}} | ||
यह | यह pH में कमी है जो मस्तिष्क को तेजी से और गहरी सांस लेने का संकेत देती है, अतिरिक्त CO . को बाहर निकालती है<sub>2</sub> और O . के साथ कोशिकाओं को फिर से आपूर्ति करना<sub>2</sub>. | ||
[[Image:Aspirin-skeletal.svg|thumb|right|[[ एस्पिरिन ]] (एसिटाइलसैलिसिलिक अम्ल) एक कार्बोक्जिलिक अम्लहै]]कोशिका झिल्ली सामान्यतः चार्ज या बड़े, ध्रुवीय अणुओं के लिए अभेद्य होती है क्योंकि [[ lipophilicity ]] फैटी एसाइल चेन उनके आंतरिक भाग में होती है। कई फार्मास्युटिकल एजेंटों सहित कई जैविक रूप से महत्वपूर्ण अणु, कार्बनिक कमजोर अम्लहोते हैं जो झिल्ली को उनके प्रोटोनेटेड, अपरिवर्तित रूप में पार कर सकते हैं लेकिन उनके चार्ज रूप में नहीं (यानी, संयुग्म आधार के रूप में)। इस कारण से कई दवाओं की गतिविधि को एंटासिड या अम्लीय खाद्य पदार्थों के उपयोग से बढ़ाया या बाधित किया जा सकता है। हालांकि, आवेशित रूप अक्सर रक्त और [[ साइटोसोल ]], दोनों जलीय वातावरण में अधिक घुलनशील होता है। जब कोशिका के भीतर तटस्थ | [[Image:Aspirin-skeletal.svg|thumb|right|[[ एस्पिरिन ]] (एसिटाइलसैलिसिलिक अम्ल) एक कार्बोक्जिलिक अम्लहै]]कोशिका झिल्ली सामान्यतः चार्ज या बड़े, ध्रुवीय अणुओं के लिए अभेद्य होती है क्योंकि [[ lipophilicity ]] फैटी एसाइल चेन उनके आंतरिक भाग में होती है। कई फार्मास्युटिकल एजेंटों सहित कई जैविक रूप से महत्वपूर्ण अणु, कार्बनिक कमजोर अम्लहोते हैं जो झिल्ली को उनके प्रोटोनेटेड, अपरिवर्तित रूप में पार कर सकते हैं लेकिन उनके चार्ज रूप में नहीं (यानी, संयुग्म आधार के रूप में)। इस कारण से कई दवाओं की गतिविधि को एंटासिड या अम्लीय खाद्य पदार्थों के उपयोग से बढ़ाया या बाधित किया जा सकता है। हालांकि, आवेशित रूप अक्सर रक्त और [[ साइटोसोल ]], दोनों जलीय वातावरण में अधिक घुलनशील होता है। जब कोशिका के भीतर तटस्थ pH की तुलना में बाह्य वातावरण अधिक अम्लीय होता है, तो कुछ अम्लअपने तटस्थ रूप में विद्यमान होंगे और झिल्ली में घुलनशील होंगे, जिससे वे फॉस्फोलिपिड बाइलेयर को पार कर सकेंगे। अम्लजो [[ इंट्रासेल्युलर पीएच | इंट्रासेल्युलर pH]] में एक प्रोटॉन खो देते हैं, उनके घुलनशील, आवेशित रूप में विद्यमान होंगे और इस प्रकार साइटोसोल के माध्यम से अपने लक्ष्य तक फैलने में सक्षम होंगे। [[ आइबुप्रोफ़ेन ]], एस्पिरिन और [[ पेनिसिलिन ]] दवाओं के उदाहरण हैं जो कमजोर अम्लहैं। | ||
== सामान्य अम्ल == | == सामान्य अम्ल == | ||
Revision as of 18:16, 25 November 2022
अम्ल एक अणु या आयन है जो या तो प्रोटॉन (यानी हाइड्रोजन आयन, H+) दान करने में सक्षम है, जिसे ब्रोंस्टेड-लोरी अम्लके रूप में जाना जाता है, या इलेक्ट्रॉन जोड़ी के साथ सहसंयोजक आबंध बनाता है, जिसे लुईस अम्लके रूप में जाना जाता है।[1]
अम्ल की पहली श्रेणी प्रोटॉन दाता, या ब्रोंस्टेड-लोरी अम्ल हैं। जलीय घोल के विशेष मामले में, प्रोटॉन दाता हाइड्रोनियम आयन H3O+ बनाते हैं और उन्हें अरहेनियस अम्ल के रूप में जाना जाता है। ब्रोंस्टेड और लोरी ने गैर-जलीय विलायक को सम्मिलित करने के लिए अरहेनियस सिद्धांत को सामान्यीकृत किया। ब्रोंस्टेड या अरहेनियस अम्ल में सामान्यतः रासायनिक संरचना से बंधे हाइड्रोजन परमाणु होते हैं जो H+ के नुकसान के बाद भी ऊर्जावान रूप से अनुकूल होते हैं।
जलीय अरहेनियस अम्ल में विशिष्ट गुण होते हैं जो अम्ल का व्यावहारिक विवरण प्रदान करते हैं।[2]अम्ल खट्टे स्वाद के साथ जलीय घोल बनाते हैं, नीले लिटमस को लाल कर सकते हैं, और लवण बनाने के लिए क्षार और कुछ धातुओं (जैसे कैल्शियम) के साथ प्रतिक्रिया कर सकते हैं। अम्ल शब्द लैटिन एसिडस से लिया गया है, जिसका अर्थ है 'खट्टा'। [3]अम्ल के जलीय घोल का pH 7 से कम होता है और इसे बोलचाल की भाषा में "अम्ल" (जैसा कि "अम्ल में घुला हुआ") भी कहा जाता है, जबकि सख्त परिभाषा केवल विलेय को संदर्भित करती है।[1]कम pH का अर्थ है उच्च अम्लता, और इस प्रकार समाधान में सकारात्मक हाइड्रोजन आयनों की उच्च सांद्रता है। अम्ल के गुण वाले रसायन या पदार्थ अम्लीय कहलाते हैं।
सामान्य जलीय अम्लों में हाइड्रोक्लोरिक अम्ल (हाईड्रोजन क्लोराईड का घोल जो पेट में गैस्ट्रिक अम्ल में पाया जाता है और पाचन एंजाइमों को सक्रिय करता है), एसिटिक अम्ल (सिरका इस तरल का एक पतला जलीय घोल है), सल्फ्यूरिक अम्ल (कार बैटरी में प्रयुक्त) सम्मिलित हैं। और साइट्रिक अम्ल (खट्टे फलों में पाया जाता है)। जैसा कि इन उदाहरणों से पता चलता है, अम्ल (बोलचाल के अर्थ में) समाधान या शुद्ध पदार्थ हो सकते हैं, और अम्ल से प्राप्त किया जा सकता है (सख्त[1]अर्थ में) जो ठोस, तरल या गैस हैं। ठोस अम्ल और कुछ केंद्रित कमजोर अम्ल संक्षारक पदार्थ हैं, लेकिन कार्बोरेनऔर बोरिक अम्ल जैसे अपवाद हैं।
अम्ल की दूसरी श्रेणी लुईस अम्ल हैं, जो इलेक्ट्रॉन जोड़ी के साथ सहसंयोजक आबंध बनाते हैं। उदाहरण बोरॉन ट्राइफ्लोराइड (BF3) है, जिसके बोरॉन परमाणु में खाली परमाणु कक्षीय होता है जो एक आधार में परमाणु पर इलेक्ट्रॉनों की अकेली जोड़ी साझा करके सहसंयोजक आबंध बना सकता है, उदाहरण के लिए अमोनिया (NH 3) में नाइट्रोजन परमाणु। लुईस ने इसे ब्रोंस्टेड परिभाषा के सामान्यीकरण के रूप में माना, ताकि अम्ल एक रासायनिक प्रजाति है जो इलेक्ट्रॉन जोड़े को सीधे या समाधान में प्रोटॉन (H+) जारी करके स्वीकार करता है, जो तब इलेक्ट्रॉन जोड़े को स्वीकार करता है। हाइड्रोजन क्लोराइड, एसिटिक अम्ल, और अधिकांश अन्य ब्रोंस्टेड-लोरी अम्ल इलेक्ट्रॉन जोड़ी के साथ सहसंयोजक आबंध नहीं बना सकते हैं, और इसलिए लुईस अम्ल नहीं हैं।[4] इसके विपरीत, कई लुईस अम्ल अरहेनियस या ब्रोंस्टेड-लोरी अम्ल नहीं हैं। आधुनिक शब्दावली में, अम्ल परोक्ष रूप से ब्रोंस्टेड अम्ल होता है न कि लुईस अम्ल, क्योंकि रसायनज्ञ लगभग हमेशा लुईस अम्ल को स्पष्ट रूप से लुईस अम्ल के रूप में संदर्भित करते हैं।[4]
परिभाषाएं और अवधारणाएं
आधुनिक परिभाषाएँ सभी अम्लों के लिए सामान्य मूलभूत रासायनिक प्रतिक्रियाओं से संबंधित हैं।
नित्य ज़िंदगी में पाए जाने वाले अधिकांश अम्ल जलीय घोल होते हैं, या पानी में घुल सकते हैं, इसलिए अरहेनियस और ब्रोंस्टेड-लोरी की परिभाषाएँ सबसे अधिक प्रासंगिक हैं।
ब्रोंस्टेड-लोरी परिभाषा सबसे व्यापक रूप से प्रयोग की जाने वाली परिभाषा है, जब तक अन्यथा निर्दिष्ट न हो, अम्ल-क्षार अभिक्रियाओं को अम्ल से क्षार में प्रोटॉन (H+) का स्थानांतरण सम्मिलित माना जाता है।
हाइड्रोनियम आयन तीनों परिभाषाओं के अनुसार अम्ल होते हैं। हालांकि अल्कोहल और एमाइन ब्रोंस्टेड-लोरी अम्ल हो सकते हैं, लेकिन वे अपने ऑक्सीजन और नाइट्रोजन परमाणुओं पर इलेक्ट्रॉनों के अकेले जोड़े के कारण लुईस क्षार के रूप में भी कार्य कर सकते हैं।
अरहेनियस अम्ल
1884 में, स्वंते अरहेनियस ने अम्लता के गुणों को हाइड्रोजन आयनों (H+) के लिए जिम्मेदार ठहराया, जिसे बाद में प्रोटॉन या हाइड्रोन के रूप में वर्णित किया गया। अरहेनियस अम्ल ऐसा पदार्थ है, जिसे पानी में मिलाने पर, पानी में H+ आयनों की सांद्रता बढ़ जाती है।[4][5]ध्यान दें कि रसायनज्ञ अक्सर H+(aq) लिखते हैं और अम्ल-क्षार प्रतिक्रियाओं का वर्णन करते समय हाइड्रोजन आयन का उल्लेख करते हैं लेकिन मुक्त हाइड्रोजन नाभिक, प्रोटॉन, पानी में अकेले विद्यमान नहीं होता है, यह हाइड्रोनियम आयन (H3O+) या अन्य रूपों ( H5O2+, H9O4+) के रूप में विद्यमान होता है। इस प्रकार, अरहेनियस अम्ल को एक ऐसे पदार्थ के रूप में भी वर्णित किया जा सकता है जो पानी में मिलाने पर हाइड्रोनियम आयनों की सांद्रता को बढ़ाता है। उदाहरणों में हाइड्रोजन क्लोराइड और एसिटिक अम्ल जैसे आणविक पदार्थ सम्मिलित हैं।
दूसरी ओर, अरहेनियस क्षार ऐसा पदार्थ है जो पानी में घुलने पर हाइड्रॉक्साइड (OH−) आयनों की सांद्रता को बढ़ाता है। इससे हाइड्रोनियम की सांद्रता कम हो जाती है क्योंकि आयन H2O अणु बनाने के लिए प्रतिक्रिया करते हैं:
- H3O+
(aq) + OH−
(aq) ⇌ H2O(liq) + H2O(liq)
इस संतुलन के कारण, हाइड्रोनियम की सांद्रता में कोई भी वृद्धि हाइड्रॉक्साइड की सांद्रता में कमी के साथ होती है। इस प्रकार, अरहेनियस अम्ल को भी कहा जा सकता है जो हाइड्रॉक्साइड एकाग्रता को कम करता है, जबकि अरहेनियस क्षार इसे बढ़ाता है।
अम्लीय घोल में, हाइड्रोनियम आयनों की सांद्रता 10−7 मोल प्रति लीटर से अधिक होती है। चूँकि pH को हाइड्रोनियम आयनों की सांद्रता के ऋणात्मक लघुगणक के रूप में परिभाषित किया जाता है, इसलिए अम्लीय विलयनों का pH 7 से कम होता है।
ब्रोंस्टेड-लोरी अम्ल
जबकि अरहेनियस अवधारणा कई प्रतिक्रियाओं का वर्णन करने के लिए उपयोगी है, यह इसके दायरे में भी काफी सीमित है। 1923 में, रसायनज्ञ जोहान्स निकोलस ब्रोंस्टेड और थॉमस मार्टिन लोरी ने स्वतंत्र रूप से मान्यता दी कि अम्ल-क्षार प्रतिक्रियाओं में प्रोटॉन का स्थानांतरण सम्मिलित है। ब्रोंस्टेड-लोरी अम्ल (या ब्रोंस्टेड अम्ल) एक प्रजाति है जो ब्रोंस्टेड-लोरी क्षार को प्रोटॉन दान करती है।[5]ब्रोंस्टेड-लोरी अम्ल-क्षार सिद्धांत के अरहेनियस सिद्धांत पर कई फायदे हैं। सिरका को अपना विशिष्ट स्वाद देने वाले कार्बनिक अम्ल एसिटिक अम्ल (CH3COOH) की निम्नलिखित अभिक्रियाओं पर विचार कीजिए:
- CH3COOH + H2O ⇌ CH3COO− + H3O+
- CH3COOH + NH3 ⇌ CH3COO− + NH+4
दोनों सिद्धांत आसानी से पहली प्रतिक्रिया का वर्णन करते हैं: CH3COOH अरहेनियस अम्ल के रूप में कार्य करता है क्योंकि यह पानी में घुलने पर H3O+ के स्रोत के रूप में कार्य करता है, और यह पानी के लिए प्रोटॉन दान करके ब्रोंस्टेड अम्ल के रूप में कार्य करता है। दूसरे उदाहरण में CH3COOH उसी परिवर्तन से गुजरता है, इस मामले में अमोनिया (NH3) को एक प्रोटॉन दान करता है, लेकिन एक अम्लकी अरहेनियस परिभाषा से संबंधित नहीं है क्योंकि प्रतिक्रिया हाइड्रोनियम का उत्पादन नहीं करती है। फिर भी, CH3COOH अरहेनियस और ब्रोंस्टेड-लोरी अम्ल दोनों है।
ब्रोंस्टेड-लोरी सिद्धांत का उपयोग गैर-जलीय घोल या गैस चरण में आणविक यौगिकों की प्रतिक्रियाओं का वर्णन करने के लिए किया जा सकता है। हाइड्रोजन क्लोराइड (HCl) और अमोनिया कई अलग-अलग परिस्थितियों में मिलकर अमोनियम क्लोराइड NH4Cl बनाते हैं। जलीय घोल में HCl हाइड्रोक्लोरिक अम्ल के रूप में व्यवहार करता है और हाइड्रोनियम और क्लोराइड आयनों के रूप में विद्यमान होता है। निम्नलिखित प्रतिक्रियाएं अरहेनियस की परिभाषा की सीमाओं को दर्शाती हैं:
- H3O+
(aq) + Cl−
(aq) + NH3 → Cl−
(aq) + NH+
4(aq) + H2O - HCl(benzene) + NH3(benzene) → NH4Cl(s)
- HCl(g) + NH3(g) → NH4Cl(s)
एसिटिक अम्ल प्रतिक्रियाओं के साथ, दोनों परिभाषाएं पहले उदाहरण के लिए काम करती हैं, जहां पानी विलायक है और हाइड्रोनियम आयन HCl विलेय द्वारा बनता है। अगली दो प्रतिक्रियाओं में आयनों का निर्माण सम्मिलित नहीं है लेकिन फिर भी प्रोटॉन-स्थानांतरण प्रतिक्रियाएं हैं। दूसरी प्रतिक्रिया में हाइड्रोजन क्लोराइड और अमोनिया (बेंजीन में घुले हुए) बेंजीन विलायक में ठोस अमोनियम क्लोराइड बनाने के लिए प्रतिक्रिया करते हैं और तीसरे गैसीय में HCl और NH3 मिलकर ठोस बनाते हैं।
लुईस अम्ल
1923 में गिल्बर्ट एन. लुईस द्वारा एक तिहाई, केवल मामूली रूप से संबंधित अवधारणा प्रस्तावित की गई थी, जिसमें अम्ल-क्षार विशेषताओं के साथ प्रतिक्रियाएं सम्मिलित हैं जिनमें प्रोटॉन स्थानांतरण सम्मिलित नहीं है। लुईस अम्ल एक ऐसी प्रजाति है जो किसी अन्य प्रजाति से इलेक्ट्रॉनों की जोड़ी को स्वीकार करती है, दूसरे शब्दों में, यह इलेक्ट्रॉन जोड़ी स्वीकर्ता है।[5]ब्रोंस्टेड अम्ल-क्षार प्रतिक्रियाएं प्रोटॉन स्थानांतरण प्रतिक्रियाएं हैं जबकि लुईस अम्ल-क्षार प्रतिक्रियाएं इलेक्ट्रॉन जोड़ी स्थानांतरण हैं। कई लुईस अम्ल ब्रोंस्टेड-लोरी अम्ल नहीं हैं। अम्ल-क्षार रसायन विज्ञान के संदर्भ में निम्नलिखित प्रतिक्रियाओं का वर्णन कैसे किया जाता है, इसकी तुलना करें:

- पहली प्रतिक्रिया में फ्लोराइडआयन , F-, उत्पाद टेट्राफ्लोरोबोरेट बनाने के लिए बोरॉन ट्राइफ्लोराइड को इलेक्ट्रॉन जोड़ी देता है। फ्लोराइड वैलेंस इलेक्ट्रॉनों की एक जोड़ी "खो देता है" क्योंकि B—F आबंध में साझा किए गए इलेक्ट्रॉन दो परमाणु नाभिक के बीच अंतरिक्ष के क्षेत्र में स्थित होते हैं और इसलिए फ्लोराइड नाभिक से अधिक दूर होते हैं, क्योंकि वे अकेले फ्लोराइड आयन में होते हैं। BF3 लुईस अम्ल है क्योंकि यह फ्लोराइड से इलेक्ट्रॉन जोड़ी को स्वीकार करता है। इस प्रतिक्रिया को ब्रोंस्टेड सिद्धांत के संदर्भ में वर्णित नहीं किया जा सकता है क्योंकि कोई प्रोटॉन स्थानांतरण नहीं है। दूसरी प्रतिक्रिया को किसी भी सिद्धांत का उपयोग करके वर्णित किया जा सकता है। प्रोटॉन को एक अनिर्दिष्ट ब्रोंस्टेड अम्ल से अमोनिया, ब्रोंस्टेड क्षार में स्थानांतरित किया जाता है, वैकल्पिक रूप से, अमोनिया लुईस क्षार के रूप में कार्य करता है और हाइड्रोजन आयन के साथ आबंध बनाने के लिए इलेक्ट्रॉनों कीअकेली जोड़ी को स्थानांतरित करता है। इलेक्ट्रॉन जोड़ी प्राप्त करने वाली प्रजाति लुईस अम्ल है, उदाहरण के लिए, H3O+ में ऑक्सीजन परमाणु इलेक्ट्रॉनों की जोड़ी प्राप्त करता है जब H-O आबंध में से एक टूट जाता है और आबंध में साझा किए गए इलेक्ट्रॉन ऑक्सीजन पर स्थानीयकृत हो जाते हैं। संदर्भ के आधार पर, लुईस अम्ल को आक्सीकारक या इलेक्ट्रॉनरागी के रूप में भी वर्णित किया जा सकता है। कार्बनिक ब्रोंस्टेड अम्ल, जैसे एसिटिक, साइट्रिक, या ऑक्सालिक अम्ल, लुईस अम्ल नहीं हैं।[4]वे लुईस अम्ल, H+ का उत्पादन करने के लिए पानी में अलग हो जाते हैं, लेकिन साथ ही साथ लुईस क्षार (एसीटेट, साइट्रेट, या ऑक्सालेट, क्रमशः उल्लिखित अम्ल के लिए) के बराबर मात्रा में उत्पन्न करते हैं। यह लेख ज्यादातर लुईस अम्ल के बजाय ब्रोंस्टेड अम्ल से संबंधित है।
वियोजन और संतुलन
अम्ल की प्रतिक्रियाओं को अक्सर HA ⇌ H+ + A−, के रूप में सामान्यीकृत किया जाता है, जहां HA अम्ल का प्रतिनिधित्व करता है और A− संयुग्म अम्ल है। इस प्रतिक्रिया को प्रोटोअपघटन कहा जाता है। अम्ल के प्रोटोनित रूप (HA) को कभी-कभी मुक्त अम्ल भी कहा जाता है।[6]
अम्ल-क्षार संयुग्म जोड़े प्रोटॉन से भिन्न होते हैं, और प्रोटॉन (क्रमशः प्रोटॉन और अवक्षेपण )को जोड़ने या हटाने के द्वारा परस्पर परिवर्तित किया जा सकता है। ध्यान दें कि अम्ल आवेशित प्रजाति हो सकता है और संयुग्म आधार तटस्थ हो सकता है, जिस स्थिति में सामान्यीकृत प्रतिक्रिया योजना को HA+ ⇌ H+ + A के रूप में लिखा जा सकता है। समाधान में अम्ल और उसके संयुग्म आधार के बीच रासायनिक संतुलन मौजूद होता है। संतुलन स्थिरांक K, विलयन में अणुओं या आयनों की साम्यावस्था सांद्रता की अभिव्यक्ति है। कोष्ठक एकाग्रता को इंगित करते हैं, जैसे कि [H2O] का अर्थ H2O की सांद्रता है। अम्ल वियोजन स्थिरांक Ka का प्रयोग सामान्यतः अम्ल-क्षार अभिक्रियाओं के संदर्भ में किया जाता है। Ka का संख्यात्मक मान अभिकारकों की सांद्रता से विभाजित उत्पादों की सांद्रता के उत्पाद (गणित) (गुणा) के बराबर है, जहां अभिकारक अम्ल (HA) है और उत्पाद संयुग्म आधार और H+ हैं।
दो अम्लों के ठोस में कमजोर अम्ल की तुलना में अधिक Ka होगा, ठोस अम्ल के लिए हाइड्रोजन आयनों का अम्ल से अनुपात अधिक होगा क्योंकि ठोस अम्ल में अपने प्रोटॉन को खोने की प्रवृत्ति अधिक होती है। क्योंकि Ka के लिए संभावित मानों की सीमा परिमाण के कई आदेशों तक फैली हुई है, अधिक प्रबंधनीय स्थिरांक, pKa अधिक बार उपयोग किया जाता है, जहां pKa = −log10 Ka। ठोस अम्ल में कमजोर अम्ल की तुलना में कम पीकेए होता है। जलीय घोल में 25 डिग्री सेल्सियस पर प्रायोगिक रूप से निर्धारित pKa को अक्सर पाठ्यपुस्तकों और संदर्भ सामग्री में उद्धृत किया जाता है।
नामपद्धति
अरहेनियस अम्ल का नाम उनके आयनों के अनुसार रखा गया है। शास्त्रीय नामपद्धति प्रणाली में, आयनिक प्रत्यय को हटा दिया जाता है और निम्न तालिका के अनुसार नए प्रत्यय के साथ प्रतिस्थापित किया जाता है। उपसर्ग "हाइड्रो-" का उपयोग तब किया जाता है जब अम्ल सिर्फ हाइड्रोजन और अन्य तत्व से बना होता है। उदाहरण के लिए, HCl में क्लोराइड अपने आयनों के रूप में होता है, इसलिए हाइड्रो-उपसर्ग का उपयोग किया जाता है, और -आइड प्रत्यय नाम को हाइड्रोक्लोरिक अम्ल बनाता है।
शास्त्रीय नामपद्धति प्रणाली:
| Anion prefix | Anion suffix | Acid prefix | Acid suffix | Example |
|---|---|---|---|---|
| per | ate | per | ic acid | perchloric acid (HClO4) |
| ate | ic acid | chloric acid (HClO3) | ||
| ite | ous acid | chlorous acid (HClO2) | ||
| hypo | ite | hypo | ous acid | hypochlorous acid (HClO) |
| ide | hydro | ic acid | hydrochloric acid (HCl) |
आईयूपीएसी नामपद्धति प्रणाली में, "जलीय" को केवल आयनिक यौगिक के नाम में जोड़ा जाता है। इस प्रकार, हाइड्रोजन क्लोराइड के लिए, अम्ल समाधान के रूप में, आईयूपीएसी नाम जलीय हाइड्रोजन क्लोराइड है।
अम्ल गुण
अम्ल का गुण प्रोटॉन को खोने की उसकी क्षमता या प्रवृत्ति को दर्शाती है। ठोस अम्ल वह है जो पानी में पूरी तरह से अलग हो जाता है, दूसरे शब्दों में, प्रबल अम्ल HA का मोल पानी में घुल जाता है, जिससे H+ का एक मोल और संयुग्मी क्षार का एक मोल, A−, और कोई भी प्रोटोनित अम्ल HA नहीं बनता है। इसके विपरीत, कमजोर अम्ल केवल आंशिक रूप से अलग हो जाता है और संतुलन पर अम्ल और संयुग्म आधार दोनों समाधान में होते हैं। हाइड्रोक्लोरिक अम्ल (HCl), हाइड्रोआयोडिक अम्ल(HI), हाइड्रोब्रोमिक अम्ल (HBr), परक्लोरिक तेजाब (HClO4), नाइट्रिक अम्ल (HNO3) और सल्फ्यूरिक अम्ल (H2SO4) ठोस अम्ल के उदाहरण हैं। पानी में इनमें से प्रत्येक अनिवार्य रूप से 100% आयनित होता है। अम्ल जितना ठोस होता है, उतनी ही आसानी से वह एक प्रोटॉन, H+ खो देता है। दो प्रमुख कारक जो अवक्षेपण की आसानी में योगदान करते हैं, वे हैं H—A आबंध की ध्रुवीयता और परमाणु A का आकार, जो H—A आबंध की गुण को निर्धारित करता है। संयुग्म आधार की स्थिरता के संदर्भ में अम्ल की गुण पर भी अक्सर चर्चा की जाती है।
ठोस अम्ल में बड़ा अम्ल पृथक्करण स्थिरांक, Ka और कमजोर अम्ल की तुलना में अधिक नकारात्मक pKaहोता है।
सल्फोनिक अम्ल, जो कार्बनिक ऑक्सीअम्ल हैं, ठोस अम्ल का वर्ग है। सामान्य उदाहरण टोल्यूनिसल्फ़ोनिक अम्ल (टॉसिलिक अम्ल) है। सल्फ्यूरिक अम्ल के विपरीत, सल्फोनिक अम्ल ठोस हो सकते हैं। वास्तव में, पॉलीस्टाइनिन सल्फोनेट में क्रियाशील पॉलीस्टाइनिन ठोस दृढ़ता से अम्लीय प्लास्टिक है जो निस्यंदक करने योग्य है।
अतिअम्ल 100% सल्फ्यूरिक अम्ल से अधिक ठोस अम्ल होते हैं। अतिअम्ल के उदाहरण फ्लोरोएंटिमोनिक अम्ल, मैजिक अम्ल और पर्क्लोरिक अम्ल हैं। अतिअम्ल आयनिक, क्रिस्टलीय हाइड्रोनियम लवण देने के लिए पानी को स्थायी रूप से प्रोटॉन कर सकते हैं। वे कार्बनीकरण को मात्रात्मक रूप से स्थिर भी कर सकते हैं।
जबकि Ka अम्ल यौगिक की गुण को मापता है, जलीय अम्ल समाधान की गुण pH द्वारा मापी जाती है, जो समाधान में हाइड्रोनियम की एकाग्रता का संकेत है। पानी में अम्ल यौगिक के एक साधारण समाधान का pH यौगिक के कमजोर पड़ने और यौगिक के के द्वारा निर्धारित किया जाता है।
गैर-जलीय घोल में लुईस अम्ल की गुण
लुईस अम्लको ईसीडब्ल्यू मॉडल में वर्गीकृत किया गया है और यह दिखाया गया है कि अम्ल गुण का कोई एक क्रम नहीं है।[7] लुईस अम्ल की अन्य लुईस अम्ल की तुलना में क्षार की श्रृंखला की सापेक्ष स्वीकर्ता गुण को C-B प्लॉट द्वारा चित्रित किया जा सकता है।[8][9] यह दिखाया गया है कि लुईस अम्ल की गुण के क्रम को परिभाषित करने के लिए कम से कम दो गुणों पर विचार किया जाना चाहिए। पियर्सन के गुणात्मक एचएसएबी सिद्धांत के लिए दो गुण कठोरता और गुण हैं जबकि ड्रैगो के मात्रात्मक ईसीडब्ल्यू मॉडल के लिए दो गुण स्थिरवैद्युत और सहसंयोजक हैं।
रासायनिक विशेषताएं
मोनोप्रोटिक अम्ल
मोनोप्रोटिक अम्ल, जिन्हें मोनोबैसिक अम्ल के रूप में भी जाना जाता है, वे अम्ल होते हैं जो पृथक्करण की प्रक्रिया के दौरान प्रति अणु प्रोटॉन दान करने में सक्षम होते हैं (कभी-कभी आयनीकरण कहा जाता है) जैसा कि नीचे दिखाया गया है (HA द्वारा दर्शाया गया है):
- HA (aq) + H2O (l) ⇌ H3O+ (aq) + A− (aq) Ka
खनिज अम्ल में मोनोप्रोटिक अम्लों के सामान्य उदाहरणों में हाइड्रोक्लोरिक अम्ल (HCl) और नाइट्रिक अम्ल (HNO3) सम्मिलित हैं दूसरी ओर, कार्बनिक अम्ल के लिए शब्द मुख्य रूप से कार्बोज़ाइलिक तेजाब समूह की उपस्थिति को इंगित करता है और कभी-कभी इन अम्ल को मोनोकारबॉक्सिलिक अम्ल के रूप में जाना जाता है। जैविक अम्ल के उदाहरणों में फॉर्मिक अम्ल (HCOOH), एसिटिक अम्ल(CH3COOH) और बेंज़ोइक अम्ल(C6H5COOH) सम्मिलित हैं।
पॉलीप्रोटिक अम्ल
पॉलीप्रोटिक अम्ल, जिसे पॉलीबेसिक अम्ल भी कहा जाता है, मोनोप्रोटिक अम्ल के विपरीत, प्रति अम्ल अणु में एक से अधिक प्रोटॉन दान करने में सक्षम होते हैं, जो प्रति अणु केवल एक प्रोटॉन दान करते हैं। विशिष्ट प्रकार के पॉलीप्रोटिक अम्ल के अधिक विशिष्ट नाम होते हैं, जैसे कि द्विध्रुवीय (या डिबासिक) अम्ल (दान करने के लिए दो संभावित प्रोटॉन), और ट्राइप्रोटिक (या ट्राइबेसिक) अम्ल (दान करने के लिए तीन संभावित प्रोटॉन)। कुछ बृहदणु जैसे प्रोटीन और न्यूक्लिक अम्ल में बहुत बड़ी संख्या में अम्लीय प्रोटॉन हो सकते हैं।[10]
द्विध्रुवीय अम्ल (यहाँ H2A द्वारा दर्शाया गया है) pH के आधार पर एक या दो पृथक्करण से निकास कर सकता है। प्रत्येक पृथक्करण का अपना पृथक्करण स्थिरांक Ka1 और Ka2 होता है।
- H2A (aq) + H2O (l) ⇌ H3O+ (aq) + HA− (aq) Ka1
- HA− (aq) + H2O (l) ⇌ H3O+ (aq) + A2− (aq) Ka2
पहला पृथक्करण स्थिरांक सामान्यतः दूसरे (यानी, K .) से अधिक होता हैa1 > केa2) उदाहरण के लिए, सल्फ्यूरिक अम्ल(H .)2इसलिए4) बाइसल्फेट आयन (HSO .) बनाने के लिए एक प्रोटॉन दान कर सकता है−
4), जिसके लिए Ka1 बहुत बड़ी है, फिर यह सल्फेट आयन (SO .) बनाने के लिए दूसरा प्रोटॉन दान कर सकता है2−
4), जिसमें Ka2 मध्यवर्ती गुण है। बड़ा कूa1 पहले पृथक्करण के लिए सल्फ्यूरिक को एक ठोसअम्लबनाता है। इसी तरह, कमजोर अस्थिर कार्बोनिक अम्ल (H2CO3) बिकारबोनिट आयन बनाने के लिए एक प्रोटॉन खो सकता है (HCO−
3) और कार्बोनेट आयन बनाने के लिए एक सेकंड खो देते हैं (CO .)2−
3) दोनों केa मान छोटे हैं, लेकिन Ka1 > केa2 .
एक ट्राइप्रोटिक अम्ल(H .)3ए) एक, दो, या तीन हदबंदी से निकास सकता है और तीन हदबंदी स्थिरांक हैं, जहां Ka1 > केa2 > केa3.
- H3A (aq) + H2O (l) ⇌ H3O+ (aq) + H2A− (aq) कa1
- H2A− (aq) + H2O (l) ⇌ H3O+ (aq) + HA2− (aq) कa2
- HA2− (aq) + H2O (l) ⇌ H3O+ (aq) + A3− (aq) कa3
ट्राइप्रोटिक अम्लका एक अकार्बनिक उदाहरण ऑर्थोफोस्फोरिक अम्ल(H .) है3बाद में4), सामान्यतः सिर्फ फॉस्फोरिक अम्ल कहा जाता है। H . प्राप्त करने के लिए तीनों प्रोटॉन क्रमिक रूप से नष्ट हो सकते हैं2बाद में−
4, फिर एचपीओ2−
4, और अंत में पीओ3−
4, ऑर्थोफास्फेट आयन, जिसे सामान्यतः केवल फॉस्फेट कहा जाता है। भले ही मूल फॉस्फोरिक अम्लअणु पर तीन प्रोटॉन की स्थिति समतुल्य हो, क्रमिक Ka मान भिन्न होते हैं क्योंकि यदि संयुग्म आधार अधिक नकारात्मक रूप से चार्ज होता है तो प्रोटॉन खोने के लिए यह ऊर्जावान रूप से कम अनुकूल होता है। ट्राइप्रोटिक अम्लका एक कार्बनिक यौगिक उदाहरण साइट्रिक अम्लहै, जो अंत में सिट्रट आयन बनाने के लिए क्रमिक रूप से तीन प्रोटॉन खो सकता है।
हालांकि प्रत्येक हाइड्रोजन आयन का बाद में नुकसान कम अनुकूल है, सभी संयुग्म आधार समाधान में विद्यमान हैं। प्रत्येक प्रजाति के लिए भिन्नात्मक एकाग्रता, α (अल्फा) की गणना की जा सकती है। उदाहरण के लिए, एक सामान्य द्विध्रुवीयअम्लसमाधान में 3 प्रजातियां उत्पन्न करेगा: एच2ए, एचए-, और A2−. आंशिक सांद्रता की गणना नीचे दी गई है जब या तो pH दिया जाता है (जिसे [एच . में परिवर्तित किया जा सकता है)+]) या अम्लकी सांद्रता इसके सभी संयुग्म आधारों के साथ:
दिए गए K . के लिएपीएचके विरुद्ध इन भिन्नात्मक सांद्रता का एक प्लॉट1 और के2, को बजरम प्लॉट के रूप में जाना जाता है। उपरोक्त समीकरणों में एक पैटर्न देखा गया है और इसे सामान्य n-प्रोटिक अम्लमें विस्तारित किया जा सकता है जिसे i-times से हटा दिया गया है:
जहां के0 = 1 और अन्य K- पद अम्ल के लिए वियोजन स्थिरांक हैं।
तटस्थीकरण
न्यूट्रलाइज़ेशन (रसायन विज्ञान) एक अम्लऔर एक क्षार के बीच की प्रतिक्रिया है, जो एक नमक (रसायन विज्ञान) और न्यूट्रलाइज़्ड क्षार का उत्पादन करता है, उदाहरण के लिए, हाइड्रोक्लोरिक अम्लऔर सोडियम हाइड्रॉक्साइड सोडियम क्लोराइड और पानी बनाते हैं:
- HCl(aq) + NaOH(aq) → एच2O(l) + NaCl(aq)
न्यूट्रलाइजेशन अनुमापन का आधार है, जहां एक pH संकेतक तुल्यता बिंदु दिखाता है जब एक अम्लमें एक आधार के मोल की समान संख्या जोड़ दी जाती है। अक्सर यह गलत तरीके से माना जाता है कि न्यूट्रलाइजेशन का परिणाम pH 7.0 के साथ होना चाहिए, जो कि प्रतिक्रिया के दौरान समान अम्लऔर क्षार गुण के साथ ही होता है।
अम्ल से कमजोर क्षार के साथ उदासीनीकरण से दुर्बल अम्लीय लवण प्राप्त होता है। एक उदाहरण कमजोर अम्लीय अमोनियम क्लोराइड है, जो ठोसअम्लहाइड्रोजन क्लोराइड और कमजोर आधार अमोनिया से उत्पन्न होता है। इसके विपरीत, एक कमजोर अम्लको एक ठोसआधार के साथ बेअसर करने से एक कमजोर मूल नमक (जैसे, हाइड्रोजिन फ्लोराइड और सोडियम हाइड्रॉक्साइड से सोडियम फ्लोराइड ) मिलता है।
कमजोर अम्ल-कमजोर क्षार संतुलन
एक प्रोटोनितअम्लके लिए एक प्रोटॉन खोने के लिए, सिस्टम का pH pK . से ऊपर उठना चाहिएa अम्लका। H . की घटी हुई सांद्रताउस मूल समाधान में + संतुलन को संयुग्मित आधार रूप (अम्लका अवक्षेपित रूप) की ओर स्थानांतरित कर देता है। निचले-pH (अधिक अम्लीय) समाधानों में, पर्याप्त मात्रा में एच . होता है+ घोल में सांद्रण जिससे अम्ल अपने प्रोटोनितरूप में बना रहता है।
दुर्बल अम्लों और उनके संयुग्मी क्षारकों के लवणों के विलयन बफर विलयन बनाते हैं।
अनुमापन
एक जलीय घोल में एक अम्लकी एकाग्रता का निर्धारण करने के लिए, एक अम्ल-क्षार टाइट्रेशन सामान्यतः किया जाता है। एक ज्ञात सांद्रता के साथ एक ठोसआधार समाधान, सामान्यतः NaOH या KOH, जोड़ा गया आधार की मात्रा के साथ संकेतक के रंग परिवर्तन के अनुसार अम्लसमाधान को बेअसर करने के लिए जोड़ा जाता है।[11] किसी क्षार द्वारा अनुमापित अम्ल के अनुमापन वक्र में दो अक्ष होते हैं, जिसमें आधार आयतन x-अक्ष पर और विलयन कापीएचमान y-अक्ष पर होता है। विलयन में क्षार मिलाने पर विलयन कापीएचहमेशा ऊपर जाता है।
उदाहरण: द्विध्रुवीयअम्ल
प्रत्येक द्विध्रुवीयअम्लअनुमापन वक्र के लिए, बाएं से दाएं, दो मध्य बिंदु, दो तुल्यता बिंदु और दो बफर क्षेत्र हैं।[13]
तुल्यता अंक
क्रमिक वियोजन प्रक्रियाओं के कारण, द्विप्रोटिक अम्ल के अनुमापन वक्र में दो तुल्यता बिंदु होते हैं।[14] पहला तुल्यता बिंदु तब होता है जब पहले आयनीकरण से सभी पहले हाइड्रोजन आयनों का अनुमापन किया जाता है।[15] दूसरे शब्दों में, OH . की मात्रा− जोड़ा गया H . की मूल राशि के बराबर है2पहले तुल्यता बिंदु पर ए। दूसरा तुल्यता बिंदु तब होता है जब सभी हाइड्रोजन आयनों का अनुमापन किया जाता है। इसलिए, OH . की मात्रा− जोड़ा गया H . की मात्रा के दोगुने के बराबर है2इस समय ए. एक ठोसआधार द्वारा अनुमापित एक कमजोर द्विध्रुवीयअम्लके लिए, दूसरा तुल्यता बिंदु समाधान में परिणामी लवण के हाइड्रोलिसिस के कारण 7 से ऊपर pH पर होना चाहिए।[15]किसी भी तुल्यता बिंदु पर, आधार की एक बूंद जोड़ने से प्रणाली में pH मान में सबसे तेज वृद्धि होगी।
बफर क्षेत्र और मध्य बिंदु
द्विप्रोटिक अम्ल के अनुमापन वक्र में दो मध्यबिंदु होते हैं जहां pH=pKa. चूँकि दो भिन्न K . हैंa मान, पहला मध्यबिंदु pH=pK . पर होता हैa1 और दूसरा pH=pK . पर होता हैa2.[16] वक्र का प्रत्येक खंड जिसके केंद्र में एक मध्य बिंदु होता है, बफर क्षेत्र कहलाता है। क्योंकि बफर क्षेत्रों में अम्लऔर उसके संयुग्म आधार होते हैं, यह pH परिवर्तनों का विरोध कर सकता है जब आधार को अगले समकक्ष बिंदुओं तक जोड़ा जाता है।[5]
अम्लों के अनुप्रयोग
उद्योग में
आधुनिक उद्योग में लगभग सभी प्रक्रियाओं के उपचार में अम्लमौलिक अभिकर्मक हैं। सल्फ्यूरिक अम्ल, एक द्विध्रुवीयअम्ल, उद्योग में सबसे व्यापक रूप से प्रयोग किया जाने वाला अम्लहै, और यह दुनिया में सबसे अधिक उत्पादित औद्योगिक रसायन भी है। यह मुख्य रूप से उर्वरक, डिटर्जेंट, बैटरी और रंगों के उत्पादन में उपयोग किया जाता है, साथ ही अशुद्धियों को दूर करने जैसे कई उत्पादों के प्रसंस्करण में भी उपयोग किया जाता है।[17] 2011 के आंकड़ों के अनुसार, दुनिया में सल्फ्यूरिक अम्लका वार्षिक उत्पादन लगभग 200 मिलियन टन था।[18] उदाहरण के लिए, फॉस्फेट खनिज फॉस्फेट उर्वरकों के उत्पादन के लिए फॉस्फोरिक अम्लका उत्पादन करने के लिए सल्फ्यूरिक अम्लके साथ प्रतिक्रिया करते हैं, और जिंक ऑक्साइड को सल्फ्यूरिक अम्लमें घोलकर, घोल को शुद्ध करके और इलेक्ट्रोइनिंग द्वारा जस्ता का उत्पादन किया जाता है।
रासायनिक उद्योग में, अम्ल उदासीनीकरण अभिक्रिया में लवण उत्पन्न करने के लिए अभिक्रिया करते हैं। उदाहरण के लिए, नाइट्रिक अम्लअमोनिया के साथ प्रतिक्रिया करके अमोनियम नाइट्रेट , एक उर्वरक का उत्पादन करता है। इसके अतिरिक्त, एस्टर का उत्पादन करने के लिए कार्बोक्जिलिक अम्लअल्कोहल के साथ एस्टरीफिकेशन हो सकता है।
अम्लका उपयोग अक्सर धातुओं से जंग और अन्य जंग को हटाने के लिए किया जाता है, जिसे अचार (धातु) के रूप में जाना जाता है। उनका उपयोग गीला सेल बैटरी में इलेक्ट्रोलाइट के रूप में किया जा सकता है, जैसे कार बैटरी में सल्फ्यूरिक अम्ल।
भोजन में
टारटरिक अम्ल कुछ सामान्य रूप से प्रयोग किए जाने वाले खाद्य पदार्थों जैसे कच्चे आम और इमली का एक महत्वपूर्ण घटक है। प्राकृतिक फलों और सब्जियों में भी अम्लहोता है। संतरे, नींबू और अन्य खट्टे फलों में साइट्रिक अम्लमौजूद होता है। टमाटर, पालक, और विशेष रूप से स्टार फल और एक प्रकार का फल में ऑक्सालिक अम्ल विद्यमान होता है, ऑक्सालिक अम्लकी उच्च सांद्रता के कारण रूबर्ब के पत्ते और कच्चे कैरम्बोला जहरीले होते हैं। एस्कॉर्बिक अम्ल (विटामिन सी) मानव शरीर के लिए एक आवश्यक विटामिन है और आंवला (फाइलेन्थस एम्ब्लिका ), नींबू, खट्टे फल और अमरूद जैसे खाद्य पदार्थों में विद्यमान होता है।
कई अम्लविभिन्न प्रकार के खाद्य पदार्थों में एडिटिव्स के रूप में पाए जा सकते हैं, क्योंकि वे अपना स्वाद बदलते हैं और परिरक्षकों के रूप में काम करते हैं। फॉस्फोरिक अम्ल, उदाहरण के लिए, कोला पेय का एक घटक है। एसिटिक अम्ल का उपयोग दैनिक जीवन में सिरके के रूप में किया जाता है। साइट्रिक अम्लका उपयोग सॉस और अचार में परिरक्षक के रूप में किया जाता है।
कार्बोनिक अम्लसबसे आम अम्लएडिटिव्स में से एक है जिसे व्यापक रूप से शीतल पेय में जोड़ा जाता है। निर्माण प्रक्रिया के दौरान, CO2 सामान्यतः कार्बोनिक अम्लउत्पन्न करने के लिए इन पेय में घुलने के लिए दबाव डाला जाता है। कार्बोनिक अम्लबहुत अस्थिर होता है और पानी में विघटित हो जाता है और CO2 कमरे के तापमान और दबाव पर। इसलिए, जब इस प्रकार के शीतल पेय की बोतलें या डिब्बे खोले जाते हैं, तो शीतल पेय सीओ के रूप में फीके और पुतले बन जाते हैं।2 बुलबुले निकलते हैं।[19] कुछ अम्लदवाओं के रूप में उपयोग किए जाते हैं। एसिटाइलसैलीसिलिक अम्ल (एस्पिरिन) का उपयोग दर्द निवारक के रूप में और बुखार को कम करने के लिए किया जाता है।
मानव शरीर में
मानव शरीर में अम्ल महत्वपूर्ण भूमिका निभाते हैं। पेट में विद्यमान हाइड्रोक्लोरिक अम्लबड़े और जटिल खाद्य अणुओं को तोड़कर पाचन में सहायता करता है। शरीर के ऊतकों की वृद्धि और मरम्मत के लिए आवश्यक प्रोटीन के संश्लेषण के लिए अमीनो अम्ल की आवश्यकता होती है। शरीर के ऊतकों की वृद्धि और मरम्मत के लिए भी फैटी अम्लकी आवश्यकता होती है। न्यूक्लिक अम्लडीएनए और आरएनए के निर्माण और जीन के माध्यम से संतानों को लक्षणों के संचारण के लिए महत्वपूर्ण हैं। कार्बोनिक अम्लशरीर में pH संतुलन बनाए रखने के लिए महत्वपूर्ण है।
मानव शरीर में विभिन्न प्रकार के कार्बनिक और अकार्बनिक यौगिक होते हैं, उनमें से डाइकारबॉक्सिलिक अम्ल कई जैविक व्यवहारों में एक आवश्यक भूमिका निभाते हैं। उनमें से कई अम्लअमीनो अम्लहोते हैं, जो मुख्य रूप से प्रोटीन के संश्लेषण के लिए सामग्री के रूप में काम करते हैं।[20] अन्य कमजोर अम्लशरीर के pH को बड़े पैमाने पर होने वाले परिवर्तनों से बचाने के लिए अपने संयुग्म आधारों के साथ बफर के रूप में काम करते हैं जो कोशिकाओं के लिए हानिकारक होंगे।[21] बाकी डाइकारबॉक्सिलिक अम्लभी मानव शरीर में विभिन्न जैविक रूप से महत्वपूर्ण यौगिकों के संश्लेषण में भाग लेते हैं।
अम्ल उत्प्रेरण
अम्लका उपयोग औद्योगिक और कार्बनिक रसायन विज्ञान में उत्प्रेरक के रूप में किया जाता है, उदाहरण के लिए, गैसोलीन का उत्पादन करने के लिए alkylation प्रक्रिया में सल्फ्यूरिक अम्लका उपयोग बहुत बड़ी मात्रा में किया जाता है। कुछ अम्ल, जैसे सल्फ्यूरिक, फॉस्फोरिक और हाइड्रोक्लोरिक अम्ल, निर्जलीकरण प्रतिक्रिया और संक्षेपण प्रतिक्रियाओं को भी प्रभावित करते हैं। जैव रसायन में, कई एंजाइम अम्लकटैलिसीस को नियोजित करते हैं।[22]
जैविक घटना
कई जैविक रूप से महत्वपूर्ण अणु अम्ल होते हैं। न्यूक्लिक अम्ल , जिसमें अम्लीय फॉस्फेट होता है, में डीएनए और आरएनए सम्मिलित हैं। न्यूक्लिक अम्लमें आनुवंशिक कोड होता है जो जीव की कई विशेषताओं को निर्धारित करता है, और माता-पिता से संतानों को पारित किया जाता है। डीएनए में प्रोटीन के संश्लेषण के लिए रासायनिक खाका होता है, जो अमीनो अम्लसबयूनिट्स से बना होता है। कोशिका झिल्ली में फॉस्फोलिपिड जैसे वसा अम्ल एस्टर होते हैं।
एक α-एमिनो अम्लमें एक केंद्रीय कार्बन (α या अल्फा और बीटा कार्बन) होता है जो एक कार्बाक्सिल समूह (इस प्रकार वे कार्बोक्जिलिक अम्लहोते हैं), एक अमाइन समूह, एक हाइड्रोजन परमाणु और एक चर समूह के साथ सहसंयोजक बंधित होता है। चर समूह, जिसे आर समूह या साइड चेन भी कहा जाता है, एक विशिष्ट अमीनो अम्लकी पहचान और कई गुणों को निर्धारित करता है। ग्लाइसिन में, सबसे सरल अमीनो अम्ल, आर समूह एक हाइड्रोजन परमाणु है, लेकिन अन्य सभी अमीनो अम्लमें हाइड्रोजन से बंधे एक या अधिक कार्बन परमाणु होते हैं, और इसमें सल्फर, ऑक्सीजन या नाइट्रोजन जैसे अन्य तत्व हो सकते हैं। ग्लाइसीन के अपवाद के साथ, प्राकृतिक रूप से पाए जाने वाले अमीनो अम्लचिरलिटी (रसायन विज्ञान) हैं और लगभग हमेशा चिरायता (रसायन विज्ञान) # कॉन्फ़िगरेशन द्वारा: डी- और एल-|<छोटा>एल</छोटा>-कॉन्फ़िगरेशन में पाए जाते हैं। कुछ जीवाणु कोशिका भित्ति में पाए जाने वाले पेप्टिडोग्लाइकन में कुछ <छोटे>डी</छोटे> -एमिनो अम्लहोते हैं। शारीरिक pH पर, सामान्यतः लगभग 7, मुक्त अमीनो अम्लएक आवेशित रूप में विद्यमान होते हैं, जहां अम्लीय कार्बोक्सिल समूह (-COOH) एक प्रोटॉन (-COO) खो देता है।−) और मूल अमीन समूह (-NH .)2) एक प्रोटॉन प्राप्त करता है (-NH+
3) मूल या अम्लीय साइड चेन वाले अमीनो अम्लके अपवाद के साथ पूरे अणु में एक शुद्ध तटस्थ चार्ज होता है और एक ज़्विटेरियन होता है। उदाहरण के लिए, एस्पार्टिक अम्ल में एक प्रोटोनितएमाइन और दो डिप्रोटोनेटेड कार्बोक्सिल समूह होते हैं, जो शारीरिक pH पर −1 के शुद्ध चार्ज के लिए होते हैं।
फैटी अम्लऔर फैटी अम्लडेरिवेटिव कार्बोक्जिलिक अम्लका एक और समूह है जो जीव विज्ञान में महत्वपूर्ण भूमिका निभाते हैं। इनमें लंबी हाइड्रोकार्बन श्रृंखलाएं और एक सिरे पर एक कार्बोक्जिलिक अम्लसमूह होता है। लगभग सभी जीवों की कोशिका झिल्ली मुख्य रूप से फ़ॉस्फ़ोलिपिड बाइलेयर से बनी होती है, जो ध्रुवीय, हाइड्रोफिलिक फॉस्फेट प्रमुख समूहों के साथ हाइड्रोफोबिक फैटी अम्लएस्टर का एक मिसेल है। झिल्ली में अतिरिक्त घटक होते हैं, जिनमें से कुछ अम्ल-क्षार प्रतिक्रियाओं में भाग ले सकते हैं।
मनुष्यों और कई अन्य जानवरों में, हाइड्रोक्लोरिक अम्ल पेट के भीतर स्रावित गैस्ट्रिक अम्लका एक हिस्सा है जो प्रोटीन और बहुशर्करा को हाइड्रोलाइज करने में मदद करता है, साथ ही निष्क्रिय प्रो-एंजाइम, [[ पित्त का एक प्रधान अंश ोजेन ]] को पाचन एंजाइम, पेप्सिन में परिवर्तित करता है। कुछ जीव रक्षा के लिए अम्ल उत्पन्न करते हैं, उदाहरण के लिए, चींटियाँ फॉर्मिक अम्लका उत्पादन करती हैं।
अम्ल-क्षार संतुलन स्तनधारी श्वास को विनियमित करने में महत्वपूर्ण भूमिका निभाता है। आणविक ऑक्सीजन गैस (O2) सेलुलर श्वसन को संचालित करता है, वह प्रक्रिया जिसके द्वारा जानवर भोजन में संग्रहीत रासायनिक संभावित ऊर्जा को छोड़ते हैं, कार्बन डाइआक्साइड (CO .) का उत्पादन करते हैं2) उपोत्पाद के रूप में। फेफड़ों में ऑक्सीजन और कार्बन डाइऑक्साइड का आदान-प्रदान होता है, और शरीर वेंटिलेशन (फिजियोलॉजी) की दर को समायोजित करके ऊर्जा की बदलती मांगों का जवाब देता है। उदाहरण के लिए, परिश्रम की अवधि के दौरान शरीर तेजी से संग्रहित कार्बोहाइड्रेट और वसा को तोड़ता है, जिससे CO . निकलता है2 रक्त प्रवाह में। रक्त CO . जैसे जलीय घोलों में2 कार्बोनिक अम्लऔर बाइकार्बोनेट आयन के साथ संतुलन में विद्यमान है।
- CO2 + H2O ⇌ H2CO3 ⇌ H+ + HCO−3
यह pH में कमी है जो मस्तिष्क को तेजी से और गहरी सांस लेने का संकेत देती है, अतिरिक्त CO . को बाहर निकालती है2 और O . के साथ कोशिकाओं को फिर से आपूर्ति करना2.
कोशिका झिल्ली सामान्यतः चार्ज या बड़े, ध्रुवीय अणुओं के लिए अभेद्य होती है क्योंकि lipophilicity फैटी एसाइल चेन उनके आंतरिक भाग में होती है। कई फार्मास्युटिकल एजेंटों सहित कई जैविक रूप से महत्वपूर्ण अणु, कार्बनिक कमजोर अम्लहोते हैं जो झिल्ली को उनके प्रोटोनेटेड, अपरिवर्तित रूप में पार कर सकते हैं लेकिन उनके चार्ज रूप में नहीं (यानी, संयुग्म आधार के रूप में)। इस कारण से कई दवाओं की गतिविधि को एंटासिड या अम्लीय खाद्य पदार्थों के उपयोग से बढ़ाया या बाधित किया जा सकता है। हालांकि, आवेशित रूप अक्सर रक्त और साइटोसोल , दोनों जलीय वातावरण में अधिक घुलनशील होता है। जब कोशिका के भीतर तटस्थ pH की तुलना में बाह्य वातावरण अधिक अम्लीय होता है, तो कुछ अम्लअपने तटस्थ रूप में विद्यमान होंगे और झिल्ली में घुलनशील होंगे, जिससे वे फॉस्फोलिपिड बाइलेयर को पार कर सकेंगे। अम्लजो इंट्रासेल्युलर pH में एक प्रोटॉन खो देते हैं, उनके घुलनशील, आवेशित रूप में विद्यमान होंगे और इस प्रकार साइटोसोल के माध्यम से अपने लक्ष्य तक फैलने में सक्षम होंगे। आइबुप्रोफ़ेन , एस्पिरिन और पेनिसिलिन दवाओं के उदाहरण हैं जो कमजोर अम्लहैं।
सामान्य अम्ल
खनिज अम्ल (अकार्बनिक अम्ल)
- हाइड्रोजन हैलाइड और उनके समाधान: हाइड्रोफ्लुओरिक अम्ल (एचएफ), हाइड्रोक्लोरिक अम्ल(HCl), हाइड्रोब्रोमिक अम्ल(एचबीआर), हाइड्रोयोडिक अम्ल(एचआई)
- हैलोजन ऑक्सोएसिड: हाइपोक्लोरस तेजाब (HClO), क्लोरस अम्ल (HClO .)2), क्लोरिक अम्ल (HClO .)3), पर्क्लोरिक अम्ल (HClO .)4), और ब्रोमीन और आयोडीन के अनुरूप एनालॉग्स
- हाइपोफ्लोरस अम्ल (HFO), फ्लोरीन के लिए एकमात्र ज्ञात ऑक्सोएसिड।
- सल्फ्यूरिक अम्ल (H .)2इसलिए4)
- फ्लोरोसल्फ्यूरिक अम्ल (HSO .)3एफ)
- नाइट्रिक अम्ल(HNO3)
- फॉस्फोरिक अम्ल(H3बाद में4)
- फ्लोरोएंटिमोनिक अम्ल(HSbF .)6)
- फ्लोरोबोरिक अम्ल (HBF .)4)
- हेक्साफ्लोरोफॉस्फोरिक अम्ल (एचपीएफ)6)
- क्रोमिक अम्ल (H .)2सीआरओ4)
- बोरिक अम्ल(H3बो3)
सल्फोनिक अम्ल
एक सल्फोनिक अम्लका सामान्य सूत्र RS(=O) होता है2-OH, जहाँ R एक कार्बनिक मूलक है।
- मीथेनसल्फोनिक अम्ल (या मेसिलिक अम्ल, सीएच3इसलिए3एच)
- एथेनसल्फोनिक अम्ल (या एसाइलिक अम्ल, सीएच3चौधरी2इसलिए3एच)
- बेंजीनसल्फोनिक अम्ल (या बेसिलिक अम्ल, सी6H5इसलिए3एच)
- p-Toluenesulfonic अम्ल(या टॉसिलिक अम्ल, CH3C6H4इसलिए3एच)
- ट्राइफ्लोरोमेथेनसल्फोनिक अम्ल (या ट्राइफ्लिक अम्ल, CF3इसलिए3एच)
- पॉलीस्टाइनिन सल्फोनिक अम्ल (सल्फ़ोनेटेड पॉलीस्टाइनिन, [सीएच2सीएच(सी6H4)इसलिए3एच]n)
कार्बोक्जिलिक अम्ल
एक कार्बोक्जिलिक अम्लका सामान्य सूत्र R-C(O)OH होता है, जहां R एक कार्बनिक मूलक है। कार्बोक्सिल समूह -C(O)OH में एक कार्बोनिल समूह, C=O, और एक हाइड्रॉकसिल समूह, O-H होता है।
- एसिटिक अम्ल (CH .)3सीओओएच)
- साइट्रिक अम्ल(सी6H8O7)
- फॉर्मिक अम्ल(HCOOH)
- ग्लूकोनिक अम्ल HOCH2-(सीएचओएच)4-कूह
- लैक्टिक अम्ल (CH .)3-चोह-कूह)
- ऑक्सालिक अम्ल(HOOC-COOH)
- टार्टरिक अम्ल (HOOC-CHOH-CHOH-COOH)
हैलोजेनेटेड कार्बोक्जिलिक अम्ल
अल्फा और बीटा कार्बन पर हैलोजनीकरण से अम्ल गुण बढ़ती है, जिससे निम्नलिखित अम्ल एसिटिक अम्ल से अधिक प्रबल होते हैं।
- फ्लोरोएसेटिक अम्ल
- ट्री फ्लुओरो असेटिक अमल
- क्लोरोएसेटिक अम्ल
- [[ डाइक्लोरोएसेटिक अम्ल ]]*
- ट्राइक्लोरोएसिटिक अम्ल
विनाइल रिकॉर्ड कार्बोक्जिलिक अम्ल
सामान्य कार्बोक्जिलिक अम्लएक कार्बोनिल समूह और एक हाइड्रॉक्सिल समूह का सीधा मिलन होता है। विनाइलॉगस कार्बोक्जिलिक अम्लमें, कार्बन-कार्बन डबल आबंध कार्बोनिल और हाइड्रॉक्सिल समूहों को अलग करता है।
- एस्कॉर्बिक अम्ल
न्यूक्लिक अम्ल
- डीएनए (डीएनए)
- आरएनए (आरएनए)
संदर्भ
- ↑ 1.0 1.1 1.2 IUPAC गोल्ड बुक - एसिड
- ↑ Petrucci, R. H.; Harwood, R. S.; Herring, F. G. (2002). सामान्य रसायन विज्ञान: सिद्धांत और आधुनिक अनुप्रयोग (8th ed.). Prentice Hall. p. 146. ISBN 0-13-014329-4.
- ↑ Merriam-Webster's Online Dictionary: acid
- ↑ 4.0 4.1 4.2 4.3 Otoxby, D. W.; Gillis, H. P.; Butler, L. J. (2015). आधुनिक रसायन विज्ञान के सिद्धांत (8th ed.). Brooks Cole. p. 617. ISBN 978-1305079113.
- ↑ 5.0 5.1 5.2 5.3 Ebbing, Darrell; Gammon, Steven D. (1 January 2016). सामान्य रसायन शास्त्र (in English) (11th ed.). Cengage Learning. ISBN 9781305887299.
- ↑ Stahl PH, Nakamo M (2008). "Pharmaceutical Aspects of the Salt Form". In Stahl PH, Warmth CG (eds.). फार्मास्युटिकल साल्ट की हैंडबुक: गुण, चयन और उपयोग. Weinheim: Wiley-VCH. pp. 92–94. ISBN 978-3-906390-58-1.
- ↑ Vogel G. C.; Drago, R. S. (1996). "ईसीडब्ल्यू मॉडल". Journal of Chemical Education. 73 (8): 701–707. Bibcode:1996JChEd..73..701V. doi:10.1021/ed073p701.
- ↑ Laurence, C. and Gal, J-F. Lewis Basicity and Affinity Scales, Data and Measurement, (Wiley 2010) pp 50-51 ISBN 978-0-470-74957-9
- ↑ Cramer, R. E.; Bopp, T. T. (1977). "लुईस एसिड और बेस के लिए एडक्ट फॉर्मेशन की एन्थैल्पी का ग्राफिकल डिस्प्ले". Journal of Chemical Education. 54: 612–613. doi:10.1021/ed054p612. The plots shown in this paper used older parameters. Improved E&C parameters are listed in ECW model.
- ↑ Wyman, Jeffries; Tileston Edsall, John. "Chapter 9: Polybasic Acids, Bases, and Ampholytes, Including Proteins". बायोफिजिकल केमिस्ट्री - वॉल्यूम 1. p. 477.
- ↑ de Levie, Robert (1999). जलीय अम्ल-क्षार संतुलन और अनुमापन. New York: Oxford University Press.
- ↑ Jameson, Reginald F. (1978). "3-(3,4-डायहाइड्रोक्सीफेनिल) ऐलेनिन (एल-डोपा) के लिए प्रोटॉन-एसोसिएशन स्थिरांक का असाइनमेंट". Journal of the Chemical Society, Dalton Transactions (in English) (1): 43–45. doi:10.1039/DT9780000043.
- ↑ Helfferich, Friedrich G. (1 January 1962). आयन विनिमय (in English). Courier Corporation. ISBN 9780486687841.
- ↑ "डिप्रोटिक एसिड का अनुमापन". dwb.unl.edu. Archived from the original on 7 February 2016. Retrieved 24 January 2016.
- ↑ 15.0 15.1 Kotz, John C.; Treichel, Paul M.; Townsend, John; Treichel, David (24 January 2014). रसायन विज्ञान और रासायनिक प्रतिक्रियाशीलता (in English). Cengage Learning. ISBN 9781305176461.
- ↑ Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (1 January 2005). जैव रसायन के लेहनिंगर सिद्धांत (in English). Macmillan. ISBN 9780716743392.
- ↑ "शीर्ष 10 औद्योगिक रसायन - डमी के लिए". dummies.com. Retrieved 5 February 2016.
- ↑ "सल्फ्यूरिक एसिड". essentialchemicalindustry.org. Retrieved 6 February 2016.
- ↑ McMillin, John R.; Tracy, Gene A.; Harvill, William A.; Credle, William S. Jr. (8 December 1981), Method of and apparatus for making and dispensing a carbonated beverage utilizing propellant carbon dioxide gas for carbonating, retrieved 6 February 2016
- ↑ Barrett, G. C.; Elmore, D. T. (June 2012). 8 - अमीनो एसिड और पेप्टाइड्स की जैविक भूमिकाएँ - विश्वविद्यालय प्रकाशन ऑनलाइन. doi:10.1017/CBO9781139163828. ISBN 9780521462921.
- ↑ Graham, Timur (2006). "एसिड बफरिंग". Acid Base Online Tutorial. University of Connecticut. Archived from the original on 13 February 2016. Retrieved 6 February 2016.
- ↑ Voet, Judith G.; Voet, Donald (2004). जीव रसायन. New York: J. Wiley & Sons. pp. 496–500. ISBN 978-0-471-19350-0.
- Listing of strengths of common acids and bases
- Zumdahl, Steven S. (1997). Chemistry (4th ed.). Boston: Houghton Mifflin. ISBN 9780669417944.
- Pavia, D. L.; Lampman, G. M.; Kriz, G. S. (2004). Organic Chemistry Volume I. Mason, OH: Cengage Learning. ISBN 0759347271.