घन सतह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, घन सतह 3-आयामी क्षेत्र में सतह के रूप में होती है, जिसे   डिग्री 3 के [[बहुपद]] समीकरण द्वारा परिभाषित किया जाता है। [[बीजगणितीय ज्यामिति]] में घन सतह मौलिक उदाहरण के रूप में हैं। इस सिद्धांत को एफ़ेईन क्षेत्र के अतिरिक्त [[ प्रक्षेपण स्थान |प्रक्षेपण क्षेत्र]] में काम करके सरलीकृत किया गया है और इसलिए घन सतहों को सामान्यतः प्रक्षेपीय 3-स्पेस <math>\mathbf{P}^3</math> के रूप में जाना जाता है और इस प्रकार [[वास्तविक संख्या|वास्तविक संख्याओं]] के अतिरिक्त [[जटिल संख्या|जटिल]] [[वास्तविक संख्या|संख्याओं]] पर सतहों के फोकस करने पर सिद्धांत अधिक समरूप हो जाता है और इस प्रकार ध्यान दें कि जटिल सतह का वास्तविक आयाम 4 होता है। [[फर्मेट क्यूबिक सतह|फर्मेट घन]] सतह का एक सरल उदाहरण है।
गणित में, घन सतह 3-आयामी क्षेत्र में सतह के रूप में होती है, जिसे घात 3 के [[बहुपद]] समीकरण द्वारा परिभाषित किया जाता है। [[बीजगणितीय ज्यामिति]] में घन सतह मौलिक उदाहरण के रूप में हैं। इस सिद्धांत को एफ़ेईन क्षेत्र के अतिरिक्त [[ प्रक्षेपण स्थान |प्रक्षेपण क्षेत्र]] में काम करके सरलीकृत किया गया है और इसलिए घन सतहों को सामान्यतः प्रक्षेपीय 3-स्पेस <math>\mathbf{P}^3</math> के रूप में जाना जाता है और इस प्रकार [[वास्तविक संख्या|वास्तविक संख्याओं]] के अतिरिक्त [[जटिल संख्या|जटिल]] [[वास्तविक संख्या|संख्याओं]] पर सतहों के फोकस करने पर सिद्धांत अधिक समरूप हो जाता है और इस प्रकार ध्यान दें कि जटिल सतह का वास्तविक आयाम 4 होता है। [[फर्मेट क्यूबिक सतह|फर्मेट घन]] सतह का एक सरल उदाहरण है।
:<math>x^3+y^3+z^3+w^3=0</math>
:<math>x^3+y^3+z^3+w^3=0</math>
<math>\mathbf{P}^3</math>. घन सतहों के कई गुण सामान्यतः डेल पेज़ो की सतहों के लिए पकड़ अधिक होती है।
<math>\mathbf{P}^3</math>. घन सतहों के कई गुण सामान्यतः डेल पेज़ो की सतहों के लिए पकड़ अधिक होती है।
Line 5: Line 5:


== घन सतहों की तर्कसंगतता ==
== घन सतहों की तर्कसंगतता ==
बीजगणितीय रूप से बंद क्षेत्र X पर चिकनी घन सतहों की केंद्रीय विशेषता यह है कि वे सभी तर्कसंगत विविधताओ के रूप में होती है, जैसा कि 1866 में [[अल्फ्रेड क्लेब्सच]] द्वारा दिखाया गया है।<ref>Reid (1988), Corollary 7.4.</ref> अर्थात, यहां एक से एक पत्राचार है जो प्रक्षेपीय समतल <math>\mathbf{P}^2</math> के मध्य निम्न आयामी उप समुच्चय तथा X शून्य से निम्न आयामी उपसमुच्चय के मध्य तार्किक फलनों द्वारा परिभाषित होता है। सामान्य रूप से, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक अलघुकरणीय घन सतह संभवतः अद्वितीय तर्कसंगत के रूप में होते है।<ref>Kollár, Smith, Corti (2004), Example 1.28.</ref> जब तक कि यह किसी घन वक्र पर काल्पनिक शंकु न हो। इस संबंध में, <math>\mathbf{P}^3</math> में कम से कम 4 डिग्री की चिकनी सतह की तुलना में घन सतहें बहुत सरल रूप में होती है, जो कभी भी तर्कसंगत नहीं होते हैं और इस प्रकार अभिलाक्षणिक (बीजगणित) शून्य में कम से कम 4 इंच की चिकनी सतहें <math>\mathbf{P}^3</math> [[अनियंत्रित]] समान नहीं होती हैं।<ref>Kollár, Smith, Corti (2004), Exercise 1.59.</ref>
बीजगणितीय रूप से बंद क्षेत्र X पर चिकनी घन सतहों की केंद्रीय विशेषता यह है कि वे सभी तर्कसंगत विविधताओ के रूप में होती है, जैसा कि 1866 में [[अल्फ्रेड क्लेब्सच]] द्वारा दिखाया गया है।<ref>Reid (1988), Corollary 7.4.</ref> अर्थात, यहां एक से एक पत्राचार है जो प्रक्षेपीय समतल <math>\mathbf{P}^2</math> के मध्य निम्न आयामी उप समुच्चय तथा X शून्य से निम्न आयामी उपसमुच्चय के मध्य तार्किक फलनों द्वारा परिभाषित होता है। सामान्य रूप से, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक अलघुकरणीय घन सतह संभवतः अद्वितीय तर्कसंगत के रूप में होते है।<ref>Kollár, Smith, Corti (2004), Example 1.28.</ref> जब तक कि यह किसी घन वक्र पर काल्पनिक शंकु न हो। इस संबंध में, <math>\mathbf{P}^3</math> में कम से कम 4 घात की चिकनी सतह की तुलना में घन सतहें बहुत सरल रूप में होती है, जो कभी भी तर्कसंगत नहीं होते हैं और इस प्रकार अभिलाक्षणिक (बीजगणित) शून्य में कम से कम 4 इंच की चिकनी सतहें <math>\mathbf{P}^3</math> [[अनियंत्रित]] समान नहीं होती हैं।<ref>Kollár, Smith, Corti (2004), Exercise 1.59.</ref>


क्लेब्स ने अधिक दृढ़ता से दिखाया कि प्रत्येक चिकनी घन सतह <math>\mathbf{P}^3</math> बीजगणितीय द्वारा निर्मित क्षेत्र आइसोमोर्फिक है तथा <math>\mathbf{P}^2</math> को 6 बिन्दुओं पर [[उडान भरने]] के लिए समरूप है।<ref name="Dnotes">Dolgachev (2012), Chapter 9, Historical notes.</ref> परिणाम स्वरुप, जटिल संख्याओं पर हर चिकनी घन सतह जुड़ी हुई राशि के लिए भिन्न -भिन्न होती है <math>\mathbf{CP}^2\# 6(-\mathbf{CP}^2)</math>, जहां ऋण चिह्न [[ओरिएंटेशन]] के परिवर्तन को संदर्भित करता है। इसके विपरीत <math>\mathbf{P}^2</math> से 6 बिन्दुओं पर एक घन सतह के लिए आइसोमोर्फिक है और यदि बिंदु सामान्य स्थिति में हैं, जिसका अर्थ है कि तीन बिंदु एक रेखा पर नहीं हैं और सभी 6 शंकु पर स्थित नहीं हैं और इस प्रकार [[जटिल कई गुना]] या एक बीजगणितीय विविधता के रूप में सतह उन 6 बिंदुओं की व्यवस्था पर निर्भर करती है।
क्लेब्स ने अधिक दृढ़ता से दिखाया कि प्रत्येक चिकनी घन सतह <math>\mathbf{P}^3</math> बीजगणितीय द्वारा निर्मित क्षेत्र आइसोमोर्फिक है तथा <math>\mathbf{P}^2</math> को 6 बिन्दुओं पर [[उडान भरने]] के लिए समरूप है।<ref name="Dnotes">Dolgachev (2012), Chapter 9, Historical notes.</ref> परिणाम स्वरुप, जटिल संख्याओं पर हर चिकनी घन सतह जुड़ी हुई राशि के लिए भिन्न -भिन्न होती है <math>\mathbf{CP}^2\# 6(-\mathbf{CP}^2)</math>, जहां ऋण चिह्न [[ओरिएंटेशन]] के परिवर्तन को संदर्भित करता है। इसके विपरीत <math>\mathbf{P}^2</math> से 6 बिन्दुओं पर एक घन सतह के लिए आइसोमोर्फिक है और यदि बिंदु सामान्य स्थिति में हैं, जिसका अर्थ है कि तीन बिंदु एक रेखा पर नहीं हैं और सभी 6 शंकु पर स्थित नहीं हैं और इस प्रकार [[जटिल कई गुना]] या एक बीजगणितीय विविधता के रूप में सतह उन 6 बिंदुओं की व्यवस्था पर निर्भर करती है।
==एक घन सतह पर 27 रेखाएँ==
==एक घन सतह पर 27 रेखाएँ==
घन सतहों के लिए तर्कसंगतता के अधिकांश प्रमाण सतह पर एक रेखा खोजने से प्रारंभ होते हैं। (प्रक्षेपी ज्यामिति के संदर्भ में, एक रेखा में <math>\mathbf{P}^3</math> के लिए आइसोमॉर्फिक है <math>\mathbf{P}^1</math>अधिक यथार्थ रूप से, [[आर्थर केली]] और [[जॉर्ज सामन]] ने 1849 में दिखाया कि बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक चिकनी घन सतह में ठीक 27 रेखाएँ होती हैं।<ref>Reid (1988), section 7.6.</ref> यह क्यूबिक्स की एक विशिष्ट विशेषता है: एक चिकनी चतुष्कोणीय (  डिग्री 2) सतह रेखाओं के एक सतत परिवार द्वारा कवर की जाती है, जबकि   डिग्री की अधिकांश सतहें कम से कम 4 इंच की होती हैं। <math>\mathbf{P}^3</math> कोई रेखा नहीं है। 27 पंक्तियों को खोजने के लिए एक अन्य उपयोगी तकनीक में [[शुबर्ट कैलकुलस]] सम्मलित है, जो लाइनों के [[ ग्रासमानियन ]] के प्रतिच्छेदन सिद्धांत का उपयोग करके लाइनों की संख्या की गणना करता है। <math>\mathbf{P}^3</math>.
घन सतहों के लिए तर्कसंगतता के अधिकांश प्रमाण सतह पर रेखा खोजने से प्रारंभ होते हैं। प्रक्षेपी ज्यामिति के संदर्भ में, रेखा में <math>\mathbf{P}^3</math> के लिए रेखा आइसोमॉर्फिक <math>\mathbf{P}^1</math> के रूप में होते है और इस प्रकार यथार्थ रूप से, [[आर्थर केली]] और [[जॉर्ज सामन]] ने 1849 में दिखाया कि बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक चिकनी घन सतह में ठीक 27 रेखाएँ होती हैं।<ref>Reid (1988), section 7.6.</ref> यह घन की विशिष्ट विशेषता है की चिकनी चतुष्कोणीय घात 2 सतह रेखाओं के सतत समूह द्वारा कवर की जाती है, जबकि घात की अधिकांश सतहें कम से कम 4 इंच की होती हैं। <math>\mathbf{P}^3</math> कोई रेखा के रूप में नहीं है। 27 पंक्तियों को खोजने के लिए एक अन्य उपयोगी प्रोद्योगिकीय में [[शुबर्ट कैलकुलस]] के रूप में सम्मलित है, जो पंक्ति की संख्या का अभिकलन करता है और यह <math>\mathbf{P}^3</math>. पर पंक्ति के [[ ग्रासमानियन |ग्रासमानियन]] के प्रतिच्छेदन सिद्धांत का प्रयोग करता है।


चूंकि चिकनी जटिल घन सतह के गुणांक भिन्न होते हैं, 27 रेखाएं लगातार चलती हैं। परिणाम स्वरुप , चिकनी घन सतहों के परिवार में एक बंद लूप 27 लाइनों का क्रम[[परिवर्तन]] निर्धारित करता है। इस प्रकार उत्पन्न होने वाली 27 रेखाओं के क्रमचय के [[समूह (गणित)]] को घनीय सतहों के परिवार का [[मोनोड्रोमी समूह]] कहा जाता है। 19वीं शताब्दी की एक उल्लेखनीय खोज यह थी कि मोनोड्रोमी समूह न तो तुच्छ है और न ही संपूर्ण [[सममित समूह]] <math>S_{27}</math>; यह एक E6 (गणित) #Weyl समूह है, जो लाइनों के सेट पर सकर्मक रूप से कार्य करता है।<ref name="Dnotes" />इस समूह को धीरे-धीरे मान्यता दी गई (एली कार्टन (1896), [[आर्थर कोबल]] (1915-17), और [[पैट्रिक डु वैल]] (1936) द्वारा) प्रकार के [[वेइल समूह]] के रूप में <math>E_6</math>, E6 (गणित) से संबंधित 6-आयामी वास्तविक सदिश स्थान पर प्रतिबिंबों द्वारा उत्पन्न एक समूह|झूठे समूह <math>E_6</math>आयाम 78 का।<ref name="Dnotes" />
चूंकि चिकनी जटिल घन सतह के गुणांक भिन्न होते हैं, 27 रेखाएं लगातार चलती हैं। परिणाम स्वरुप चिकनी घन सतहों के समूह में एक बंद लूप 27 लाइनों का क्रम [[परिवर्तन]] निर्धारित करता है और इस प्रकार उत्पन्न होने वाली 27 रेखाओं के क्रमचय के [[समूह (गणित)|(गणित)]] [[समूह (गणित)|समूह]] को घन सतहों के समूह का [[मोनोड्रोमी समूह]] कहा जाता है। 19वीं शताब्दी की उल्लेखनीय खोज यह थी कि मोनोड्रोमी समूह न तो तुच्छ है और न ही संपूर्ण [[सममित समूह]] <math>S_{27}</math> है यह क्रम 51840 का एक समूह है, जो लाइनों के समुच्चय पर सकर्मक रूप से कार्य करता है।<ref name="Dnotes" /> इस समूह को धीरे-धीरे एली कार्टन 1896 [[आर्थर कोबल]] 1915-17 और [[पैट्रिक डु वैल]] 1936 में <math>E_6</math> प्रकार के वेइल समूह के रूप में पहचाना गया था, जो 6-आयामी वास्तविक सदिश स्थान पर प्रतिबिंबों द्वारा उत्पन्न समूह है, जो आयाम 78 के लाई समूह <math>E_6</math> से संबंधित है। <ref name="Dnotes" />


आदेश 51840 के समान समूह को कॉम्बिनेटरियल शब्दों में वर्णित किया जा सकता है, 27 पंक्तियों के [[ग्राफ (असतत गणित)]] के ऑटोमोर्फिज़्म समूह के रूप में, प्रत्येक पंक्ति के लिए एक शीर्ष और जब भी दो रेखाएँ मिलती हैं, एक किनारे के साथ।<ref>Hartshorne (1997), Exercise V.4.11.</ref> इस ग्राफ का विश्लेषण 19वीं शताब्दी में श्लाफली डबल सिक्स कॉन्फ़िगरेशन जैसे सबग्राफ का उपयोग करके किया गया था। पूरक ग्राफ (एक किनारे के साथ जब भी दो रेखाएँ भिन्न  होती हैं) को श्लाफली ग्राफ के रूप में जाना जाता है।
क्रम 51840 के समान समूह को कॉम्बिनेटरियल शब्दों में वर्णित किया जा सकता है और इस प्रकार 27 पंक्तियों के [[ग्राफ (असतत गणित)]] के ऑटोमोर्फिज़्म समूह के रूप में प्रत्येक पंक्ति के लिए शीर्ष के रूप में होता है और जब भी दो रेखाएँ किनारे के साथ मिलती हैं।<ref>Hartshorne (1997), Exercise V.4.11.</ref> इस ग्राफ का विश्लेषण 19वीं शताब्दी में श्लाफली डबल सिक्स कॉन्फ़िगरेशन जैसे उपग्राफ का उपयोग करके किया जाता है। जब दो रेखाओ को विभाजित किया जाता है, तो किसी कोर के साथ पूरक ग्राफ को श्लाफ्ली ग्राफ कहते हैं।[[File:Schläfli graph.svg|thumb|right|श्लाफली ग्राफ]]घन सतहों के बारे में कई समस्याओं को <math>E_6</math> [[मूल प्रक्रिया|रुट प्रक्रिया]] के संयोजन की मदद से हल किया जा सकता है। उदाहरण के लिए, 27 पंक्तियों का वजन प्रतिनिधित्व सिद्धांत के साथ पहचाना जा सकता है लाई  समूह के मौलिक प्रतिनिधित्व के अर्ध-सरल लाई बीजगणित के प्रतिनिधित्व सिद्धांत में वजन <math>E_6</math>.के रूप में होते है,  घन सतह पर होने वाली विलक्षणता के संभावित समुच्चय को उप-प्रणालियों के संदर्भ में वर्णित किया जा सकता है।<ref>Bruce & Wall (1979), section 4; Dolgachev (2012), Table 9.1.</ref> इस संबंध के लिए व्याख्या यह है कि <math>E_6</math> जाली [[एंटीकैनोनिकल]] वर्ग के ऑर्थोगोनल पूरक के रूप में उत्पन्न होती है <math>-K_X</math> [[पिकार्ड समूह]] में <math>\operatorname{Pic}(X)\cong \mathbf{Z}^7</math>, किसी समतल जटिल घन सतह के लिए किसी सतह पर वक्रों के [[प्रतिच्छेद]] सिद्धांत से आने वाले इसके प्रतिच्छेद रूप के साथ, पिकार्ड जालक की पहचान [[सह-समरूपता]] समूह <math>H^2(X,\mathbf{Z})</math> के साथ की जा सकती है।
[[File:Schläfli graph.svg|thumb|right|श्लाफली ग्राफ]]घन सतहों के बारे में कई समस्याओं को कॉम्बिनेटरिक्स के उपयोग से हल किया जा सकता है <math>E_6</math> [[मूल प्रक्रिया]]उदाहरण के लिए, 27 पंक्तियों को वजन (प्रतिनिधित्व सिद्धांत) के साथ पहचाना जा सकता है # झूठ समूह के मौलिक प्रतिनिधित्व के अर्ध-सरल झूठ बीजगणित के प्रतिनिधित्व सिद्धांत में वजन <math>E_6</math>. एक घन सतह पर होने वाली विलक्षणता के संभावित सेट को उप-प्रणालियों के संदर्भ में वर्णित किया जा सकता है <math>E_6</math> मूल प्रक्रिया।<ref>Bruce & Wall (1979), section 4; Dolgachev (2012), Table 9.1.</ref> इस संबंध के लिए एक व्याख्या यह है कि <math>E_6</math> जाली [[एंटीकैनोनिकल]] वर्ग के ऑर्थोगोनल पूरक के रूप में उत्पन्न होती है <math>-K_X</math> [[पिकार्ड समूह]] में <math>\operatorname{Pic}(X)\cong \mathbf{Z}^7</math>, इसके प्रतिच्छेदन रूप के साथ (सतह पर घटता के [[प्रतिच्छेदन सिद्धांत]] से आ रहा है)। एक चिकनी जटिल घन सतह के लिए, पिकार्ड जाली को [[सह-समरूपता]] समूह के साथ भी पहचाना जा सकता है <math>H^2(X,\mathbf{Z})</math>.


Ekardt बिंदु वह बिंदु है जहां 27 में से 3 रेखाएँ मिलती हैं। अधिकांश घन सतहों में कोई एकार्ट पॉइंट नहीं होता है, लेकिन ऐसे बिंदु सभी चिकनी घन सतहों के परिवार के [[ codimension ]] -1 उप समुच्चय  पर होते हैं।<ref>Dolgachev (2012), section 9.1.4.</ref>
एकअरड बिंदु वह बिंदु है जहां 27 में से 3 रेखाएँ मिलती हैं और इस प्रकार अधिकांश घन सतहों में कोई एकार्ट पॉइंट नहीं होता है, लेकिन ऐसे बिंदु सभी चिकनी घन सतहों के समूह के [[ codimension |सह आयामी]] -1 उप समुच्चय  के रूप में होते हैं।<ref>Dolgachev (2012), section 9.1.4.</ref>
एक्स पर एक घन सतह और के विस्फोट के बीच एक पहचान को देखते हुए <math>\mathbf{P}^2</math> सामान्य स्थिति में 6 बिंदुओं पर, X पर 27 पंक्तियों को इस प्रकार देखा जा सकता है: ब्लो अप द्वारा बनाए गए 6 असाधारण वक्र, 6 बिंदुओं के जोड़े के माध्यम से 15 पंक्तियों के द्विवार्षिक परिवर्तन <math>\mathbf{P}^2</math>, और 6 शंकुओं के द्विभाजित रूपांतरण जिनमें 6 बिंदुओं में से एक को छोड़कर सभी सम्मलित  हैं।<ref>Hartshorne (1997), Theorem V.4.9.</ref> एक दी गई घन सतह को विस्फोट के रूप में देखा जा सकता है <math>\mathbf{P}^2</math> एक से अधिक विधियों  से (वास्तव में, 72 भिन्न -भिन्न  विधियों  से), और इसलिए ब्लो-अप के रूप में एक विवरण सभी 27 पंक्तियों के बीच समरूपता को प्रकट नहीं करता है।


घन सतहों और के बीच संबंध <math>E_6</math> रूट सिस्टम सभी डेल पेज़ो सतहों और रूट सिस्टम के बीच संबंध का सामान्यीकरण करता है। यह गणित में कई ADE वर्गीकरणों में से एक है। इन उपमाओं का अनुसरण करते हुए, [[वेरा सर्गनोवा]] और [[एलेक्सी स्कोरोबोगाटोव]] ने घन सतहों और लाइ समूह के बीच एक सीधा ज्यामितीय संबंध दिया। <math>E_6</math>.<ref>Serganova & Skorobogatov (2007).</ref>
X पर घन सतह और के विस्फोट के बीच एक पहचान को देखते हुए <math>\mathbf{P}^2</math> सामान्य स्थिति में 6 बिंदुओं पर, X पर 27 पंक्तियों को इस प्रकार देखा जा सकता है उड़ाते हुए बनाए गए 6 असाधारण वक्र, 6 बिंदुओं के जोड़े के माध्यम से 15 पंक्तियों के द्विवार्षिक परिवर्तन <math>\mathbf{P}^2</math> और 6 शंकुओं के द्विभाजित रूपांतरण करते है जिनमें 6 बिंदुओं में से एक को छोड़कर सभी सम्मलित हैं।<ref>Hartshorne (1997), Theorem V.4.9.</ref> दी गई घन सतह को विस्फोट के रूप में देखा जा सकता है, दिए गए घन सतह को एक से अधिक विधियों से वास्तव में, 72 भिन्न -भिन्न विधियों से  <math>\mathbf{P}^2</math> के ऊपर विस्फोट के रूप में देखा जा सकता है.और इसलिए ब्लो-अप के रूप में एक विवरण सभी 27 पंक्तियों के बीच समरूपता को प्रकट नहीं करता है।
भौतिकी में, 27 पंक्तियों को छह-आयामी [[ टोरस्र्स ]] (6 मोमेंटा; 15 ब्रानेस; 6 [[ Fivebrane ]]्स) और समूह पर [[एम-सिद्धांत]] के 27 संभावित आरोपों के साथ पहचाना जा सकता है।<sub>6</sub> तब स्वाभाविक रूप से यू-द्वैत समूह के रूप में कार्य करता है। डेल पेज़ो सतहों और टोरी पर एम-सिद्धांत के बीच के इस मानचित्र को [[रहस्यमय द्वंद्व]] के रूप में जाना जाता है।
 
घन सतहों और के बीच संबंध <math>E_6</math> रूट प्रणाली सभी डेल पेज़ो सतहों और रूट प्रणाली के बीच संबंध का सामान्यीकरण करता है। यह गणित के कई एडीई वर्गीकरणों में से एक है। इन समानता का अनुसरण करते हुए [[वेरा सर्गनोवा]] और [[एलेक्सी स्कोरोबोगाटोव]] ने घन सतहों और लाई  समूह <math>E_6</math> के बीच प्रत्यक्ष रूप में ज्यामितीय संबंध दिया होता है।.<ref>Serganova & Skorobogatov (2007).</ref>
 
भौतिकी में, 27 पंक्तियों को छह-आयामी [[ टोरस्र्स |टोरस्र्स]] (6 मोमेंटा; 15 ब्रानेस; 6 [[ Fivebrane |फाइवब्रेन]]) और समूह E<sub>6</sub> पर [[एम-सिद्धांत]] के 27 संभावित अभिकथन के साथ पहचाना जा सकता है। तब स्वाभाविक रूप से U-द्वैत समूह के रूप में कार्य करता है। डेल पेज़ो सतहों और टोरी पर M-सिद्धांत के बीच के इस मानचित्र को [[रहस्यमय द्वंद्व|रहस्यमय द्वैत]] के रूप में जाना जाता है।


==विशेष घनीय सतहें==
==विशेष घनीय सतहें==
Line 29: Line 30:
में परिभाषित किया जा सकता है <math>\mathbf{P}^4</math> दो समीकरणों द्वारा
में परिभाषित किया जा सकता है <math>\mathbf{P}^4</math> दो समीकरणों द्वारा
:<math>x_0+x_1+x_2+x_3+x_4=x_0^3+x_1^3+x_2^3+x_3^3+x_4^3=0.</math>
:<math>x_0+x_1+x_2+x_3+x_4=x_0^3+x_1^3+x_2^3+x_3^3+x_4^3=0.</math>
इसका ऑटोमोर्फिज्म समूह सममित समूह है <math>S_5</math>, आदेश 120। निर्देशांक के एक जटिल रैखिक परिवर्तन के बाद, क्लेब्सच सतह को समीकरण द्वारा भी परिभाषित किया जा सकता है
इसका ऑटोमोर्फिज्म समूह सममित समूह है <math>S_5</math>, क्रम 120। निर्देशांक के एक जटिल रैखिक परिवर्तन के बाद, क्लेब्सच सतह को समीकरण द्वारा भी परिभाषित किया जा सकता है
:<math>x^2y+y^2z+z^2w+w^2x=0</math>
:<math>x^2y+y^2z+z^2w+w^2x=0</math>
में <math>\mathbf{P}^3</math>.
में <math>\mathbf{P}^3</math>.
Line 35: Line 36:
[[File:Cayley_cubic_2.png|thumb|right|केली की नोडल घन सतह]]एकवचन जटिल घन सतहों के बीच, केली की नोडल घन सतह अद्वितीय सतह है जिसमें नोड की अधिकतम संख्या (बीजगणितीय ज्यामिति) है, 4:
[[File:Cayley_cubic_2.png|thumb|right|केली की नोडल घन सतह]]एकवचन जटिल घन सतहों के बीच, केली की नोडल घन सतह अद्वितीय सतह है जिसमें नोड की अधिकतम संख्या (बीजगणितीय ज्यामिति) है, 4:
:<math>wxy+xyz+yzw+zwx=0.</math>
:<math>wxy+xyz+yzw+zwx=0.</math>
इसका ऑटोमोर्फिज्म समूह है <math>S_4</math>, आदेश 24।
इसका ऑटोमोर्फिज्म समूह है <math>S_4</math>, क्रम 24।


== रियल घन सरफेस ==
== रियल घन सरफेस ==
जटिल स्थिति े के विपरीत, वास्तविक संख्याओं पर चिकनी घन सतहों का स्थान क्लासिकल [[टोपोलॉजिकल स्पेस]] (आर के टोपोलॉजी पर आधारित) में [[जुड़ा हुआ स्थान]] नहीं है। इसके जुड़े घटक (दूसरे शब्दों में, समस्थानिक तक चिकनी वास्तविक घन सतहों का वर्गीकरण) लुडविग श्लाफली (1863), [[फेलिक्स क्लेन]] (1865), और हिरोनिमस जॉर्ज ज़्यूथेन | एच द्वारा निर्धारित किया गया था। जी ज़्यूथेन (1875)।<ref>Degtyarev and Kharlamov (2000), section 3.5.2. The various types of real cubic surfaces, and the lines on them, are pictured in Holzer & Labs (2006).</ref> अर्थात्, चिकनी वास्तविक घन सतहों X के 5 समस्थानिक वर्ग हैं <math>\mathbf{P}^3</math>, [[तर्कसंगत बिंदु]] के स्थान की टोपोलॉजी द्वारा प्रतिष्ठित <math>X(\mathbf{R})</math>. वास्तविक बिंदुओं का स्थान या तो भिन्न है <math>W_7, W_5, W_3, W_1</math>, या का असंयुक्त संघ <math>W_1</math> और 2-गोला, जहां <math>W_r</math> वास्तविक [[वास्तविक प्रक्षेपी विमान]] r प्रतियों के जुड़े योग को दर्शाता है <math>\mathbf{RP}^2</math>. तदनुसार, X में निहित वास्तविक रेखाओं की संख्या 27, 15, 7, 3 या 3 है।
जटिल स्थिति े के विपरीत, वास्तविक संख्याओं पर चिकनी घन सतहों का स्थान क्लासिकल [[टोपोलॉजिकल स्पेस]] (आर के टोपोलॉजी पर आधारित) में [[जुड़ा हुआ स्थान]] नहीं है। इसके जुड़े घटक (दूसरे शब्दों में, समस्थानिक तक चिकनी वास्तविक घन सतहों का वर्गीकरण) लुडविग श्लाफली (1863), [[फेलिक्स क्लेन]] (1865), और हिरोनिमस जॉर्ज ज़्यूथेन | एच द्वारा निर्धारित किया गया था। जी ज़्यूथेन (1875)।<ref>Degtyarev and Kharlamov (2000), section 3.5.2. The various types of real cubic surfaces, and the lines on them, are pictured in Holzer & Labs (2006).</ref> अर्थात्, चिकनी वास्तविक घन सतहों X के 5 समस्थानिक वर्ग हैं <math>\mathbf{P}^3</math>, [[तर्कसंगत बिंदु]] के स्थान की टोपोलॉजी द्वारा प्रतिष्ठित <math>X(\mathbf{R})</math>. वास्तविक बिंदुओं का स्थान या तो भिन्न है <math>W_7, W_5, W_3, W_1</math>, या का असंयुक्त संघ <math>W_1</math> और 2-गोला, जहां <math>W_r</math> वास्तविक [[वास्तविक प्रक्षेपी विमान]] r प्रतियों के जुड़े योग को दर्शाता है <math>\mathbf{RP}^2</math>. तदनुसार, X में निहित वास्तविक रेखाओं की संख्या 27, 15, 7, 3 या 3 है।


एक चिकनी वास्तविक घन सतह 'आर' पर तर्कसंगत है यदि और केवल यदि इसके वास्तविक बिंदुओं का स्थान जुड़ा हुआ है, इसलिए पिछले पांच स्थितियों में से पहले चार में।<ref>Silhol (1989), section VI.5.</ref>
एक चिकनी वास्तविक घन सतह 'आर' पर तर्कसंगत है यदि और केवल यदि इसके वास्तविक बिंदुओं का स्थान जुड़ा हुआ है, इसलिए पिछले पांच स्थितियों में से पहले चार में।<ref>Silhol (1989), section VI.5.</ref>
X पर वास्तविक रेखाओं की औसत संख्या है <math>6 \sqrt{2}-3</math><ref>{{Cite journal|last1=Basu|first1=S.|last2=Lerario|first2=A.|last3=Lundberg|first3=E.|last4=Peterson|first4=C.|date=2019|title=यादृच्छिक क्षेत्र और वास्तविक और जटिल हाइपरसर्फ्स पर लाइनों की गणनात्मक ज्यामिति|url=https://link.springer.com/article/10.1007/s00208-019-01837-0|journal=Mathematische Annalen|volume=374|issue=3–4 |pages=1773–1810|doi=10.1007/s00208-019-01837-0|arxiv=1610.01205|s2cid=253717173 }}</ref> जब एक्स के लिए परिभाषित बहुपद बॉम्बिएरी_नॉर्म द्वारा प्रेरित गॉसियन पहनावा से यादृच्छिक रूप से नमूना लिया जाता है।
X पर वास्तविक रेखाओं की औसत संख्या है <math>6 \sqrt{2}-3</math><ref>{{Cite journal|last1=Basu|first1=S.|last2=Lerario|first2=A.|last3=Lundberg|first3=E.|last4=Peterson|first4=C.|date=2019|title=यादृच्छिक क्षेत्र और वास्तविक और जटिल हाइपरसर्फ्स पर लाइनों की गणनात्मक ज्यामिति|url=https://link.springer.com/article/10.1007/s00208-019-01837-0|journal=Mathematische Annalen|volume=374|issue=3–4 |pages=1773–1810|doi=10.1007/s00208-019-01837-0|arxiv=1610.01205|s2cid=253717173 }}</ref> जब एक्स के लिए परिभाषित बहुपद बॉम्बिएरी_नॉर्म द्वारा प्रेरित गॉसियन पहनावा से यादृच्छिक रूप से नमूना लिया जाता है।


==घन सतहों का मापांक स्थान==
==घन सतहों का मापांक स्थान==
दो चिकनी घन सतहें बीजगणितीय किस्मों के रूप में आइसोमोर्फिक हैं यदि और केवल यदि वे कुछ रैखिक ऑटोमोर्फिज्म के समतुल्य हैं <math>\mathbf{P}^3</math>. [[ज्यामितीय अपरिवर्तनीय सिद्धांत]] चिकनी घन सतहों के प्रत्येक आइसोमोर्फिज्म वर्ग के लिए एक बिंदु के साथ घन सतहों का एक मापांक स्थान देता है। इस [[मोडुली स्पेस]] का आयाम 4 है। अधिक यथार्थ रूप से, यह सैल्मन और क्लेबश (1860) द्वारा भारित [[भारित प्रक्षेप्य स्थान]](12345) का एक खुला उपसमुच्चय है। विशेष रूप से, यह एक तर्कसंगत 4 गुना है।<ref>Dolgachev (2012), equation (9.57).</ref>
दो चिकनी घन सतहें बीजगणितीय किस्मों के रूप में आइसोमोर्फिक हैं यदि और केवल यदि वे कुछ रैखिक ऑटोमोर्फिज्म के समतुल्य हैं <math>\mathbf{P}^3</math>. [[ज्यामितीय अपरिवर्तनीय सिद्धांत]] चिकनी घन सतहों के प्रत्येक आइसोमोर्फिज्म वर्ग के लिए एक बिंदु के साथ घन सतहों का एक मापांक स्थान देता है। इस [[मोडुली स्पेस]] का आयाम 4 है। अधिक यथार्थ रूप से, यह सैल्मन और क्लेबश (1860) द्वारा भारित [[भारित प्रक्षेप्य स्थान]](12345) का एक खुला उपसमुच्चय है। विशेष रूप से, यह एक तर्कसंगत 4 गुना है।<ref>Dolgachev (2012), equation (9.57).</ref>




== वक्रों का शंकु ==
== वक्रों का शंकु ==
एक बीजगणितीय रूप से बंद क्षेत्र पर एक घन सतह एक्स पर लाइनों को एक्स के एम्बेडिंग के संदर्भ के बिना आंतरिक रूप से वर्णित किया जा सकता है <math>\mathbf{P}^3</math>: वे बिल्कुल (−1)-''X'' पर वक्र हैं, जिसका अर्थ है कि वक्र समरूपी हैं <math>\mathbf{P}^1</math> जिसका स्व-चौराहा -1 है। इसके अतिरिक्त , एक्स (या समतुल्य रूप से वि[[भाजक वर्ग समूह]]) के पिकार्ड जाली में लाइनों के वर्ग वास्तव में पिक (एक्स) के तत्व यू हैं जैसे कि <math>u^2=-1</math> और <math>-K_X\cdot u=1</math>. (यह उपयोग करता है कि सुसंगत शीफ का प्रतिबंध # वेक्टर बंडलों के उदाहरण O(1) पर <math>\mathbf{P}^3</math> X के लिए एंटीकैनोनिकल लाइन बंडल है <math>-K_X</math>, [[संयोजन सूत्र]] द्वारा।)
एक बीजगणितीय रूप से बंद क्षेत्र पर एक घन सतह एक्स पर लाइनों को एक्स के एम्बेडिंग के संदर्भ के बिना आंतरिक रूप से वर्णित किया जा सकता है <math>\mathbf{P}^3</math>: वे बिल्कुल (−1)-''X'' पर वक्र हैं, जिसका अर्थ है कि वक्र समरूपी हैं <math>\mathbf{P}^1</math> जिसका स्व-चौराहा -1 है। इसके अतिरिक्त , एक्स (या समतुल्य रूप से वि[[भाजक वर्ग समूह]]) के पिकार्ड जाली में लाइनों के वर्ग वास्तव में पिक (एक्स) के तत्व यू हैं जैसे कि <math>u^2=-1</math> और <math>-K_X\cdot u=1</math>. (यह उपयोग करता है कि सुसंगत शीफ का प्रतिबंध # सदिश बंडलों के उदाहरण O(1) पर <math>\mathbf{P}^3</math> X के लिए एंटीकैनोनिकल लाइन बंडल है <math>-K_X</math>, [[संयोजन सूत्र]] द्वारा।)


किसी भी प्रक्षेपी किस्म X के लिए, वक्रों के शंकु का अर्थ [[उत्तल शंकु]] है जो X में सभी वक्रों द्वारा फैला हुआ है (वास्तविक सदिश स्थान में) <math>N_1(X)</math> 1-चक्र सापेक्ष संख्यात्मक तुल्यता, या एकवचन होमोलॉजी में <math>H_2(X,\mathbf{R})</math> यदि आधार क्षेत्र सम्मिश्र संख्या है)। एक घनीय सतह के लिए, वक्रों के शंकु को 27 रेखाओं द्वारा फैलाया जाता है।<ref>Hartshorne (1997), Theorem V.4.11.</ref> विशेष रूप से, यह एक परिमेय बहुफलकीय शंकु है <math>N_1(X)\cong \mathbf{R}^7</math> एक बड़े समरूपता समूह के साथ, वेइल समूह <math>E_6</math>. किसी भी डेल पेज़ो सतह के लिए घटता के शंकु का एक समान विवरण है।
किसी भी प्रक्षेपी किस्म X के लिए, वक्रों के शंकु का अर्थ [[उत्तल शंकु]] है जो X में सभी वक्रों द्वारा फैला हुआ है (वास्तविक सदिश स्थान में) <math>N_1(X)</math> 1-चक्र सापेक्ष संख्यात्मक तुल्यता, या एकवचन होमोलॉजी में <math>H_2(X,\mathbf{R})</math> यदि आधार क्षेत्र सम्मिश्र संख्या है)। एक घनीय सतह के लिए, वक्रों के शंकु को 27 रेखाओं द्वारा फैलाया जाता है।<ref>Hartshorne (1997), Theorem V.4.11.</ref> विशेष रूप से, यह एक परिमेय बहुफलकीय शंकु है <math>N_1(X)\cong \mathbf{R}^7</math> एक बड़े समरूपता समूह के साथ, वेइल समूह <math>E_6</math>. किसी भी डेल पेज़ो सतह के लिए घटता के शंकु का एक समान विवरण है।


== एक क्षेत्र पर घन सतहें ==
== एक क्षेत्र पर घन सतहें ==
फ़ील्ड k पर एक चिकनी घन सतह X जो बीजगणितीय रूप से बंद नहीं है, k पर तर्कसंगत होने की आवश्यकता नहीं है। एक चरम स्थिति े के रूप में, परिमेय संख्या 'Q' (या p-adic संख्या) पर चिकनी घन सतहें होती हैं <math>\mathbf{Q}_p</math>) बिना परिमेय बिंदु के, जिस स्थिति में X निश्चित रूप से परिमेय नहीं है।<ref>Kollár, Smith, Corti (2004), Exercise 1.29.</ref> यदि एक्स (के) गैर-खाली है, तो [[बेंजामिन सीक्रेट]] और जेनोस कोल्लार द्वारा एक्स कम से कम अपरिमेय है।<ref>Kollár, Smith, Corti (2004), Theorems 1.37 and 1.38.</ref> के अनंत के लिए, एकता का अर्थ है कि के-तर्कसंगत बिंदुओं का सेट एक्स में ज़रिस्की घना है।
फ़ील्ड k पर एक चिकनी घन सतह X जो बीजगणितीय रूप से बंद नहीं है, k पर तर्कसंगत होने की आवश्यकता नहीं है। एक चरम स्थिति े के रूप में, परिमेय संख्या 'Q' (या p-adic संख्या) पर चिकनी घन सतहें होती हैं <math>\mathbf{Q}_p</math>) बिना परिमेय बिंदु के, जिस स्थिति में X निश्चित रूप से परिमेय नहीं है।<ref>Kollár, Smith, Corti (2004), Exercise 1.29.</ref> यदि एक्स (के) गैर-खाली है, तो [[बेंजामिन सीक्रेट]] और जेनोस कोल्लार द्वारा एक्स कम से कम अपरिमेय है।<ref>Kollár, Smith, Corti (2004), Theorems 1.37 and 1.38.</ref> के अनंत के लिए, एकता का अर्थ है कि के-तर्कसंगत बिंदुओं का समुच्चय एक्स में ज़रिस्की घना है।


K का निरपेक्ष गैलोज़ समूह बीजगणितीय बंद होने पर X की 27 पंक्तियों की अनुमति देता है <math>\overline{k}</math> k का (Weyl समूह के कुछ उपसमूह के माध्यम से <math>E_6</math>). यदि इस क्रिया की कुछ कक्षा में भिन्न -भिन्न रेखाएँ होती हैं, तो X एक बंद बिंदु पर k के ऊपर एक सरल डेल पेज़ो सतह का ब्लो-अप है। अन्यथा, X का पिकार्ड नंबर 1 है। (X का पिकार्ड समूह ज्यामितीय पिकार्ड समूह का एक उपसमूह है <math>\operatorname{Pic}(X_{\overline{k}})\cong \mathbf{Z}^7</math>।) बाद के स्थिति े में, सेग्रे ने दिखाया कि एक्स कभी भी तर्कसंगत नहीं है। अधिक दृढ़ता से, [[यूरी मैनिन]] ने एक द्विपक्षीय कठोरता बयान सिद्ध कर दिया: पिकार्ड नंबर 1 के साथ दो चिकनी घन सतहें एक पूर्ण क्षेत्र के ऊपर [[ द्विवार्षिक ]] हैं यदि और केवल यदि वे आइसोमोर्फिक हैं।<ref>Kollár, Smith, Corti (2004), Theorems 2.1 and 2.2.</ref> उदाहरण के लिए, ये परिणाम Q के ऊपर कई घन सतह देते हैं जो अपरिमेय हैं लेकिन तर्कसंगत नहीं हैं।
K का निरपेक्ष गैलोज़ समूह बीजगणितीय बंद होने पर X की 27 पंक्तियों की अनुमति देता है <math>\overline{k}</math> k का (Weyl समूह के कुछ उपसमूह के माध्यम से <math>E_6</math>). यदि इस क्रिया की कुछ कक्षा में भिन्न -भिन्न रेखाएँ होती हैं, तो X एक बंद बिंदु पर k के ऊपर एक सरल डेल पेज़ो सतह का ब्लो-अप है। अन्यथा, X का पिकार्ड नंबर 1 है। (X का पिकार्ड समूह ज्यामितीय पिकार्ड समूह का एक उपसमूह है <math>\operatorname{Pic}(X_{\overline{k}})\cong \mathbf{Z}^7</math>।) बाद के स्थिति े में, सेग्रे ने दिखाया कि एक्स कभी भी तर्कसंगत नहीं है। अधिक दृढ़ता से, [[यूरी मैनिन]] ने एक द्विपक्षीय कठोरता बयान सिद्ध कर दिया: पिकार्ड नंबर 1 के साथ दो चिकनी घन सतहें एक पूर्ण क्षेत्र के ऊपर [[ द्विवार्षिक |द्विवार्षिक]] हैं यदि और केवल यदि वे आइसोमोर्फिक हैं।<ref>Kollár, Smith, Corti (2004), Theorems 2.1 and 2.2.</ref> उदाहरण के लिए, ये परिणाम Q के ऊपर कई घन सतह देते हैं जो अपरिमेय हैं लेकिन तर्कसंगत नहीं हैं।


== एकवचन घन सतहें ==
== एकवचन घन सतहें ==
Line 61: Line 62:


=== वर्गीकरण ===
=== वर्गीकरण ===
एक सामान्य विलक्षण घन सतह <math>X</math> में <math>\textbf{P}_{\mathbb{C}}^3</math> स्थानीय निर्देशांक के साथ <math>[x_0:x_1:x_2:x_3]</math> यदि इसके द्वारा दिया जाता है तो सामान्य रूप में कहा जाता है <math>F= x_3 f_2(x_0,x_1,x_2) -f_3(x_0,x_1,x_2) = 0</math>. विलक्षणता के प्रकार पर निर्भर करता है <math>X</math> सम्‍मिलित है, यह प्रक्षेपी सतह में समरूपता है <math>\textbf{P}^3</math> द्वारा दिए गए <math>F= x_3 f_2(x_0,x_1,x_2) -f_3(x_0,x_1,x_2) = 0</math> कहाँ <math>f_2, f_3</math> नीचे दी गई तालिका के अनुसार हैं। इसका अर्थ है कि हम सभी एकवचन घनीय सतहों का वर्गीकरण प्राप्त कर सकते हैं। निम्न तालिका के पैरामीटर इस प्रकार हैं: <math>a,b,c</math> के तीन भिन्न तत्व हैं <math>\mathbb{C} \setminus\{0,1\}</math>, पैरामीटर <math>d,e</math> में हैं <math>\mathbb{C} \setminus \{0,-1\}</math> और <math>u</math> का एक तत्व है <math>\mathbb{C}\setminus \{ 0\}</math>. ध्यान दें कि विलक्षणता के साथ दो भिन्न -भिन्न एकवचन घन सतहें हैं <math>D_4</math>. <ref name=":0">{{Cite journal|last=SAKAMAKI|first=YOSHIYUKI|title=बिना किसी पैरामीटर के सामान्य एकवचन घन सतहों पर ऑटोमोर्फिज्म समूह|date=2010|journal=Transactions of the American Mathematical Society|volume=362|issue=5|pages=2641–2666|doi=10.1090/S0002-9947-09-05023-5|jstor=25677798|issn=0002-9947|doi-access=free}}</ref>
एक सामान्य विलक्षण घन सतह <math>X</math> में <math>\textbf{P}_{\mathbb{C}}^3</math> स्थानीय निर्देशांक के साथ <math>[x_0:x_1:x_2:x_3]</math> यदि इसके द्वारा दिया जाता है तो सामान्य रूप में कहा जाता है <math>F= x_3 f_2(x_0,x_1,x_2) -f_3(x_0,x_1,x_2) = 0</math>. विलक्षणता के प्रकार पर निर्भर करता है <math>X</math> सम्‍मिलित है, यह प्रक्षेपी सतह में समरूपता है <math>\textbf{P}^3</math> द्वारा दिए गए <math>F= x_3 f_2(x_0,x_1,x_2) -f_3(x_0,x_1,x_2) = 0</math> कहाँ <math>f_2, f_3</math> नीचे दी गई तालिका के अनुसार हैं। इसका अर्थ है कि हम सभी एकवचन घनीय सतहों का वर्गीकरण प्राप्त कर सकते हैं। निम्न तालिका के पैरामीटर इस प्रकार हैं: <math>a,b,c</math> के तीन भिन्न तत्व हैं <math>\mathbb{C} \setminus\{0,1\}</math>, पैरामीटर <math>d,e</math> में हैं <math>\mathbb{C} \setminus \{0,-1\}</math> और <math>u</math> का एक तत्व है <math>\mathbb{C}\setminus \{ 0\}</math>. ध्यान दें कि विलक्षणता के साथ दो भिन्न -भिन्न एकवचन घन सतहें हैं <math>D_4</math>. <ref name=":0">{{Cite journal|last=SAKAMAKI|first=YOSHIYUKI|title=बिना किसी पैरामीटर के सामान्य एकवचन घन सतहों पर ऑटोमोर्फिज्म समूह|date=2010|journal=Transactions of the American Mathematical Society|volume=362|issue=5|pages=2641–2666|doi=10.1090/S0002-9947-09-05023-5|jstor=25677798|issn=0002-9947|doi-access=free}}</ref>
{| class="wikitable mw-collapsible"
{| class="wikitable mw-collapsible"
|+Classification of singular cubic surfaces by singularity type <ref name=":0" />  
|+Classification of singular cubic surfaces by singularity type <ref name=":0" />  
Line 156: Line 157:
|<math>x_1^2x_2-x_0(x_0-x_2)(x_0-ax_2)</math>
|<math>x_1^2x_2-x_0(x_0-x_2)(x_0-ax_2)</math>
|}
|}
सामान्य रूप में, जब भी एक घन सतह <math>X</math> कम से कम एक सम्मलित है <math>A_1</math> विलक्षणता, यह एक होगा <math>A_1</math> विलक्षणता पर <math>[0:0:0:1]</math>. <ref name=":1" />
सामान्य रूप में, जब भी एक घन सतह <math>X</math> कम से कम एक सम्मलित है <math>A_1</math> विलक्षणता, यह एक होगा <math>A_1</math> विलक्षणता पर <math>[0:0:0:1]</math>. <ref name=":1" />




Line 211: Line 212:




=== बिना किसी पैरामीटर के एकवचन घन सतहों के [[ automorphism ]] समूह ===
=== बिना किसी पैरामीटर के एकवचन घन सतहों के [[ automorphism |automorphism]] समूह ===
एक सामान्य विलक्षण घन सतह का एक ऑटोमोर्फिज्म <math>X</math> प्रक्षेपीय स्पेस के ऑटोमोर्फिज्म का [[प्रतिबंध (गणित)]] है <math>\textbf{P}^3</math> को <math>X</math>. इस तरह के ऑटोमोर्फिज्म एकवचन बिंदुओं को संरक्षित करते हैं। इसके अतिरिक्त , वे विभिन्न प्रकार की विलक्षणताओं की अनुमति नहीं देते हैं। यदि सतह में एक ही प्रकार की दो विलक्षणताएँ होती हैं, तो ऑटोमोर्फिज़्म उन्हें अनुमति दे सकता है। घन सतह पर ऑटोमोर्फिज्म का संग्रह एक समूह (गणित) बनाता है, जिसे ऑटोमोर्फिज्म समूह कहा जाता है। निम्न तालिका बिना किसी पैरामीटर के एकवचन घन सतहों के सभी ऑटोमोर्फिज़्म समूहों को दिखाती है।
एक सामान्य विलक्षण घन सतह का एक ऑटोमोर्फिज्म <math>X</math> प्रक्षेपीय स्पेस के ऑटोमोर्फिज्म का [[प्रतिबंध (गणित)]] है <math>\textbf{P}^3</math> को <math>X</math>. इस तरह के ऑटोमोर्फिज्म एकवचन बिंदुओं को संरक्षित करते हैं। इसके अतिरिक्त , वे विभिन्न प्रकार की विलक्षणताओं की अनुमति नहीं देते हैं। यदि सतह में एक ही प्रकार की दो विलक्षणताएँ होती हैं, तो ऑटोमोर्फिज़्म उन्हें अनुमति दे सकता है। घन सतह पर ऑटोमोर्फिज्म का संग्रह एक समूह (गणित) बनाता है, जिसे ऑटोमोर्फिज्म समूह कहा जाता है। निम्न तालिका बिना किसी पैरामीटर के एकवचन घन सतहों के सभी ऑटोमोर्फिज़्म समूहों को दिखाती है।
{| class="wikitable mw-collapsible"
{| class="wikitable mw-collapsible"
|+Automorphism groups of singular cubic surfaces with no parameters <ref name=":0" />
|+Automorphism groups of singular cubic surfaces with no parameters <ref name=":0" />

Revision as of 23:31, 17 May 2023

गणित में, घन सतह 3-आयामी क्षेत्र में सतह के रूप में होती है, जिसे घात 3 के बहुपद समीकरण द्वारा परिभाषित किया जाता है। बीजगणितीय ज्यामिति में घन सतह मौलिक उदाहरण के रूप में हैं। इस सिद्धांत को एफ़ेईन क्षेत्र के अतिरिक्त प्रक्षेपण क्षेत्र में काम करके सरलीकृत किया गया है और इसलिए घन सतहों को सामान्यतः प्रक्षेपीय 3-स्पेस के रूप में जाना जाता है और इस प्रकार वास्तविक संख्याओं के अतिरिक्त जटिल संख्याओं पर सतहों के फोकस करने पर सिद्धांत अधिक समरूप हो जाता है और इस प्रकार ध्यान दें कि जटिल सतह का वास्तविक आयाम 4 होता है। फर्मेट घन सतह का एक सरल उदाहरण है।

. घन सतहों के कई गुण सामान्यतः डेल पेज़ो की सतहों के लिए पकड़ अधिक होती है।

एक चिकनी घन सतह (क्लबश सतह)

घन सतहों की तर्कसंगतता

बीजगणितीय रूप से बंद क्षेत्र X पर चिकनी घन सतहों की केंद्रीय विशेषता यह है कि वे सभी तर्कसंगत विविधताओ के रूप में होती है, जैसा कि 1866 में अल्फ्रेड क्लेब्सच द्वारा दिखाया गया है।[1] अर्थात, यहां एक से एक पत्राचार है जो प्रक्षेपीय समतल के मध्य निम्न आयामी उप समुच्चय तथा X शून्य से निम्न आयामी उपसमुच्चय के मध्य तार्किक फलनों द्वारा परिभाषित होता है। सामान्य रूप से, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक अलघुकरणीय घन सतह संभवतः अद्वितीय तर्कसंगत के रूप में होते है।[2] जब तक कि यह किसी घन वक्र पर काल्पनिक शंकु न हो। इस संबंध में, में कम से कम 4 घात की चिकनी सतह की तुलना में घन सतहें बहुत सरल रूप में होती है, जो कभी भी तर्कसंगत नहीं होते हैं और इस प्रकार अभिलाक्षणिक (बीजगणित) शून्य में कम से कम 4 इंच की चिकनी सतहें अनियंत्रित समान नहीं होती हैं।[3]

क्लेब्स ने अधिक दृढ़ता से दिखाया कि प्रत्येक चिकनी घन सतह बीजगणितीय द्वारा निर्मित क्षेत्र आइसोमोर्फिक है तथा को 6 बिन्दुओं पर उडान भरने के लिए समरूप है।[4] परिणाम स्वरुप, जटिल संख्याओं पर हर चिकनी घन सतह जुड़ी हुई राशि के लिए भिन्न -भिन्न होती है , जहां ऋण चिह्न ओरिएंटेशन के परिवर्तन को संदर्भित करता है। इसके विपरीत से 6 बिन्दुओं पर एक घन सतह के लिए आइसोमोर्फिक है और यदि बिंदु सामान्य स्थिति में हैं, जिसका अर्थ है कि तीन बिंदु एक रेखा पर नहीं हैं और सभी 6 शंकु पर स्थित नहीं हैं और इस प्रकार जटिल कई गुना या एक बीजगणितीय विविधता के रूप में सतह उन 6 बिंदुओं की व्यवस्था पर निर्भर करती है।

एक घन सतह पर 27 रेखाएँ

घन सतहों के लिए तर्कसंगतता के अधिकांश प्रमाण सतह पर रेखा खोजने से प्रारंभ होते हैं। प्रक्षेपी ज्यामिति के संदर्भ में, रेखा में के लिए रेखा आइसोमॉर्फिक के रूप में होते है और इस प्रकार यथार्थ रूप से, आर्थर केली और जॉर्ज सामन ने 1849 में दिखाया कि बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक चिकनी घन सतह में ठीक 27 रेखाएँ होती हैं।[5] यह घन की विशिष्ट विशेषता है की चिकनी चतुष्कोणीय घात 2 सतह रेखाओं के सतत समूह द्वारा कवर की जाती है, जबकि घात की अधिकांश सतहें कम से कम 4 इंच की होती हैं। कोई रेखा के रूप में नहीं है। 27 पंक्तियों को खोजने के लिए एक अन्य उपयोगी प्रोद्योगिकीय में शुबर्ट कैलकुलस के रूप में सम्मलित है, जो पंक्ति की संख्या का अभिकलन करता है और यह . पर पंक्ति के ग्रासमानियन के प्रतिच्छेदन सिद्धांत का प्रयोग करता है।

चूंकि चिकनी जटिल घन सतह के गुणांक भिन्न होते हैं, 27 रेखाएं लगातार चलती हैं। परिणाम स्वरुप चिकनी घन सतहों के समूह में एक बंद लूप 27 लाइनों का क्रम परिवर्तन निर्धारित करता है और इस प्रकार उत्पन्न होने वाली 27 रेखाओं के क्रमचय के (गणित) समूह को घन सतहों के समूह का मोनोड्रोमी समूह कहा जाता है। 19वीं शताब्दी की उल्लेखनीय खोज यह थी कि मोनोड्रोमी समूह न तो तुच्छ है और न ही संपूर्ण सममित समूह है यह क्रम 51840 का एक समूह है, जो लाइनों के समुच्चय पर सकर्मक रूप से कार्य करता है।[4] इस समूह को धीरे-धीरे एली कार्टन 1896 आर्थर कोबल 1915-17 और पैट्रिक डु वैल 1936 में प्रकार के वेइल समूह के रूप में पहचाना गया था, जो 6-आयामी वास्तविक सदिश स्थान पर प्रतिबिंबों द्वारा उत्पन्न समूह है, जो आयाम 78 के लाई समूह से संबंधित है। [4]

क्रम 51840 के समान समूह को कॉम्बिनेटरियल शब्दों में वर्णित किया जा सकता है और इस प्रकार 27 पंक्तियों के ग्राफ (असतत गणित) के ऑटोमोर्फिज़्म समूह के रूप में प्रत्येक पंक्ति के लिए शीर्ष के रूप में होता है और जब भी दो रेखाएँ किनारे के साथ मिलती हैं।[6] इस ग्राफ का विश्लेषण 19वीं शताब्दी में श्लाफली डबल सिक्स कॉन्फ़िगरेशन जैसे उपग्राफ का उपयोग करके किया जाता है। जब दो रेखाओ को विभाजित किया जाता है, तो किसी कोर के साथ पूरक ग्राफ को श्लाफ्ली ग्राफ कहते हैं।

File:Schläfli graph.svg
श्लाफली ग्राफ

घन सतहों के बारे में कई समस्याओं को रुट प्रक्रिया के संयोजन की मदद से हल किया जा सकता है। उदाहरण के लिए, 27 पंक्तियों का वजन प्रतिनिधित्व सिद्धांत के साथ पहचाना जा सकता है लाई समूह के मौलिक प्रतिनिधित्व के अर्ध-सरल लाई बीजगणित के प्रतिनिधित्व सिद्धांत में वजन .के रूप में होते है, घन सतह पर होने वाली विलक्षणता के संभावित समुच्चय को उप-प्रणालियों के संदर्भ में वर्णित किया जा सकता है।[7] इस संबंध के लिए व्याख्या यह है कि जाली एंटीकैनोनिकल वर्ग के ऑर्थोगोनल पूरक के रूप में उत्पन्न होती है पिकार्ड समूह में , किसी समतल जटिल घन सतह के लिए किसी सतह पर वक्रों के प्रतिच्छेद सिद्धांत से आने वाले इसके प्रतिच्छेद रूप के साथ, पिकार्ड जालक की पहचान सह-समरूपता समूह के साथ की जा सकती है।

एकअरड बिंदु वह बिंदु है जहां 27 में से 3 रेखाएँ मिलती हैं और इस प्रकार अधिकांश घन सतहों में कोई एकार्ट पॉइंट नहीं होता है, लेकिन ऐसे बिंदु सभी चिकनी घन सतहों के समूह के सह आयामी -1 उप समुच्चय के रूप में होते हैं।[8]

X पर घन सतह और के विस्फोट के बीच एक पहचान को देखते हुए सामान्य स्थिति में 6 बिंदुओं पर, X पर 27 पंक्तियों को इस प्रकार देखा जा सकता है उड़ाते हुए बनाए गए 6 असाधारण वक्र, 6 बिंदुओं के जोड़े के माध्यम से 15 पंक्तियों के द्विवार्षिक परिवर्तन और 6 शंकुओं के द्विभाजित रूपांतरण करते है जिनमें 6 बिंदुओं में से एक को छोड़कर सभी सम्मलित हैं।[9] दी गई घन सतह को विस्फोट के रूप में देखा जा सकता है, दिए गए घन सतह को एक से अधिक विधियों से वास्तव में, 72 भिन्न -भिन्न विधियों से के ऊपर विस्फोट के रूप में देखा जा सकता है.और इसलिए ब्लो-अप के रूप में एक विवरण सभी 27 पंक्तियों के बीच समरूपता को प्रकट नहीं करता है।

घन सतहों और के बीच संबंध रूट प्रणाली सभी डेल पेज़ो सतहों और रूट प्रणाली के बीच संबंध का सामान्यीकरण करता है। यह गणित के कई एडीई वर्गीकरणों में से एक है। इन समानता का अनुसरण करते हुए वेरा सर्गनोवा और एलेक्सी स्कोरोबोगाटोव ने घन सतहों और लाई समूह के बीच प्रत्यक्ष रूप में ज्यामितीय संबंध दिया होता है।.[10]

भौतिकी में, 27 पंक्तियों को छह-आयामी टोरस्र्स (6 मोमेंटा; 15 ब्रानेस; 6 फाइवब्रेन) और समूह E6 पर एम-सिद्धांत के 27 संभावित अभिकथन के साथ पहचाना जा सकता है। तब स्वाभाविक रूप से U-द्वैत समूह के रूप में कार्य करता है। डेल पेज़ो सतहों और टोरी पर M-सिद्धांत के बीच के इस मानचित्र को रहस्यमय द्वैत के रूप में जाना जाता है।

विशेष घनीय सतहें

चिकनी जटिल घन सतह में सबसे बड़े ऑटोमोर्फिज्म समूह के साथ फ़र्मेट घन सतह है, जिसे परिभाषित किया गया है

इसका ऑटोमोर्फिज्म समूह एक विस्तार है , क्रम 648 का।[11] अगली सबसे सममित चिकनी घनीय सतह क्लेब्स्च सतह है, जो में परिभाषित किया जा सकता है दो समीकरणों द्वारा

इसका ऑटोमोर्फिज्म समूह सममित समूह है , क्रम 120। निर्देशांक के एक जटिल रैखिक परिवर्तन के बाद, क्लेब्सच सतह को समीकरण द्वारा भी परिभाषित किया जा सकता है

में .

केली की नोडल घन सतह

एकवचन जटिल घन सतहों के बीच, केली की नोडल घन सतह अद्वितीय सतह है जिसमें नोड की अधिकतम संख्या (बीजगणितीय ज्यामिति) है, 4:

इसका ऑटोमोर्फिज्म समूह है , क्रम 24।

रियल घन सरफेस

जटिल स्थिति े के विपरीत, वास्तविक संख्याओं पर चिकनी घन सतहों का स्थान क्लासिकल टोपोलॉजिकल स्पेस (आर के टोपोलॉजी पर आधारित) में जुड़ा हुआ स्थान नहीं है। इसके जुड़े घटक (दूसरे शब्दों में, समस्थानिक तक चिकनी वास्तविक घन सतहों का वर्गीकरण) लुडविग श्लाफली (1863), फेलिक्स क्लेन (1865), और हिरोनिमस जॉर्ज ज़्यूथेन | एच द्वारा निर्धारित किया गया था। जी ज़्यूथेन (1875)।[12] अर्थात्, चिकनी वास्तविक घन सतहों X के 5 समस्थानिक वर्ग हैं , तर्कसंगत बिंदु के स्थान की टोपोलॉजी द्वारा प्रतिष्ठित . वास्तविक बिंदुओं का स्थान या तो भिन्न है , या का असंयुक्त संघ और 2-गोला, जहां वास्तविक वास्तविक प्रक्षेपी विमान r प्रतियों के जुड़े योग को दर्शाता है . तदनुसार, X में निहित वास्तविक रेखाओं की संख्या 27, 15, 7, 3 या 3 है।

एक चिकनी वास्तविक घन सतह 'आर' पर तर्कसंगत है यदि और केवल यदि इसके वास्तविक बिंदुओं का स्थान जुड़ा हुआ है, इसलिए पिछले पांच स्थितियों में से पहले चार में।[13] X पर वास्तविक रेखाओं की औसत संख्या है [14] जब एक्स के लिए परिभाषित बहुपद बॉम्बिएरी_नॉर्म द्वारा प्रेरित गॉसियन पहनावा से यादृच्छिक रूप से नमूना लिया जाता है।

घन सतहों का मापांक स्थान

दो चिकनी घन सतहें बीजगणितीय किस्मों के रूप में आइसोमोर्फिक हैं यदि और केवल यदि वे कुछ रैखिक ऑटोमोर्फिज्म के समतुल्य हैं . ज्यामितीय अपरिवर्तनीय सिद्धांत चिकनी घन सतहों के प्रत्येक आइसोमोर्फिज्म वर्ग के लिए एक बिंदु के साथ घन सतहों का एक मापांक स्थान देता है। इस मोडुली स्पेस का आयाम 4 है। अधिक यथार्थ रूप से, यह सैल्मन और क्लेबश (1860) द्वारा भारित भारित प्रक्षेप्य स्थान(12345) का एक खुला उपसमुच्चय है। विशेष रूप से, यह एक तर्कसंगत 4 गुना है।[15]


वक्रों का शंकु

एक बीजगणितीय रूप से बंद क्षेत्र पर एक घन सतह एक्स पर लाइनों को एक्स के एम्बेडिंग के संदर्भ के बिना आंतरिक रूप से वर्णित किया जा सकता है : वे बिल्कुल (−1)-X पर वक्र हैं, जिसका अर्थ है कि वक्र समरूपी हैं जिसका स्व-चौराहा -1 है। इसके अतिरिक्त , एक्स (या समतुल्य रूप से विभाजक वर्ग समूह) के पिकार्ड जाली में लाइनों के वर्ग वास्तव में पिक (एक्स) के तत्व यू हैं जैसे कि और . (यह उपयोग करता है कि सुसंगत शीफ का प्रतिबंध # सदिश बंडलों के उदाहरण O(1) पर X के लिए एंटीकैनोनिकल लाइन बंडल है , संयोजन सूत्र द्वारा।)

किसी भी प्रक्षेपी किस्म X के लिए, वक्रों के शंकु का अर्थ उत्तल शंकु है जो X में सभी वक्रों द्वारा फैला हुआ है (वास्तविक सदिश स्थान में) 1-चक्र सापेक्ष संख्यात्मक तुल्यता, या एकवचन होमोलॉजी में यदि आधार क्षेत्र सम्मिश्र संख्या है)। एक घनीय सतह के लिए, वक्रों के शंकु को 27 रेखाओं द्वारा फैलाया जाता है।[16] विशेष रूप से, यह एक परिमेय बहुफलकीय शंकु है एक बड़े समरूपता समूह के साथ, वेइल समूह . किसी भी डेल पेज़ो सतह के लिए घटता के शंकु का एक समान विवरण है।

एक क्षेत्र पर घन सतहें

फ़ील्ड k पर एक चिकनी घन सतह X जो बीजगणितीय रूप से बंद नहीं है, k पर तर्कसंगत होने की आवश्यकता नहीं है। एक चरम स्थिति े के रूप में, परिमेय संख्या 'Q' (या p-adic संख्या) पर चिकनी घन सतहें होती हैं ) बिना परिमेय बिंदु के, जिस स्थिति में X निश्चित रूप से परिमेय नहीं है।[17] यदि एक्स (के) गैर-खाली है, तो बेंजामिन सीक्रेट और जेनोस कोल्लार द्वारा एक्स कम से कम अपरिमेय है।[18] के अनंत के लिए, एकता का अर्थ है कि के-तर्कसंगत बिंदुओं का समुच्चय एक्स में ज़रिस्की घना है।

K का निरपेक्ष गैलोज़ समूह बीजगणितीय बंद होने पर X की 27 पंक्तियों की अनुमति देता है k का (Weyl समूह के कुछ उपसमूह के माध्यम से ). यदि इस क्रिया की कुछ कक्षा में भिन्न -भिन्न रेखाएँ होती हैं, तो X एक बंद बिंदु पर k के ऊपर एक सरल डेल पेज़ो सतह का ब्लो-अप है। अन्यथा, X का पिकार्ड नंबर 1 है। (X का पिकार्ड समूह ज्यामितीय पिकार्ड समूह का एक उपसमूह है ।) बाद के स्थिति े में, सेग्रे ने दिखाया कि एक्स कभी भी तर्कसंगत नहीं है। अधिक दृढ़ता से, यूरी मैनिन ने एक द्विपक्षीय कठोरता बयान सिद्ध कर दिया: पिकार्ड नंबर 1 के साथ दो चिकनी घन सतहें एक पूर्ण क्षेत्र के ऊपर द्विवार्षिक हैं यदि और केवल यदि वे आइसोमोर्फिक हैं।[19] उदाहरण के लिए, ये परिणाम Q के ऊपर कई घन सतह देते हैं जो अपरिमेय हैं लेकिन तर्कसंगत नहीं हैं।

एकवचन घन सतहें

चिकनाई घन सतहों के विपरीत जिसमें 27 रेखाएँ होती हैं, विलक्षणता (गणित) घन सतहों में कम रेखाएँ होती हैं। [20] इसके अतिरिक्त , उन्हें विलक्षणता के प्रकार से वर्गीकृत किया जा सकता है जो उनके सामान्य रूप में उत्पन्न होती है। इन विलक्षणताओं को डायनकिन आरेख का उपयोग करके वर्गीकृत किया गया है।

वर्गीकरण

एक सामान्य विलक्षण घन सतह में स्थानीय निर्देशांक के साथ यदि इसके द्वारा दिया जाता है तो सामान्य रूप में कहा जाता है . विलक्षणता के प्रकार पर निर्भर करता है सम्‍मिलित है, यह प्रक्षेपी सतह में समरूपता है द्वारा दिए गए कहाँ नीचे दी गई तालिका के अनुसार हैं। इसका अर्थ है कि हम सभी एकवचन घनीय सतहों का वर्गीकरण प्राप्त कर सकते हैं। निम्न तालिका के पैरामीटर इस प्रकार हैं: के तीन भिन्न तत्व हैं , पैरामीटर में हैं और का एक तत्व है . ध्यान दें कि विलक्षणता के साथ दो भिन्न -भिन्न एकवचन घन सतहें हैं . [21]

Classification of singular cubic surfaces by singularity type [21]
Singularity

सामान्य रूप में, जब भी एक घन सतह कम से कम एक सम्मलित है विलक्षणता, यह एक होगा विलक्षणता पर . [20]


एकवचन घनीय सतहों पर रेखाएँ

एकवचन घनीय सतहों के वर्गीकरण के अनुसार, निम्न तालिका प्रत्येक सतह में प्रक्षेपी रेखाओं की संख्या दर्शाती है।

Lines on singular cubic surfaces [21]
Singularity
No. of lines 21 16 11 12 7 8 9 4 5 5 2 15 7 3 10 6 3 6 3 1


बिना किसी पैरामीटर के एकवचन घन सतहों के automorphism समूह

एक सामान्य विलक्षण घन सतह का एक ऑटोमोर्फिज्म प्रक्षेपीय स्पेस के ऑटोमोर्फिज्म का प्रतिबंध (गणित) है को . इस तरह के ऑटोमोर्फिज्म एकवचन बिंदुओं को संरक्षित करते हैं। इसके अतिरिक्त , वे विभिन्न प्रकार की विलक्षणताओं की अनुमति नहीं देते हैं। यदि सतह में एक ही प्रकार की दो विलक्षणताएँ होती हैं, तो ऑटोमोर्फिज़्म उन्हें अनुमति दे सकता है। घन सतह पर ऑटोमोर्फिज्म का संग्रह एक समूह (गणित) बनाता है, जिसे ऑटोमोर्फिज्म समूह कहा जाता है। निम्न तालिका बिना किसी पैरामीटर के एकवचन घन सतहों के सभी ऑटोमोर्फिज़्म समूहों को दिखाती है।

Automorphism groups of singular cubic surfaces with no parameters [21]
Singularity Automorphism group of
, the symmetric group of order


यह भी देखें

टिप्पणियाँ

  1. Reid (1988), Corollary 7.4.
  2. Kollár, Smith, Corti (2004), Example 1.28.
  3. Kollár, Smith, Corti (2004), Exercise 1.59.
  4. 4.0 4.1 4.2 Dolgachev (2012), Chapter 9, Historical notes.
  5. Reid (1988), section 7.6.
  6. Hartshorne (1997), Exercise V.4.11.
  7. Bruce & Wall (1979), section 4; Dolgachev (2012), Table 9.1.
  8. Dolgachev (2012), section 9.1.4.
  9. Hartshorne (1997), Theorem V.4.9.
  10. Serganova & Skorobogatov (2007).
  11. Dolgachev (2012), Table 9.6.
  12. Degtyarev and Kharlamov (2000), section 3.5.2. The various types of real cubic surfaces, and the lines on them, are pictured in Holzer & Labs (2006).
  13. Silhol (1989), section VI.5.
  14. Basu, S.; Lerario, A.; Lundberg, E.; Peterson, C. (2019). "यादृच्छिक क्षेत्र और वास्तविक और जटिल हाइपरसर्फ्स पर लाइनों की गणनात्मक ज्यामिति". Mathematische Annalen. 374 (3–4): 1773–1810. arXiv:1610.01205. doi:10.1007/s00208-019-01837-0. S2CID 253717173.
  15. Dolgachev (2012), equation (9.57).
  16. Hartshorne (1997), Theorem V.4.11.
  17. Kollár, Smith, Corti (2004), Exercise 1.29.
  18. Kollár, Smith, Corti (2004), Theorems 1.37 and 1.38.
  19. Kollár, Smith, Corti (2004), Theorems 2.1 and 2.2.
  20. 20.0 20.1 Bruce, J. W.; Wall, C. T. C. (1979). "घन सतहों के वर्गीकरण पर". Journal of the London Mathematical Society (in English). s2-19 (2): 245–256. doi:10.1112/jlms/s2-19.2.245. ISSN 1469-7750.
  21. 21.0 21.1 21.2 21.3 SAKAMAKI, YOSHIYUKI (2010). "बिना किसी पैरामीटर के सामान्य एकवचन घन सतहों पर ऑटोमोर्फिज्म समूह". Transactions of the American Mathematical Society. 362 (5): 2641–2666. doi:10.1090/S0002-9947-09-05023-5. ISSN 0002-9947. JSTOR 25677798.


संदर्भ


बाहरी संबंध