अल्फ़ा प्रक्रिया: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Nuclear fusion reaction}}
{{Short description|Nuclear fusion reaction}}
[[File:Kernfusionen1_en.png|thumb|upright=1.4|अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण]]अल्फा प्रक्रिया, जिसे अल्फा लैडर के रूप में भी जाना जाता है, [[परमाणु संलयन|परमाणु विलयन]] प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे [[हीलियम]] को भारी [[रासायनिक तत्व]] में परिवर्तित करते हैं। दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे [[ट्रिपल-अल्फा प्रक्रिया]] कहा जाता है, जो केवल हीलियम का उपभोग करता है, और [[कार्बन]] का उत्पादन करता है।<ref name=narlikar>{{cite book |last=Narlikar |first=Jayant V. |title=काले बादलों से लेकर ब्लैक होल तक|year=1995 |publisher=[[World Scientific]] |isbn=978-9810220334 |url=https://books.google.com/books?id=0_gmjz-L70EC&pg=PA94 |page=94}}</ref> अल्फा प्रक्रिया समान्यत: बड़े सितारों में और [[सुपरनोवा]] के समय होती है।
[[File:Kernfusionen1_en.png|thumb|upright=1.4|अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण]]अल्फा प्रक्रिया, जिसे अल्फा लैडर के रूप में भी जाना जाता है, [[परमाणु संलयन|परमाणु विलयन]] प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे [[हीलियम]] को भारी [[रासायनिक तत्व]] में परिवर्तित करते हैं। इस प्रकार दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे [[ट्रिपल-अल्फा प्रक्रिया]] कहा जाता है, जो केवल हीलियम का उपभोग करता है, और [[कार्बन]] का उत्पादन करता है।<ref name=narlikar>{{cite book |last=Narlikar |first=Jayant V. |title=काले बादलों से लेकर ब्लैक होल तक|year=1995 |publisher=[[World Scientific]] |isbn=978-9810220334 |url=https://books.google.com/books?id=0_gmjz-L70EC&pg=PA94 |page=94}}</ref> अल्फा प्रक्रिया समान्यत: बड़े सितारों में और [[सुपरनोवा]] के समय होती है।


दोनों प्रक्रियाएं [[हाइड्रोजन संलयन|हाइड्रोजन विलयन]] से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा लैडर प्रक्रियाओं दोनों को ईंधन देती है। [[ट्रिपल अल्फा प्रक्रिया]] के पश्चात् पर्याप्त कार्बन का उत्पादन होता है, अल्फा-लैडर प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। पश्चात् के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी लेयर में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।
दोनों प्रक्रियाएं [[हाइड्रोजन संलयन|हाइड्रोजन विलयन]] से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा लैडर प्रक्रियाओं दोनों को ईंधन देती है। [[ट्रिपल अल्फा प्रक्रिया]] के पश्चात् पर्याप्त कार्बन का उत्पादन होता है, अल्फा-लैडर प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। पश्चात् के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी लेयर में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।
Line 44: Line 44:
कभी-कभी कार्बन और [[नाइट्रोजन]] को अल्फा प्रक्रिया तत्व माना जाता है, क्योंकि ऑक्सीजन की तरह, उन्हें परमाणु अल्फा-कैप्चर प्रतिक्रियाओं में संश्लेषित किया जाता है, किंतु उनकी स्थिति अस्पष्ट है: तीन तत्वों में से प्रत्येक का उत्पादन (और उपभोग) सीएनओ चक्र द्वारा किया जाता है, जो उन तापमानों की तुलना में बहुत कम तापमान पर आगे बढ़ सकता है जहां अल्फा-लैडर प्रक्रियाएं महत्वपूर्ण मात्रा में अल्फा तत्वों (कार्बन, नाइट्रोजन और ऑक्सीजन सहित) का उत्पादन प्रारंभ करती हैं। तो किसी तारे में केवल कार्बन, नाइट्रोजन, या ऑक्सीजन की उपस्थिति स्पष्ट रूप से यह संकेत नहीं देती है कि अल्फा प्रक्रिया वास्तव में चल रही है - इसलिए कुछ खगोलविदों की अनिच्छा (बिना नियम) इन तीन अल्फा तत्वों को बुलाने में है।
कभी-कभी कार्बन और [[नाइट्रोजन]] को अल्फा प्रक्रिया तत्व माना जाता है, क्योंकि ऑक्सीजन की तरह, उन्हें परमाणु अल्फा-कैप्चर प्रतिक्रियाओं में संश्लेषित किया जाता है, किंतु उनकी स्थिति अस्पष्ट है: तीन तत्वों में से प्रत्येक का उत्पादन (और उपभोग) सीएनओ चक्र द्वारा किया जाता है, जो उन तापमानों की तुलना में बहुत कम तापमान पर आगे बढ़ सकता है जहां अल्फा-लैडर प्रक्रियाएं महत्वपूर्ण मात्रा में अल्फा तत्वों (कार्बन, नाइट्रोजन और ऑक्सीजन सहित) का उत्पादन प्रारंभ करती हैं। तो किसी तारे में केवल कार्बन, नाइट्रोजन, या ऑक्सीजन की उपस्थिति स्पष्ट रूप से यह संकेत नहीं देती है कि अल्फा प्रक्रिया वास्तव में चल रही है - इसलिए कुछ खगोलविदों की अनिच्छा (बिना नियम) इन तीन अल्फा तत्वों को बुलाने में है।


== सितारों में उत्पादन                                                                         ==
== सितारों में उत्पादन                                                                                   ==
अल्फा प्रक्रिया समान्यत: बड़ी मात्रा में तभी होती है जब तारा पर्याप्त रूप से विशाल हो, <math>\gtrsim 10M_{\odot}</math>(<math>M_{\odot}                                                                                                                                                                                                                   
अल्फा प्रक्रिया समान्यत: बड़ी मात्रा में तभी होती है जब तारा पर्याप्त रूप से विशाल हो, <math>\gtrsim 10M_{\odot}</math>(<math>M_{\odot}                                                                                                                                                                                                                   
                                                                                                                                                                                                                             </math> सूर्य का द्रव्यमान होना);<ref name=":2" /> ये तारे उम्र बढ़ने के साथ संकुचित होते हैं, जिससे अल्फा प्रक्रिया को सक्षम करने के लिए कोर तापमान और घनत्व पर्याप्त उच्च स्तर तक बढ़ जाता है। परमाणु द्रव्यमान के साथ आवश्यकताएँ बढ़ती हैं, विशेष रूप से पश्चात् के चरणों में - कभी-कभी इसे [[सिलिकॉन-जलने की प्रक्रिया]] के रूप में जाना जाता है - और इस प्रकार यह समान्यत: [[सुपरनोवा न्यूक्लियोसिंथेसिस]] में होता है।<ref>{{Cite journal |last=Truran |first=J. W. |last2=Cowan |first2=J. J. |last3=Cameron |first3=A. G. W. |date=1978-06-01 |title=सुपरनोवा में हीलियम-चालित आर-प्रक्रिया।|url=https://ui.adsabs.harvard.edu/abs/1978ApJ...222L..63T |journal=The Astrophysical Journal |volume=222 |pages=L63–L67 |doi=10.1086/182693 |issn=0004-637X}}</ref> [[Ia सुपरनोवा टाइप करें|ला सुपरनोवा टाइप करें]] मुख्य रूप से ऑक्सीजन और अल्फा-तत्वों (नियॉन, मैग्नीशियम, सिलिकॉन, सल्फर, आर्गन, कैल्शियम और [[टाइटेनियम]]) को संश्लेषित करते हैं जबकि टाइप ला सुपरनोवा मुख्य रूप से [[लोहे की चोटी|आयरन पीक]] (टाइटेनियम, [[वैनेडियम]], [[क्रोमियम]], [[मैंगनीज]], आयरन, [[कोबाल्ट|कोबाल्ट और]] [[निकल]]) के तत्वों का उत्पादन करते हैं।<ref name=":2">{{Citation |last=Truran |first=J.W. |title=Origin of the Elements |date=2003 |url=https://linkinghub.elsevier.com/retrieve/pii/B0080437516010598 |work=Treatise on Geochemistry |pages=1–15 |publisher=Elsevier |language=en |doi=10.1016/b0-08-043751-6/01059-8 |isbn=978-0-08-043751-4 |access-date=2023-02-17 |last2=Heger |first2=A.}}</ref> पर्याप्त रूप से बड़े तारे केवल हाइड्रोजन और हीलियम से [[लोहे की चोटी|आयरन पीक]] तक के तत्वों को संश्लेषित कर सकते हैं जिनमें मूल रूप से तारा सम्मिलित होता है।<ref name=":1" />
                                                                                                                                                                                                                             </math> सूर्य का द्रव्यमान होना);<ref name=":2" /> ये तारे उम्र बढ़ने के साथ संकुचित होते हैं, जिससे अल्फा प्रक्रिया को सक्षम करने के लिए कोर तापमान और घनत्व पर्याप्त उच्च स्तर तक बढ़ जाता है। परमाणु द्रव्यमान के साथ आवश्यकताएँ बढ़ती हैं, विशेष रूप से पश्चात् के चरणों में - कभी-कभी इसे [[सिलिकॉन-जलने की प्रक्रिया]] के रूप में जाना जाता है - और इस प्रकार यह समान्यत: [[सुपरनोवा न्यूक्लियोसिंथेसिस]] में होता है।<ref>{{Cite journal |last=Truran |first=J. W. |last2=Cowan |first2=J. J. |last3=Cameron |first3=A. G. W. |date=1978-06-01 |title=सुपरनोवा में हीलियम-चालित आर-प्रक्रिया।|url=https://ui.adsabs.harvard.edu/abs/1978ApJ...222L..63T |journal=The Astrophysical Journal |volume=222 |pages=L63–L67 |doi=10.1086/182693 |issn=0004-637X}}</ref> [[Ia सुपरनोवा टाइप करें|ला सुपरनोवा टाइप करें]] मुख्य रूप से ऑक्सीजन और अल्फा-तत्वों (नियॉन, मैग्नीशियम, सिलिकॉन, सल्फर, आर्गन, कैल्शियम और [[टाइटेनियम]]) को संश्लेषित करते हैं जबकि टाइप ला सुपरनोवा मुख्य रूप से [[लोहे की चोटी|आयरन पीक]] (टाइटेनियम, [[वैनेडियम]], [[क्रोमियम]], [[मैंगनीज]], आयरन, [[कोबाल्ट|कोबाल्ट और]] [[निकल]]) के तत्वों का उत्पादन करते हैं।<ref name=":2">{{Citation |last=Truran |first=J.W. |title=Origin of the Elements |date=2003 |url=https://linkinghub.elsevier.com/retrieve/pii/B0080437516010598 |work=Treatise on Geochemistry |pages=1–15 |publisher=Elsevier |language=en |doi=10.1016/b0-08-043751-6/01059-8 |isbn=978-0-08-043751-4 |access-date=2023-02-17 |last2=Heger |first2=A.}}</ref> पर्याप्त रूप से बड़े तारे केवल हाइड्रोजन और हीलियम से [[लोहे की चोटी|आयरन पीक]] तक के तत्वों को संश्लेषित कर सकते हैं जिनमें मूल रूप से तारा सम्मिलित होता है।<ref name=":1" />
Line 51: Line 51:


फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके पश्चात् में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। <math>{}_{22}^{44}\textrm{Ti}</math> और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> बनता है और <math>{}_{26}^{56}\textrm{Fe}</math> में क्षय हो जाता है।<ref name=":3" />
फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके पश्चात् में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। <math>{}_{22}^{44}\textrm{Ti}</math> और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> बनता है और <math>{}_{26}^{56}\textrm{Fe}</math> में क्षय हो जाता है।<ref name=":3" />
==सापेक्ष बहुतायत के लिए विशेष संकेतन                                                                                                     ==
==सापेक्ष बहुतायत के लिए विशेष संकेतन                                                                   ==
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, और यह खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:
:<math chem> \left[ \frac{ \alpha }{\, \ce{Fe} \,} \right] ~\equiv~ \log_{10}{\left(\, \frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,} \,\right)_\mathsf{Star}} - \log_{10}{\left(\frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,}\,\right)_\mathsf{Sun} } ~,</math>  
:<math chem> \left[ \frac{ \alpha }{\, \ce{Fe} \,} \right] ~\equiv~ \log_{10}{\left(\, \frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,} \,\right)_\mathsf{Star}} - \log_{10}{\left(\frac{ N_{\mathrm{E}\alpha} }{\, N_\ce{Fe} \,}\,\right)_\mathsf{Sun} } ~,</math>  
:जहां <math>\, N_{\mathrm{E}\alpha} \,</math> प्रति इकाई आयतन में अल्फा तत्वों की संख्या है, और <math chem="">\, N_\ce{Fe} \,</math> प्रति इकाई आयतन में लौह नाभिकों की संख्या है। यह संख्या <math>\, N_{\mathrm{E}\alpha} \,</math> की गणना के उद्देश्य से है कि किन तत्वों को "अल्फा तत्व" माना जाना चाहिए, यह विवादास्पद हो जाता है। सैद्धांतिक गैलेक्टिक विकास मॉडल पूर्वानुमान करते हैं कि ब्रह्मांड के आरंभ में आयरन के सापेक्ष अधिक अल्फा तत्व थे।
:जहां <math>\, N_{\mathrm{E}\alpha} \,</math> प्रति इकाई आयतन में अल्फा तत्वों की संख्या है, और <math chem="">\, N_\ce{Fe} \,</math> प्रति इकाई आयतन में लौह नाभिकों की संख्या है। यह संख्या <math>\, N_{\mathrm{E}\alpha} \,</math> की गणना के उद्देश्य से है कि किन तत्वों को "अल्फा तत्व" माना जाना चाहिए, यह विवादास्पद हो जाता है। सैद्धांतिक गैलेक्टिक विकास मॉडल पूर्वानुमान करते हैं कि ब्रह्मांड के आरंभ में आयरन के सापेक्ष अधिक अल्फा तत्व थे।

Revision as of 10:41, 8 August 2023

File:Kernfusionen1 en.png
अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण

अल्फा प्रक्रिया, जिसे अल्फा लैडर के रूप में भी जाना जाता है, परमाणु विलयन प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे हीलियम को भारी रासायनिक तत्व में परिवर्तित करते हैं। इस प्रकार दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे ट्रिपल-अल्फा प्रक्रिया कहा जाता है, जो केवल हीलियम का उपभोग करता है, और कार्बन का उत्पादन करता है।[1] अल्फा प्रक्रिया समान्यत: बड़े सितारों में और सुपरनोवा के समय होती है।

दोनों प्रक्रियाएं हाइड्रोजन विलयन से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा लैडर प्रक्रियाओं दोनों को ईंधन देती है। ट्रिपल अल्फा प्रक्रिया के पश्चात् पर्याप्त कार्बन का उत्पादन होता है, अल्फा-लैडर प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। पश्चात् के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी लेयर में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।