एकपदी आधार: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
| Line 53: | Line 53: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 18/07/2023]] | [[Category:Created On 18/07/2023]] | ||
[[Category:Vigyan Ready]] | |||
Revision as of 15:14, 14 August 2023
गणित में एक बहुपद वलय का एकपदी आधार इसका आधार होता है (क्षेत्र या गुणांक के वलय पर एक सदिश स्थान या मुक्त मॉड्यूल के रूप में) जिसमें सभी एकपदी सम्मिलित होते हैं। एकपदी एक आधार बनाते हैं क्योंकि प्रत्येक बहुपद को विशिष्ट रूप से एकपदी के एक परिमित रैखिक संयोजन के रूप में लिखा जा सकता है (यह एक बहुपद की परिभाषा का तत्काल परिणाम है)।
एक अनिश्चित
एक क्षेत्र K पर एकविभिन्न बहुपदों का बहुपद वलय K[x]
एक K-सदिश स्थान है, जिसमें है
अधिकतम d पर घात के बहुपद एक सदिश समष्टि (या गुणांकों के वलय के स्थिति में एक मुक्त मापांक) भी बनाते हैं, जिसमें
किसी बहुपद का विहित रूप इस आधार पर उसकी अभिव्यक्ति है:
अनेक अनिश्चित
अनेक अनिश्चितताओं के स्थिति में एकपदी एक उत्पाद है
अविभाज्य बहुपद के स्थिति के समान, में बहुपद एक सदिश समष्टि बनाते हैं (यदि गुणांक किसी क्षेत्र से संबंधित हैं) या एक मुक्त मॉड्यूल (यदि गुणांक एक वलय से संबंधित हैं), जिसमें आधार के रूप में सभी एकपदी का समुच्चय होता है, जिसे एकपदी आधार कहा जाता है।
घात के सजातीय बहुपद एक उपसमष्टि बनाते हैं जिसका आधार घात के एकपदी होते हैं। इस उपसमष्टि का आयाम डिग्री के एकपदी की संख्या है, जो है
अधिकतम d पर घात वाले बहुपद भी एक उपसमष्टि बनाते हैं, जिसका आधार अधिकतम d पर घात वाले एकपदी होते हैं। इन एकपदों की संख्या इस उपसमष्टि के आयाम के समान है
यह भी देखें
- हॉर्नर विधि
- बहुपद अनुक्रम
- न्यूटन बहुपद
- लैग्रेंज बहुपद
- लीजेंडर बहुपद
- बर्नस्टीन रूप
- चेबीशेव रूप
श्रेणी:बीजगणित
श्रेणी:बहुपद