बेल अवस्था: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 2: Line 2:


{{Quantum mechanics}}
{{Quantum mechanics}}
'''बेल अवस्था''' या '''ईपीआर जोड़े'''{{r|:0|page=25}} दो क्वैबिट के विशिष्ट क्वांटम अवस्थाएँ हैं जो क्वांटम उलझाव के सबसे सरल (और अधिकतम) उदाहरणों का प्रतिनिधित्व करते हैं; वैचारिक रूप से, वे [[क्वांटम सूचना विज्ञान]] के अध्ययन के अंतर्गत आते हैं। बेल अवस्था उलझाव और सामान्यीकृत आधार सदिश का एक रूप हैं। इस सामान्यीकरण का तात्पर्य यह है कि कण के उल्लिखित अवस्थाओं में से एक में होने की समग्र संभावना 1: <math>\langle \Phi|\Phi \rangle = 1</math> हैं। उलझाव अध्यारोपण का एक आधार-स्वतंत्र परिणाम है।<ref name=":1">{{Cite journal|last=Sych|first=Denis|date=7 January 2009|title=सामान्यीकृत बेल राज्यों का एक पूर्ण आधार|journal=New Journal of Physics|volume=11|issue=1|page=013006|doi=10.1088/1367-2630/11/1/013006|bibcode=2009NJPh...11a3006S|via=IOP Science|doi-access=free}}</ref> इस अध्यारोपण के कारण, क्वबिट का माप इसे एक दी गई संभावना के साथ इसके आधार अवस्थाों में से एक में "संकुचित" कर देता है।<ref name=":0" />उलझाव के कारण, एक क्वबिट का माप दूसरे क्वबिट को एक ऐसी अवस्था में "संकुचित" कर देगा, जिसके माप से दो संभावित मानों में से एक प्राप्त होगा, जहां मूल्य इस बात पर निर्भर करता है कि प्रारंभ में दोनों क्वबिट किस बेल की अवस्था में हैं। बेल की अवस्थाओं को बहु-क्वबिट प्रणाली के कुछ क्वांटम अवस्थाों के लिए सामान्यीकृत किया जा सकता है, जैसे कि 3 या अधिक उपप्रणालियों के लिए GHZ अवस्था हैं।
'''बेल अवस्था''' या '''ईपीआर युग्म'''{{r|:0|page=25}} दो क्वैबिट के विशिष्ट क्वांटम अवस्थाएँ हैं जो क्वांटम जटिलता के सबसे सरल (और अधिकतम) उदाहरणों का प्रतिनिधित्व करते हैं; वैचारिक रूप से, वे [[क्वांटम सूचना विज्ञान]] के अध्ययन के अंतर्गत आते हैं। बेल अवस्था जटिल और सामान्यीकृत आधार सदिश का एक रूप हैं। इस सामान्यीकरण का तात्पर्य यह है कि कण के उल्लिखित अवस्थाओं में से एक में होने की समग्र संभावना 1: <math>\langle \Phi|\Phi \rangle = 1</math> हैं। जटिल अध्यारोपण का एक आधार-स्वतंत्र परिणाम है।<ref name=":1">{{Cite journal|last=Sych|first=Denis|date=7 January 2009|title=सामान्यीकृत बेल राज्यों का एक पूर्ण आधार|journal=New Journal of Physics|volume=11|issue=1|page=013006|doi=10.1088/1367-2630/11/1/013006|bibcode=2009NJPh...11a3006S|via=IOP Science|doi-access=free}}</ref> इस अध्यारोपण के कारण, क्वबिट का माप इसे एक दी गई संभावना के साथ इसके आधार अवस्था में से एक में "संकुचित" कर देता है।<ref name=":0" /> जटिलता के कारण, एक क्वबिट का माप दूसरे क्वबिट को एक ऐसी अवस्था में "संकुचित" कर देता है, जिसके माप से दो संभावित मानों में से एक प्राप्त होता है, जहां मूल्य इस बात पर निर्भर करता है कि प्रारंभ में दोनों क्वबिट किस बेल की अवस्था में हैं। बेल की अवस्थाओं को बहु-क्वबिट प्रणाली के कुछ क्वांटम अवस्थाओं के लिए सामान्यीकृत किया जा सकता है, जैसे कि 3 या अधिक उपप्रणालियों के लिए GHZ अवस्था हैं।


बेल अवस्था की समझ क्वांटम संचार के विश्लेषण में उपयोगी है, जैसे [[सुपरडेंस कोडिंग|सुपरडेंस कूटलेखन]] और [[क्वांटम टेलीपोर्टेशन]] है।<ref>{{Cite journal|last1=Zaman|first1=Fakhar|last2=Jeong|first2=Youngmin|date=2 October 2018|title=प्रतितथ्यात्मक बेल-स्टेट विश्लेषण|doi=10.1038/s41598-018-32928-8 |journal=Scientific Reports|volume=8|issue=1|page=14641|pmid=30279547|pmc=6168595|bibcode=2018NatSR...814641Z|doi-access=free}}</ref> [[नो-कम्युनिकेशन प्रमेय|संचार नहीं प्रमेय]] इस व्यवहार को प्रकाश की गति से अधिक तेजी से सूचना प्रसारित करने से प्रतिबंध करता है।<ref name=":0" />
बेल अवस्था की समझ क्वांटम संचार के विश्लेषण में उपयोगी है, जैसे [[सुपरडेंस कोडिंग|सुपरडेंस कूटलेखन]] और [[क्वांटम टेलीपोर्टेशन]] है।<ref>{{Cite journal|last1=Zaman|first1=Fakhar|last2=Jeong|first2=Youngmin|date=2 October 2018|title=प्रतितथ्यात्मक बेल-स्टेट विश्लेषण|doi=10.1038/s41598-018-32928-8 |journal=Scientific Reports|volume=8|issue=1|page=14641|pmid=30279547|pmc=6168595|bibcode=2018NatSR...814641Z|doi-access=free}}</ref> [[नो-कम्युनिकेशन प्रमेय]] इस व्यवहार को प्रकाश की गति से अधिक तेजी से सूचना प्रसारित करने से प्रतिबंध करता है।<ref name=":0" />
==बेल अवस्था==
==बेल अवस्था==
बेल अवस्थाएँ दो क्वैबिट की चार विशिष्ट अधिकतम जटिल क्वांटम अवस्थाएँ हैं। 0 और 1 की अध्यारोपण में हैं{{snd}}दो अवस्थाों का एक रैखिक संयोजन हैं। उनके उलझने का अर्थ निम्नलिखित है:
बेल अवस्था दो क्वैबिट की चार विशिष्ट अधिकतम जटिल क्वांटम अवस्थाएँ हैं। 0 और 1 की अध्यारोपण में हैं{{snd}}दो अवस्थाओं का एक रैखिक संयोजन हैं। उनके जटिलता का अर्थ निम्नलिखित है:


ऐलिस द्वारा आयोजित की गई क्वबिट (पादांक <nowiki>''</nowiki>A<nowiki>''</nowiki>) 0 और 1 के अध्यारोपण में हो सकती है। यदि ऐलिस ने अपनी क्वैबिट को मानक आधार पर मापा, तो परिणाम या तो 0 या 1 होगा, प्रत्येक की संभावना 1/2 होगी; यदि बॉब (पादांक <nowiki>''</nowiki>B<nowiki>''</nowiki>) ने भी अपनी क्वैबिट मापी, तो परिणाम ऐलिस के समान ही होता है। इस प्रकार, ऐलिस और बॉब प्रत्येक का यादृच्छिक परिणाम प्रतीत होता है। संचार के माध्यम से उन्हें पता चलेगा कि, हालांकि उनके परिणाम अलग-अलग यादृच्छिक लग रहे थे, ये पूर्णतः सहसंबद्ध थे।
ऐलिस द्वारा आयोजित की गई क्वबिट (पादांक <nowiki>''</nowiki>A<nowiki>''</nowiki>) 0 और 1 के अध्यारोपण में हो सकती है। यदि ऐलिस ने अपनी क्वैबिट को मानक आधार पर मापा, तो परिणाम या तो 0 या 1 होगा, प्रत्येक की संभावना 1/2 होगी; यदि बॉब (पादांक <nowiki>''</nowiki>B<nowiki>''</nowiki>) ने भी अपनी क्वैबिट मापी, तो परिणाम ऐलिस के समान होती है। इस प्रकार, ऐलिस और बॉब प्रत्येक का यादृच्छिक परिणाम प्रतीत होते है। संचार के माध्यम से उन्हें पता चलेगा कि उनके परिणाम अलग-अलग यादृच्छिक लग रहे थे, ये पूर्णतः सहसंबद्ध थे।


दूरी पर यह पूर्ण सहसंबंध विशेष है: सम्भवतः दो कण पहले से ही "सहमत" थे, जब जोड़ी बनाई गई थी (क्वाबिट अलग होने से पहले), माप के प्रकरण में वे क्या परिणाम दिखाएंगे।
दूरी पर यह पूर्ण सहसंबंध विशेष है: सम्भवतः दो कण पहले से ही "सहमत" थे, जब जोड़ी बनाई गई थी (क्वाबिट अलग होने से पहले), माप के प्रकरण में वे कौन सा परिणाम दिखाएंगे।


इसलिए, [[अल्बर्ट आइंस्टीन]],[[बोरिस पोडॉल्स्की|पोडॉल्स्की]] और [[नाथन रोसेन|रोसेन]] के प्रसिद्ध 1935 के[[ ईपीआर विरोधाभास | <nowiki>''</nowiki>ईपीआर दस्तावेज़]]<nowiki>''</nowiki> के बाद, ऊपर दिए गए क्वबिट जोड़ी के विवरण में कुछ कमी है{{snd}}अर्थात् यह <nowiki>''</nowiki>अनुबंध<nowiki>''</nowiki>, जिसे अधिक औपचारिक रूप से एक प्रच्छन्न चर कहा जाता है। 1964 के अपने प्रसिद्ध दस्तावेज़ में, जॉन एस. बेल ने सरल संभाव्यता सिद्धांत तर्कों द्वारा दिखाया कि ये सहसंबंध (0,1 आधार के लिए एक और +,- आधार के लिए) दोनों को कुछ प्रच्छन्न चरों में संग्रहीत किसी भी "पूर्व-अनुबंध" के उपयोग से परिपूर्ण नहीं बनाया जा सकता है - लेकिन क्वांटम यांत्रिकी सही सहसंबंधों की भविष्यवाणी करता है। [[बेल-सीएचएसएच असमानता]] के रूप में ज्ञात एक अधिक परिष्कृत सूत्रीकरण में यह दिखाया गया है कि एक निश्चित सहसंबंध माप मान 2 से अधिक नहीं हो सकता है यदि कोई मानता है कि भौतिकी स्थानीय <nowiki>''</nowiki>प्रच्छन्न-चर सिद्धांत<nowiki>''</nowiki> की बाधाओं का सम्मान करती है (सूचना कैसे संप्रेषित की जाती है इसका एक प्रकार का सामान्य ज्ञान सूत्रीकरण), लेकिन क्वांटम यांत्रिकी में अनुमत कुछ प्रणालियाँ <math>2\sqrt{2}</math> तक का मान प्राप्त कर सकती हैं। इस प्रकार, क्वांटम सिद्धांत बेल असमानता और स्थानीय <nowiki>''प्रच्छन्न चर''</nowiki> के विचार का अतिक्रमण करता है।
इसलिए, [[अल्बर्ट आइंस्टीन]],[[बोरिस पोडॉल्स्की|पोडॉल्स्की]] और [[नाथन रोसेन|रोसेन]] के प्रसिद्ध 1935 के[[ ईपीआर विरोधाभास | <nowiki>''</nowiki>ईपीआर दस्तावेज़]]<nowiki>''</nowiki> के बाद, ऊपर दिए गए क्वबिट जोड़ी के विवरण में कुछ कमी है{{snd}}अर्थात् यह <nowiki>''</nowiki>अनुबंध<nowiki>''</nowiki>, जिसे अधिक औपचारिक रूप से एक प्रच्छन्न चर कहा जाता है। 1964 के अपने प्रसिद्ध दस्तावेज़ में, जॉन एस. बेल ने सरल संभाव्यता सिद्धांत तर्कों द्वारा दिखाया कि ये सहसंबंध (0,1 आधार के लिए एक और +,- आधार के लिए) दोनों को कुछ प्रच्छन्न चरों में संग्रहीत किसी भी "पूर्व-अनुबंध" के उपयोग से परिपूर्ण नहीं बनाया जा सकता है - लेकिन क्वांटम यांत्रिकी सही सहसंबंधों की भविष्यवाणी कर सकती है। [[बेल-सीएचएसएच असमानता]] के रूप में ज्ञात एक अधिक परिष्कृत सूत्रीकरण में यह दिखाया गया है कि एक निश्चित सहसंबंध माप मान 2 से अधिक नहीं हो सकता है यदि कोई मानता है कि भौतिकी स्थानीय <nowiki>''</nowiki>प्रच्छन्न-चर सिद्धांत<nowiki>''</nowiki> के बाधाओं का सम्मान करती है (सूचना कैसे संप्रेषित की जाती है इसका एक प्रकार का सामान्य ज्ञान सूत्रीकरण), लेकिन क्वांटम यांत्रिकी में अनुमत कुछ प्रणालियाँ <math>2\sqrt{2}</math> तक का मान प्राप्त कर सकती हैं। इस प्रकार, क्वांटम सिद्धांत बेल असमानता और स्थानीय <nowiki>''प्रच्छन्न चर''</nowiki> के विचार का अतिक्रमण करता है।


=== बेल आधार ===
=== बेल आधार ===
<math>2\sqrt{2}</math> के अधिकतम मान वाले चार विशिष्ट दो-क्विबिट अवस्था को <nowiki>''</nowiki>बेल अवस्था<nowiki>''</nowiki> के रूप में नामित किया गया है। उन्हें चार अधिकतम रूप से जटिल दो-क्विबिट बेल अवस्था के रूप में जाना जाता है और वे दो क्विबिट के लिए चार-आयामी हिल्बर्ट समष्टि का एक अधिकतम उलझा हुआ आधार बनाते हैं, जिसे बेल आधार के रूप में जाना जाता है: <ref name=":0">{{Cite book|title=क्वांटम संगणना और क्वांटम सूचना|last=Nielsen|first=Michael|publisher=Cambridge University Press|year=2010|isbn=9781139495486}}</ref>
<math>2\sqrt{2}</math> के अधिकतम मान वाले चार विशिष्ट दो-क्विबिट अवस्था को <nowiki>''</nowiki>बेल अवस्था<nowiki>''</nowiki> के रूप में नामित किया गया है। उन्हें चार अधिकतम रूप से जटिल दो-क्विबिट बेल अवस्था के रूप में जाना जाता है और वे दो क्विबिट के लिए चार-आयामी हिल्बर्ट समष्टि का एक अधिकतम जटिल आधार बनाते हैं, जिसे बेल आधार के रूप में जाना जाता है: <ref name=":0">{{Cite book|title=क्वांटम संगणना और क्वांटम सूचना|last=Nielsen|first=Michael|publisher=Cambridge University Press|year=2010|isbn=9781139495486}}</ref>
:<math>|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)</math> (1)
:<math>|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)</math> (1)


Line 25: Line 25:


=== बेल अवस्था बनाना ===
=== बेल अवस्था बनाना ===
[[File:The Hadamard-CNOT transform on the zero-state.png|thumb|right|400px|बेल अवस्था बनाने के लिए क्वांटम सर्किट <math>|\Phi^+\rangle</math>]]यद्यपिक्वांटम सर्किट के माध्यम से जटिल बेल अवस्थाएँ बनाने के कई संभावित प्रकार हैं, सबसे सरल इनपुट के रूप में एक अभिकलनात्मक आधार लेता है, और इसमें एक [[हैडमार्ड गेट]] और एक सीएनओटी [[गेट नहीं|गेट]] होता है (चित्र देखें)। उदहारण के लिए, चित्रित क्वांटम सर्किट दो क्वबिट इनपुट <math>|00\rangle</math> लेता है और इसे प्रथम बेल अवस्था <math>|\Phi^+\rangle</math> में बदल देता है।  स्पष्ट रूप से, हैडमार्ड गेट <math>|00\rangle</math> को <math>(|0\rangle + |1\rangle)|0\rangle \over \sqrt{2}</math> के अध्यारोपण में बदल देता है। यह तब सीएनओटी गेट के लिए एक नियंत्रण इनपुट के रूप में कार्य करेगा, जो केवल लक्ष्य (दूसरा क्वबिट) को प्रतिलोम करता है जब नियंत्रण (पहला क्वबिट) 1 होता है। इस प्रकार, सीएनओटी गेट दूसरी क्वैबिट को इस प्रकार परिवर्तित करता है<math>\frac{(|00\rangle + |11\rangle)}{\sqrt{2} } = |\Phi^+\rangle</math>.
[[File:The Hadamard-CNOT transform on the zero-state.png|thumb|right|400px|बेल अवस्था बनाने के लिए क्वांटम सर्किट <math>|\Phi^+\rangle</math>]]यद्यपि क्वांटम सर्किट के माध्यम से जटिल बेल अवस्था बनाने के कई संभावित प्रकार हैं, सबसे सरल इनपुट के रूप में एक अभिकलनात्मक आधार है, और इसमें एक [[हैडमार्ड गेट]] और एक सीएनओटी [[गेट नहीं|गेट]] होता है (चित्र देखें)। उदहारण के लिए, चित्रित क्वांटम सर्किट दो क्वबिट इनपुट <math>|00\rangle</math> लेता है और इसे प्रथम बेल अवस्था <math>|\Phi^+\rangle</math> में बदल देता है।  स्पष्ट रूप से, हैडमार्ड गेट <math>|00\rangle</math> को <math>(|0\rangle + |1\rangle)|0\rangle \over \sqrt{2}</math> के अध्यारोपण में बदल देता है। यह तब सीएनओटी गेट के लिए एक नियंत्रण इनपुट के रूप में कार्य करता है, जो केवल लक्ष्य (दूसरा क्वबिट) को प्रतिलोम करता है जब नियंत्रण (पहला क्वबिट) 1 होता है। इस प्रकार, सीएनओटी गेट दूसरी क्वैबिट को इस प्रकार परिवर्तित करता है<math>\frac{(|00\rangle + |11\rangle)}{\sqrt{2} } = |\Phi^+\rangle</math>.


चार मूल दो-क्विबिट इनपुट के लिए, <math>|00\rangle, |01\rangle, |10\rangle, |11\rangle</math>, सर्किट चार बेल अवस्थाओं (ऊपर सूचीबद्ध) को आउटपुट करता है। अधिक सामान्यतः, सर्किट समीकरण के अनुसार इनपुट को परिवर्तित कर देता है
चार मूल दो-क्विबिट इनपुट के लिए, <math>|00\rangle, |01\rangle, |10\rangle, |11\rangle</math>, सर्किट चार बेल अवस्था (ऊपर सूचीबद्ध) को आउटपुट करता है। अधिक सामान्यतः, सर्किट समीकरण के अनुसार इनपुट को परिवर्तित करता है।


<math display="block">|\beta(x,y)\rangle = \left ( \frac{|0,y\rangle + (-1)^x|1,\bar{y}\rangle}{\sqrt{2}} \right ),</math>
<math display="block">|\beta(x,y)\rangle = \left ( \frac{|0,y\rangle + (-1)^x|1,\bar{y}\rangle}{\sqrt{2}} \right ),</math>
Line 33: Line 33:


=== बेल अवस्थाओं के गुण ===
=== बेल अवस्थाओं के गुण ===
बेल अवस्था में एकल क्वबिट के माप का परिणाम अनिश्चित होता है, लेकिन z-आधार में पहली क्वबिट को मापने पर, दूसरे क्वबिट को मापने के परिणाम को समान मूल्य (<math>\Phi</math> बेल अवस्था के लिए) या विपरीत मूल्य (<math>\Psi</math> बेल अवस्था के लिए) प्राप्त होने की गारंटी होती है। इसका तात्पर्य यह है कि माप परिणाम सहसंबद्ध हैं। [[जॉन स्टीवर्ट बेल|जॉन बेल]] यह सिद्ध करने वाले पहले व्यक्ति थे कि बेल अवस्था में माप सहसंबंध शास्त्रीय प्रणालियों के मध्य पहले से कहीं अधिक मजबूत हैं। यह संकेत देता है कि क्वांटम यांत्रिकी शास्त्रीय यांत्रिकी से परे सूचना प्रसंस्करण की अनुमति देती है। इसके अलावा, बेल अवस्था एक ऑर्थोनॉर्मल आधार बनाते हैं और इसलिए उन्हें उचित माप के साथ परिभाषित किया जा सकता है। बेल अवस्थाएँ जटिल अवस्था हैं, व्यक्तिगत उप-प्रणालियों की जानकारी को रोकते हुए, संपूर्ण प्रणाली की जानकारी ज्ञात की जा सकती है। उदाहरण के लिए, बेल अवस्था एक [[जितना राज्य|शुद्ध अवस्था]] है, लेकिन पहली क्वैबिट का कम घनत्व संचालक एक मिश्रित अवस्था है। मिश्रित अवस्था का तात्पर्य यह है कि इस प्रथम क्वैबिट की सारी जानकारी ज्ञात नहीं है।<ref name=":0" />  उपप्रणालियों के संबंध में बेल अवस्था या तो सममित या प्रतिसममित हैं।<ref name=":1" /> बेल अवस्थाएँ इस अर्थ में अधिकतम रूप से जटिल हैं कि इसके कम घनत्व वाले संचालक अधिकतम रूप से मिश्रित हैं, इस भावना में बेल अवस्थाओं के बहुपक्षीय सामान्यीकरण को [[बिल्कुल अधिकतम उलझी हुई अवस्था|पूर्णतः अधिकतम जटिल अवस्था]] कहा जाता है।
बेल अवस्था में एकल क्वबिट के माप का परिणाम अनिश्चित होता है, लेकिन z-आधार में पहली क्वबिट को मापने पर, दूसरे क्वबिट को मापने के परिणाम को समान मूल्य (<math>\Phi</math> बेल अवस्था के लिए) या विपरीत मूल्य (<math>\Psi</math> बेल अवस्था के लिए) प्राप्त होने की गारंटी होती है। इसका तात्पर्य यह है कि माप परिणाम सहसंबद्ध हैं। [[जॉन स्टीवर्ट बेल|जॉन बेल]] यह सिद्ध करने वाले पहले व्यक्ति थे कि बेल अवस्था में माप सहसंबंध शास्त्रीय प्रणालियों के मध्य पहले से कहीं अधिक मजबूत हैं। यह संकेत देता है कि क्वांटम यांत्रिकी शास्त्रीय यांत्रिकी से अतिरिक्त सूचना प्रसंस्करण की अनुमति देता है। इसके अलावा, बेल अवस्था एक ऑर्थोनॉर्मल आधार बनाते हैं और इसलिए उन्हें उचित माप के साथ परिभाषित किया जा सकता है। बेल अवस्था जटिल अवस्था हैं, व्यक्तिगत उप-प्रणालियों की जानकारी को रोकते हुए, संपूर्ण प्रणाली की जानकारी ज्ञात की जा सकती है। उदाहरण के लिए, बेल अवस्था एक [[जितना राज्य|शुद्ध अवस्था]] है, लेकिन पहली क्वैबिट का कम घनत्व संचालक एक मिश्रित अवस्था है। मिश्रित अवस्था का तात्पर्य यह है कि इस प्रथम क्वैबिट की पूर्ण जानकारी ज्ञात नहीं है।<ref name=":0" />  उपप्रणालियों के संबंध में बेल अवस्था या तो सममित या प्रतिसममित हैं।<ref name=":1" /> बेल अवस्था इस अर्थ में अधिकतम रूप से जटिल हैं कि इसके कम घनत्व वाले संचालक अधिकतम रूप से मिश्रित हैं, इस भावना में बेल अवस्थाओं के बहुपक्षीय सामान्यीकरण को [[बिल्कुल अधिकतम उलझी हुई अवस्था|पूर्णतः अधिकतम जटिल अवस्था]] कहा जाता है।


==बेल अवस्था माप==
==बेल अवस्था माप==
'''बेल माप''' क्वांटम सूचना विज्ञान में एक महत्वपूर्ण अवधारणा है: यह दो क्वबिट का एक संयुक्त क्वांटम-यांत्रिक माप है जो यह निर्धारित करता है कि दो क्वबिट चार बेल अवस्थाों में से किसमें हैं।
'''बेल माप''' क्वांटम सूचना विज्ञान में एक महत्वपूर्ण अवधारणा है: यह दो क्वबिट का एक संयुक्त क्वांटम-यांत्रिक माप है जो यह निर्धारित करता है कि दो क्वबिट चार बेल अवस्थाओं में से किसमें हैं।


[[File:Bell State Decoder.jpg|thumb|right|400px|क्वांटम सर्किट जो बेल विकोडन करता है। बेल अवस्थाओं को कभी-कभी ईपीआर जोड़े भी कहा जाता है। ध्यान दें कि जो सर्किट बेल अवस्था को डिकोड करता है, वह उस सर्किट का सहायक है जो बेल अवस्था को एन्कोड करता है, या बनाता है (ऊपर वर्णित है)।]]बेल आधार पर [[क्वांटम यांत्रिकी में मापन|क्वांटम माप]] का एक उपयोगी उदाहरण क्वांटम कंप्यूटिंग में देखा जा सकता है। यदि एक सीएनओटी गेट को क्वबिट A और B पर उपयोजित किया जाता है, उसके बाद क्वबिट पर एक हैडमार्ड गेट लगाया जाता है, तो अभिकलनात्मक आधार पर माप किया जा सकता है। सीएनओटी गेट पहले से जटिल दो क्वैबिट को जटिल करने का कार्य करता है। यह जानकारी को क्वांटम जानकारी से शास्त्रीय जानकारी के माप में परिवर्तित करने की अनुमति देता है।
[[File:Bell State Decoder.jpg|thumb|right|400px|क्वांटम सर्किट जो बेल विकोडन करता है। बेल अवस्थाओं को कभी-कभी ईपीआर युग्म भी कहा जाता है। ध्यान दें कि जो सर्किट बेल अवस्था को डिकोड करता है, वह उस सर्किट का सहायक है जो बेल अवस्था को एन्कोड करता है, या बनाता है (ऊपर वर्णित है)।]]बेल आधार पर [[क्वांटम यांत्रिकी में मापन|क्वांटम माप]] का एक उपयोगी उदाहरण क्वांटम कंप्यूटिंग में देखा जा सकता है। यदि एक सीएनओटी गेट को क्वबिट A और B पर उपयोजित किया जाता है, उसके बाद क्वबिट A पर एक हैडमार्ड गेट लगाया जाता है, तो अभिकलनात्मक आधार पर माप किया जा सकता है। सीएनओटी गेट पहले से जटिल दो क्वैबिट को जटिल करने का कार्य करते है। यह जानकारी को क्वांटम जानकारी से शास्त्रीय जानकारी के माप में परिवर्तित करने की अनुमति देता है।


क्वांटम मापन दो प्रमुख सिद्धांतों का पालन करता है। पहला, आस्थगित माप का सिद्धांत बताता है कि किसी भी माप को सर्किट के अंत तक ले जाया जा सकता है। दूसरा सिद्धांत, अंतर्निहित माप का सिद्धांत, बताता है कि क्वांटम सर्किट के अंत में किसी भी असंबद्ध तार के लिए माप माना जा सकता है।<ref name=":0" />
क्वांटम मापन दो प्रमुख सिद्धांतों का पालन करता है। पहला, आस्थगित माप का सिद्धांत बताता है कि किसी भी माप को सर्किट के अंत तक ले जाया जा सकता है। दूसरा सिद्धांत, अंतर्निहित माप का सिद्धांत, बताता है कि क्वांटम सर्किट के अंत में किसी भी असंबद्ध तार के लिए माप माना जा सकता है।<ref name=":0" />
Line 44: Line 44:
बेल अवस्था माप के अनुप्रयोग निम्नलिखित हैं:
बेल अवस्था माप के अनुप्रयोग निम्नलिखित हैं:


क्वांटम टेलीपोर्टेशन में बेल अवस्था माप महत्वपूर्ण पद है। बेल अवस्था माप के परिणाम का उपयोग किसी के सह-षड़यंत्रकारी द्वारा एक जटिल जोड़े (<nowiki>''</nowiki>क्वांटम चैनल<nowiki>''</nowiki>) के आधे भाग से टेलीपोर्ट किए गए कण की मूल अवस्था को फिर से बनाने के लिए किया जाता है, जो पहले दोनों कोर के मध्य साझा किया गया था।
क्वांटम टेलीपोर्टेशन में बेल अवस्था माप महत्वपूर्ण पद है। बेल अवस्था माप के परिणाम का उपयोग किसी के सह-षड़यंत्रकारी द्वारा एक जटिल युग्म (<nowiki>''</nowiki>क्वांटम चैनल<nowiki>''</nowiki>) के आधे भाग से टेलीपोर्ट किए गए कण की मूल अवस्था को फिर से बनाने के लिए किया जाता है, जो पहले दोनों कोर के मध्य साझा किया जाता है।


तथाकथित <nowiki>''</nowiki>रैखिक विकास, स्थानीय माप<nowiki>''</nowiki> तकनीकों का उपयोग करने वाले प्रयोग पूर्ण बेल अवस्था माप का अनुभव नहीं कर सकते हैं। रैखिक विकास का अर्थ है कि पता लगाने वाला उपकरण प्रत्येक कण पर अवस्था या दूसरे के विकास से स्वतंत्र कार्य करता है, और स्थानीय माप का अर्थ है कि प्रत्येक कण एक विशेष संसूचक पर स्थानीयकृत होता है जो यह इंगित करने के लिए एक <nowiki>''</nowiki>क्लिक<nowiki>''</nowiki> अभिलेखन करता है कि एक कण का पता लगाया गया है। ऐसे उपकरणों का निर्माण किया जा सकता है, उदाहरण के लिए: प्रतिबिंब, बीम स्प्लिटर और तरंग प्लेटें{{snd}}और प्रायोगिक दृष्टिकोण से आकर्षक हैं क्योंकि उनका उपयोग करना आसान है और उनमें उच्च माप[[क्रॉस सेक्शन (भौतिकी)|अनुप्रस्थ]] है।
तथाकथित <nowiki>''</nowiki>रैखिक विकास, स्थानीय माप<nowiki>''</nowiki> तकनीकों का उपयोग करने वाले प्रयोग पूर्ण बेल अवस्था माप का अनुभव नहीं कर सकते हैं। रैखिक विकास का अर्थ है कि पता लगाने वाला उपकरण प्रत्येक कण पर अवस्था या दूसरे के विकास से स्वतंत्र कार्य करता है, और स्थानीय माप का अर्थ है कि प्रत्येक कण एक विशेष संसूचक पर स्थानीयकृत होता है जो यह इंगित करने के लिए एक <nowiki>''</nowiki>क्लिक<nowiki>''</nowiki> अभिलेखन करता है कि एक कण का पता लगाया गया है। ऐसे उपकरणों का निर्माण किया जा सकता है, उदाहरण के लिए: प्रतिबिंब, बीम स्प्लिटर और तरंग प्लेटें{{snd}}और प्रायोगिक दृष्टिकोण से आकर्षक हैं क्योंकि उनका उपयोग करना आसान है और उनमें उच्च माप[[क्रॉस सेक्शन (भौतिकी)|अनुप्रस्थ]] है।
Line 50: Line 50:
एकल क्वबिट चर में जटिलता, चार बेल अवस्था में से केवल तीन अलग-अलग वर्गों को ऐसी रैखिक प्रकाशिक तकनीकों का उपयोग करके अलग किया जा सकता है। इसका अर्थ है कि दो बेल अवस्था को एक दूसरे से अलग नहीं किया जा सकता है, जिससे क्वांटम टेलीपोर्टेशन जैसे क्वांटम संचार प्रोटोकॉल की दक्षता सीमित हो जाती है। यदि बेल अवस्था को इस अस्पष्ट वर्ग से मापा जाता है, तो टेलीपोर्टेशन घटना विफल हो जाती है।
एकल क्वबिट चर में जटिलता, चार बेल अवस्था में से केवल तीन अलग-अलग वर्गों को ऐसी रैखिक प्रकाशिक तकनीकों का उपयोग करके अलग किया जा सकता है। इसका अर्थ है कि दो बेल अवस्था को एक दूसरे से अलग नहीं किया जा सकता है, जिससे क्वांटम टेलीपोर्टेशन जैसे क्वांटम संचार प्रोटोकॉल की दक्षता सीमित हो जाती है। यदि बेल अवस्था को इस अस्पष्ट वर्ग से मापा जाता है, तो टेलीपोर्टेशन घटना विफल हो जाती है।


कई क्वबिट चर में कणों को जटिल करना, जैसे (फोटोनिक प्रणाली के लिए) [[ध्रुवीकरण (तरंगें)|ध्रुवीकरण]] और [[अज़ीमुथल क्वांटम संख्या|कक्षीय कोणीय गति]] अवस्था का दो-अवयव उपसमुच्चय, प्रयोगकर्ता को एक चर का पता लगाने और दूसरे में पूर्ण बेल अवस्था माप प्राप्त करने की अनुमति देता है।<ref>Kwiat, Weinfurter. [https://archive.today/20120712230327/http://pra.aps.org/abstract/PRA/v58/i4/pR2623_1 "Embedded Bell State Analysis"]</ref> तथाकथित अत्यधिक-जटिल प्रणाली का लाभ उठाने से टेलीपोर्टेशन को लाभ होता है। इसमें अति सघन कोडिंग जैसे अन्य प्रोटोकॉल के लिए भी लाभ हैं, जिसमें अत्यधिक-जटिल से चैनल क्षमता बढ़ जाती है।
कई क्वबिट चर में कणों को जटिल करना, जैसे (फोटोनिक प्रणाली के लिए) [[ध्रुवीकरण (तरंगें)|ध्रुवीकरण]] और [[अज़ीमुथल क्वांटम संख्या|कक्षीय कोणीय गति]] अवस्था का दो-अवयव उपसमुच्चय, प्रयोगकर्ता को एक चर का पता लगाने और दूसरे में पूर्ण बेल अवस्था माप प्राप्त करने की अनुमति देता है।<ref>Kwiat, Weinfurter. [https://archive.today/20120712230327/http://pra.aps.org/abstract/PRA/v58/i4/pR2623_1 "Embedded Bell State Analysis"]</ref> तथाकथित अत्यधिक-जटिल प्रणाली का लाभ उठाने से टेलीपोर्टेशन को लाभ होता है। इसमें अति सघन कोडिंग जैसे अन्य प्रोटोकॉल के लिए भी लाभ हैं, जिसमें अत्यधिक-जटिलता से चैनल क्षमता बढ़ जाती है।


सामान्य रूप में, <math>n</math> चर में अत्यधिक-जटिल के लिए, कोई रैखिक प्रकाशिक तकनीकों का उपयोग करके <math>4^n</math> बेल अवस्था में से अधिकतम  <math>2^{n+1} - 1</math> वर्गों के मध्य अंतर कर सकता है।<ref>Pisenti, Gaebler, Lynn. [http://www.opticsinfobase.org/abstract.cfm?uri=ICQI-2011-QMI25 "Distinguishability of Hyper-Entangled Bell States by Linear Evolution and Local Measurement"]</ref>
सामान्य रूप में, <math>n</math> चर में अत्यधिक-जटिलता के लिए, कोई रैखिक प्रकाशिक तकनीकों का उपयोग करके <math>4^n</math> बेल अवस्था में से अधिकतम  <math>2^{n+1} - 1</math> वर्गों के मध्य अंतर कर सकता है।<ref>Pisenti, Gaebler, Lynn. [http://www.opticsinfobase.org/abstract.cfm?uri=ICQI-2011-QMI25 "Distinguishability of Hyper-Entangled Bell States by Linear Evolution and Local Measurement"]</ref>
==बेल अवस्था सहसंबंध==
==बेल अवस्था सहसंबंध==


बेल अवस्था में जटिल दो क्वबिट पर किए गए स्वतंत्र माप सकारात्मक रूप से पूरी तरह से सहसंबद्ध होते हैं यदि प्रत्येक क्वबिट को प्रासंगिक आधार पर मापा जाता है। <math>|\Phi^+\rangle</math> अवस्था के लिए, इसका अर्थ है दोनों क्वैबिट के लिए समान आधार का चयन करना है। यदि एक प्रयोगकर्ता ने एक ही आधार का उपयोग करके <math>|\Phi^-\rangle</math> बेल अवस्था में दोनों क्वबिट को मापने का विकल्प का चयन किया है, तो <math>\{|0\rangle,|1\rangle\}</math> आधार मापने पर क्वबिट सकारात्मक रूप से सहसंबद्ध दिखाई देंगे, <math>\{|+\rangle,|-\rangle\}</math> में सहसंबद्ध नहीं होंगे,{{Efn|<math>|\Phi^-\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)</math>
बेल अवस्था में जटिल दो क्वबिट पर किए गए स्वतंत्र माप सकारात्मक रूप से पूरी तरह से सहसंबद्ध होते हैं यदि प्रत्येक क्वबिट को प्रासंगिक आधार पर मापा जाता है। <math>|\Phi^+\rangle</math> अवस्था के लिए, इसका अर्थ दोनों क्वैबिट के लिए समान आधार का चयन करना है। यदि एक प्रयोगकर्ता ने एक ही आधार का उपयोग करके <math>|\Phi^-\rangle</math> बेल अवस्था में दोनों क्वबिट को मापने का विकल्प का चयन किया है, तो <math>\{|0\rangle,|1\rangle\}</math> आधार मापने पर क्वबिट सकारात्मक रूप से सहसंबद्ध दिखाई देगा, <math>\{|+\rangle,|-\rangle\}</math> में सहसंबद्ध नहीं होगा,{{Efn|<math>|\Phi^-\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)</math>


<math>= \frac{1}{2\sqrt{2}} ((|+\rangle_A + |-\rangle_A)(|+\rangle_B + |-\rangle_B) - (|+\rangle_A - |-\rangle_A)(|+\rangle_B - |-\rangle_B))</math>
<math>= \frac{1}{2\sqrt{2}} ((|+\rangle_A + |-\rangle_A)(|+\rangle_B + |-\rangle_B) - (|+\rangle_A - |-\rangle_A)(|+\rangle_B - |-\rangle_B))</math>
Line 64: Line 64:
<math>= \frac{1}{\sqrt{2}} (|+-\rangle + |-+\rangle)
<math>= \frac{1}{\sqrt{2}} (|+-\rangle + |-+\rangle)
</math>
</math>
}} और आंशिक रूप से (संभावित रूप से) अन्य आधारों में सहसंबद्ध होते है।
}} और आंशिक रूप से (संभावित रूप से) अन्य आधारों में सहसंबद्ध होता है।


<math>|\Psi^+\rangle</math> h> सहसंबंधों को दोनों क्वैबिट को एक ही आधार पर मापकर और पूरी तरह से विरोधी सहसंबद्ध परिणामों को देखकर समझा जा सकता है। अधिक सामान्यतः, <math>|\Psi^+\rangle</math> को पहले क्वबिट को आधार <math>b_1</math> में दूसरे क्वबिट को आधार <math>b_2 = X.b_1</math> में मापकर और पूरी तरह से सकारात्मक रूप से सहसंबद्ध परिणामों को देखकर समझा जा सकता है।
<math>|\Psi^+\rangle</math> h> सहसंबंधों को दोनों क्वैबिट को एक ही आधार पर मापकर और पूरी तरह से विरोधी सहसंबद्ध परिणामों को देखकर समझा जा सकता है। अधिक सामान्यतः, <math>|\Psi^+\rangle</math> को पहले क्वबिट आधार <math>b_1</math> में दूसरे क्वबिट आधार <math>b_2 = X.b_1</math> में मापकर और पूरी तरह से सकारात्मक रूप से सहसंबद्ध परिणामों को देखकर समझा जा सकता है।


[[File:Representation of the two-qubit Phi-minus entangled state.svg|thumb|<math>|\Phi^-\rangle</math> अवस्था में दो क्वैबिट के सहसंबद्ध आधारों के मध्य संबंध।]]
[[File:Representation of the two-qubit Phi-minus entangled state.svg|thumb|<math>|\Phi^-\rangle</math> अवस्था में दो क्वैबिट के सहसंबद्ध आधारों के मध्य संबंध।]]
Line 86: Line 86:


=== सुपरडेंस कोडिंग ===
=== सुपरडेंस कोडिंग ===
सुपरडेंस कोडिंग दो व्यक्तियों को केवल एक क्विबिट भेजकर शास्त्रीय जानकारी के दो बिट्स को संप्रेषित करने की अनुमति देती है। इस परिघटना का आधार दो क्विबिट प्रणाली की जटिल अवस्था या बेल अवस्था हैं। इस उदाहरण में, ऐलिस और बॉब एक-दूसरे से बहुत दूर हैं, और प्रत्येक को जटिल अवस्था का प्रत्येक वर्ग दिया गया है।
सुपरडेंस कोडिंग दो व्यक्तियों को केवल एक क्विबिट भेजकर शास्त्रीय जानकारी के दो बिट्स को संप्रेषित करने की अनुमति देता है। इस परिघटना का आधार दो क्विबिट प्रणाली की जटिल अवस्था या बेल अवस्था हैं। इस उदाहरण में, ऐलिस और बॉब एक-दूसरे से बहुत दूर हैं, और प्रत्येक को जटिल अवस्था का प्रत्येक वर्ग कहा गया है।


<math>|\psi \rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}</math>.
<math>|\psi \rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}</math>.


इस उदाहरण में, ऐलिस शास्त्रीय जानकारी के दो बिट्स को संप्रेषित करने का प्रयास कर रही है, चार दो बिट स्ट्रिंग्स में से एक: <math>'00', '01', '10',</math>या <math>'11'</math>है। यदि ऐलिस दो बिट सूचना <math>'01'</math> भेजने का विकल्प चुनती है, तो वह अपने क्वैबिट में प्रावस्था फ्लिप <math>Z</math> निष्पादित करता है। इसी प्रकार, अगर ऐलिस <math>'10'</math> भेजना चाहती है, तो वह नॉट गेट लगाएगी; अगर वह <math>'11'</math>भेजना चाहती थी, तो वह अपनी क्वैबिट में <math>iY</math> गेट लगाती थी; और अंत में, यदि ऐलिस दो बिट संदेश <math>'00'</math> भेजना चाहती है, तो वह अपनी क्वैबिट के लिए कुछ नहीं करेगी। ऐलिस इन [[क्वांटम गेट]] परिवर्तनों को स्थानीय रूप से निष्पादित करता है, प्रारंभिक जटिल अवस्था <math>|\psi\rangle</math> को चार बेल अवस्था में से एक में परिवर्तित करता है।
इस उदाहरण में, ऐलिस शास्त्रीय जानकारी के दो बिट्स को संप्रेषित करने का प्रयास कर रहा है, चार दो बिट स्ट्रिंग्स में से एक: <math>'00', '01', '10',</math>या <math>'11'</math>है। यदि ऐलिस दो बिट सूचना <math>'01'</math> भेजने का विकल्प चयन करता है, तो वह अपने क्वैबिट में प्रावस्था फ्लिप <math>Z</math> निष्पादित करता है। इसी प्रकार, अगर ऐलिस <math>'10'</math> भेजना चाहता है, तो वह नॉट गेट लगाएगा; अगर वह <math>'11'</math>भेजना चाहता है, तो वह अपनी क्वैबिट में <math>iY</math> गेट लगाएगा; और अंत में, यदि ऐलिस दो बिट संदेश <math>'00'</math> भेजना चाहता , तो वह अपनी क्वैबिट के लिए कुछ नहीं करता है। ऐलिस इन [[क्वांटम गेट]] परिवर्तनों को स्थानीय रूप से निष्पादित करता है, प्रारंभिक जटिल अवस्था <math>|\psi\rangle</math> को चार बेल अवस्था में से एक में परिवर्तित करता है।


नीचे दिए गए चरण आवश्यक क्वांटम गेट परिवर्तन दिखाते हैं, और परिणामस्वरूप बेल का कहना है कि ऐलिस को बॉब को भेजे जाने वाले प्रत्येक संभावित दो बिट संदेश के लिए अपनी क्वैबिट में आवेदन करना होगा।
नीचे दिए गए चरण आवश्यक क्वांटम गेट परिवर्तन दिखाते हैं, और परिणामस्वरूप बेल का कहना है कि ऐलिस को बॉब को भेजे जाने वाले प्रत्येक संभावित दो बिट संदेश के लिए अपनी क्वैबिट में आवेदन करता है।


<math>00:  I =  \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow |\psi \rangle = \frac{|00\rangle + |11\rangle}{\sqrt2}\equiv |{\Phi^+}\rangle</math>
<math>00:  I =  \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow |\psi \rangle = \frac{|00\rangle + |11\rangle}{\sqrt2}\equiv |{\Phi^+}\rangle</math>
Line 102: Line 102:
<math>11: -iY = XZ = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\longrightarrow |\psi \rangle = \frac{|01\rangle -  |10\rangle}{\sqrt2}\equiv |{\Psi^-}\rangle</math>.
<math>11: -iY = XZ = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\longrightarrow |\psi \rangle = \frac{|01\rangle -  |10\rangle}{\sqrt2}\equiv |{\Psi^-}\rangle</math>.


ऐलिस अपनी क्वैबिट में वांछित परिवर्तन उपयोजित करने के बाद, वह इसे बॉब को भेजती है। बॉब फिर बेल अवस्था पर एक माप करता है, जो जटिल अवस्था को चार दो-क्विबिट आधार सदिशों में से एक पर प्रक्षेप करता है, जिनमें से एक मूल दो बिट सूचना के अनुरूप होगा, जिसे ऐलिस भेजने का प्रयास कर रही थी।
ऐलिस अपनी क्वैबिट में वांछित परिवर्तन उपयोजित करने के बाद, वह इसे बॉब को भेजता है। बॉब फिर बेल अवस्था पर एक माप करता है, जो जटिल अवस्था को चार दो-क्विबिट आधार सदिशों में से एक पर प्रक्षेप करता है, जिनमें से एक मूल दो बिट सूचना के अनुरूप होता है, जिसे ऐलिस भेजने का प्रयास करता है।


=== क्वांटम टेलीपोर्टेशन ===
=== क्वांटम टेलीपोर्टेशन ===
{{Main|क्वांटम टेलीपोर्टेशन}}
{{Main|क्वांटम टेलीपोर्टेशन}}


क्वांटम टेलीपोर्टेशन एक दूरी पर क्वांटम अवस्था का स्थानांतरण है। यह इस क्वांटम अवस्था के प्रदाता A और प्राप्तकर्ता B के मध्य जटिलता से सुगम होता है। यह प्रक्रिया क्वांटम संचार और कंप्यूटिंग के लिए एक मौलिक अनुसंधान विषय बन गई है। हाल ही में, वैज्ञानिक प्रकाशिक तंतु के माध्यम से सूचना हस्तांतरण में इसके अनुप्रयोगों का परीक्षण कर रहे हैं।<ref>{{Cite journal|last=Huo|first=Meiru|date=19 October 2018|title=फाइबर चैनलों के माध्यम से नियतात्मक क्वांटम टेलीपोर्टेशन|journal=Science Advances|volume=4|issue=10|pages=eaas9401|doi=10.1126/sciadv.aas9401|pmid=30345350|pmc=6195333|bibcode=2018SciA....4.9401H|doi-access=free}}</ref> क्वांटम टेलीपोर्टेशन की प्रक्रिया को निम्नलिखित के रूप में परिभाषित किया गया है:
क्वांटम टेलीपोर्टेशन एक दूरी पर क्वांटम अवस्था का स्थानांतरण है। यह इस क्वांटम अवस्था के प्रदाता A और प्राप्तकर्ता B के मध्य जटिलता से सुगम होता है। यह प्रक्रिया क्वांटम संचार और कंप्यूटिंग के लिए एक मौलिक अनुसंधान विषय बनाता है। हाल ही में, वैज्ञानिक प्रकाशिक तंतु के माध्यम से सूचना हस्तांतरण में इसके अनुप्रयोगों का परीक्षण करता हैं।<ref>{{Cite journal|last=Huo|first=Meiru|date=19 October 2018|title=फाइबर चैनलों के माध्यम से नियतात्मक क्वांटम टेलीपोर्टेशन|journal=Science Advances|volume=4|issue=10|pages=eaas9401|doi=10.1126/sciadv.aas9401|pmid=30345350|pmc=6195333|bibcode=2018SciA....4.9401H|doi-access=free}}</ref> क्वांटम टेलीपोर्टेशन की प्रक्रिया को निम्नलिखित रूप में परिभाषित किया गया है:


ऐलिस और बॉब एक ​​ईपीआर जोड़ी साझा करते हैं और अलग होने से पहले प्रत्येक ने एक क्वैबिट लिया है। ऐलिस को बॉब को एक क्वबिट जानकारी देनी होगी, लेकिन वह इस क्वबिट की अवस्था नहीं जानती है और बॉब को केवल शास्त्रीय जानकारी ही भेज सकती है।
ऐलिस और बॉब एक ​​ईपीआर युग्म साझा करते हैं और अलग होने से पहले प्रत्येक ने एक क्वैबिट लेते है। ऐलिस को बॉब को एक क्वबिट जानकारी देनी होगी, लेकिन वह इस क्वबिट की अवस्था नहीं जानता है और बॉब को केवल शास्त्रीय जानकारी ही भेज सकता है।


इसे निम्न प्रकार से क्रमशः निष्पादित किया जाता है:
इसे निम्न प्रकार से क्रमशः निष्पादित किया जाता है:


# ऐलिस अपने क्वैबिट को सीएनओटी गेट के माध्यम से भेजती है।
# ऐलिस अपने क्वैबिट को सीएनओटी गेट के माध्यम से भेजता है।
# इसके बाद ऐलिस पहली क्वबिट को हैडामर्ड गेट के माध्यम से भेजती है।
# इसके बाद ऐलिस पहली क्वबिट को हैडामर्ड गेट के माध्यम से भेजता है।
# ऐलिस अपने क्वबिट को मापती है, चार परिणामों में से एक प्राप्त करती है, और यह जानकारी बॉब को भेजती है।
# ऐलिस अपने क्वबिट को मापता है, चार परिणामों में से एक प्राप्त करता है, और यह जानकारी बॉब को भेजता है।
# ऐलिस के माप को देखते हुए, बॉब ईपीआर जोड़ी के अपने आधे भाग पर चार संचालन में से एक करता है और मूल क्वांटम अवस्था को पुनः प्राप्त करता है।<ref name=":0" />
# ऐलिस के माप को देखते हुए, बॉब ईपीआर युग्म के अपने आधे भाग पर चार संचालन में से एक करता है और मूल क्वांटम अवस्था को पुनः प्राप्त करता है।<ref name=":0" />


निम्नलिखित क्वांटम सर्किट टेलीपोर्टेशन का वर्णन करता है:
निम्नलिखित क्वांटम सर्किट टेलीपोर्टेशन का वर्णन करता है:
Line 122: Line 122:


=== क्वांटम क्रिप्टोग्राफी ===
=== क्वांटम क्रिप्टोग्राफी ===
क्वांटम क्रिप्टोग्राफी जानकारी को सुरक्षित रूप से एनकोड करने और भेजने के लिए क्वांटम यांत्रिक गुणों का उपयोग है। इस प्रक्रिया के पीछे सिद्धांत यह तथ्य है कि प्रणाली को परेशान किए बिना किसी प्रणाली की क्वांटम अवस्था को मापना असंभव है। इसका उपयोग किसी प्रणाली के अंतर्गत छिपकर बातें सुनने के लिए किया जा सकता है।
क्वांटम क्रिप्टोग्राफी जानकारी को सुरक्षित रूप से एनकोड करने और भेजने के लिए क्वांटम यांत्रिक गुणों का उपयोग करता है। इस प्रक्रिया के पीछे सिद्धांत यह तथ्य है कि प्रणाली को परेशान किए बिना किसी प्रणाली की क्वांटम अवस्था को मापना असंभव है। इसका उपयोग किसी प्रणाली के अंतर्गत छिपकर बातें सुनने के लिए किया जा सकता है।


क्वांटम क्रिप्टोग्राफी का सबसे सामान्य रूप [[क्वांटम कुंजी वितरण]] है। यह दो पक्षों को एक साझा यादृच्छिक गुप्त कुंजी बनाने में सक्षम बनाता है जिसका उपयोग संदेशों को एन्क्रिप्ट करने के लिए किया जा सकता है। इसकी निजी कुंजी एक सार्वजनिक चैनल के माध्यम से दोनों पक्षों के मध्य बनाई जाती है।<ref name=":0" />
क्वांटम क्रिप्टोग्राफी का सबसे सामान्य रूप [[क्वांटम कुंजी वितरण]] है। यह दो पक्षों को एक साझा यादृच्छिक गुप्त कुंजी बनाने में सक्षम बनाता है जिसका उपयोग सूचना को एन्क्रिप्ट करने के लिए किया जा सकता है। इसकी निजी कुंजी एक सार्वजनिक चैनल के माध्यम से दोनों पक्षों के मध्य बनाई जाती है।<ref name=":0" />


क्वांटम क्रिप्टोग्राफी को दो बहु-आयामी प्रणालियों के मध्य जटिलता की अवस्था माना जा सकता है, जिसे टू-क्यूडिट (क्वांटम अंक) जटिलता के रूप में भी जाना जाता है।<ref name=":1" />
क्वांटम क्रिप्टोग्राफी को दो बहु-आयामी प्रणालियों के मध्य जटिलता की अवस्था माना जाता है, जिसे टू-क्यूडिट (क्वांटम अंक) जटिलता के रूप में भी जाना जाता है।<ref name=":1" />
==यह भी देखें==
==यह भी देखें==
*[[बेल परीक्षण प्रयोग]]
*[[बेल परीक्षण प्रयोग]]

Revision as of 12:44, 21 July 2023

बेल अवस्था या ईपीआर युग्म[1]: 25  दो क्वैबिट के विशिष्ट क्वांटम अवस्थाएँ हैं जो क्वांटम जटिलता के सबसे सरल (और अधिकतम) उदाहरणों का प्रतिनिधित्व करते हैं; वैचारिक रूप से, वे क्वांटम सूचना विज्ञान के अध्ययन के अंतर्गत आते हैं। बेल अवस्था जटिल और सामान्यीकृत आधार सदिश का एक रूप हैं। इस सामान्यीकरण का तात्पर्य यह है कि कण के उल्लिखित अवस्थाओं में से एक में होने की समग्र संभावना 1: हैं। जटिल अध्यारोपण का एक आधार-स्वतंत्र परिणाम है।[2] इस अध्यारोपण के कारण, क्वबिट का माप इसे एक दी गई संभावना के साथ इसके आधार अवस्था में से एक में "संकुचित" कर देता है।[1] जटिलता के कारण, एक क्वबिट का माप दूसरे क्वबिट को एक ऐसी अवस्था में "संकुचित" कर देता है, जिसके माप से दो संभावित मानों में से एक प्राप्त होता है, जहां मूल्य इस बात पर निर्भर करता है कि प्रारंभ में दोनों क्वबिट किस बेल की अवस्था में हैं। बेल की अवस्थाओं को बहु-क्वबिट प्रणाली के कुछ क्वांटम अवस्थाओं के लिए सामान्यीकृत किया जा सकता है, जैसे कि 3 या अधिक उपप्रणालियों के लिए GHZ अवस्था हैं।

बेल अवस्था की समझ क्वांटम संचार के विश्लेषण में उपयोगी है, जैसे सुपरडेंस कूटलेखन और क्वांटम टेलीपोर्टेशन है।[3] नो-कम्युनिकेशन प्रमेय इस व्यवहार को प्रकाश की गति से अधिक तेजी से सूचना प्रसारित करने से प्रतिबंध करता है।[1]

बेल अवस्था

बेल अवस्था दो क्वैबिट की चार विशिष्ट अधिकतम जटिल क्वांटम अवस्थाएँ हैं। 0 और 1 की अध्यारोपण में हैं – दो अवस्थाओं का एक रैखिक संयोजन हैं। उनके जटिलता का अर्थ निम्नलिखित है:

ऐलिस द्वारा आयोजित की गई क्वबिट (पादांक ''A'') 0 और 1 के अध्यारोपण में हो सकती है। यदि ऐलिस ने अपनी क्वैबिट को मानक आधार पर मापा, तो परिणाम या तो 0 या 1 होगा, प्रत्येक की संभावना 1/2 होगी; यदि बॉब (पादांक ''B'') ने भी अपनी क्वैबिट मापी, तो परिणाम ऐलिस के समान होती है। इस प्रकार, ऐलिस और बॉब प्रत्येक का यादृच्छिक परिणाम प्रतीत होते है। संचार के माध्यम से उन्हें पता चलेगा कि उनके परिणाम अलग-अलग यादृच्छिक लग रहे थे, ये पूर्णतः सहसंबद्ध थे।

दूरी पर यह पूर्ण सहसंबंध विशेष है: सम्भवतः दो कण पहले से ही "सहमत" थे, जब जोड़ी बनाई गई थी (क्वाबिट अलग होने से पहले), माप के प्रकरण में वे कौन सा परिणाम दिखाएंगे।

इसलिए, अल्बर्ट आइंस्टीन,पोडॉल्स्की और रोसेन के प्रसिद्ध 1935 के ''ईपीआर दस्तावेज़'' के बाद, ऊपर दिए गए क्वबिट जोड़ी के विवरण में कुछ कमी है – अर्थात् यह ''अनुबंध'', जिसे अधिक औपचारिक रूप से एक प्रच्छन्न चर कहा जाता है। 1964 के अपने प्रसिद्ध दस्तावेज़ में, जॉन एस. बेल ने सरल संभाव्यता सिद्धांत तर्कों द्वारा दिखाया कि ये सहसंबंध (0,1 आधार के लिए एक और +,- आधार के लिए) दोनों को कुछ प्रच्छन्न चरों में संग्रहीत किसी भी "पूर्व-अनुबंध" के उपयोग से परिपूर्ण नहीं बनाया जा सकता है - लेकिन क्वांटम यांत्रिकी सही सहसंबंधों की भविष्यवाणी कर सकती है। बेल-सीएचएसएच असमानता के रूप में ज्ञात एक अधिक परिष्कृत सूत्रीकरण में यह दिखाया गया है कि एक निश्चित सहसंबंध माप मान 2 से अधिक नहीं हो सकता है यदि कोई मानता है कि भौतिकी स्थानीय ''प्रच्छन्न-चर सिद्धांत'' के बाधाओं का सम्मान करती है (सूचना कैसे संप्रेषित की जाती है इसका एक प्रकार का सामान्य ज्ञान सूत्रीकरण), लेकिन क्वांटम यांत्रिकी में अनुमत कुछ प्रणालियाँ तक का मान प्राप्त कर सकती हैं। इस प्रकार, क्वांटम सिद्धांत बेल असमानता और स्थानीय ''प्रच्छन्न चर'' के विचार का अतिक्रमण करता है।

बेल आधार

के अधिकतम मान वाले चार विशिष्ट दो-क्विबिट अवस्था को ''बेल अवस्था'' के रूप में नामित किया गया है। उन्हें चार अधिकतम रूप से जटिल दो-क्विबिट बेल अवस्था के रूप में जाना जाता है और वे दो क्विबिट के लिए चार-आयामी हिल्बर्ट समष्टि का एक अधिकतम जटिल आधार बनाते हैं, जिसे बेल आधार के रूप में जाना जाता है: [1]

(1)
(2)
(3)
(4)

बेल अवस्था बनाना

बेल अवस्था बनाने के लिए क्वांटम सर्किट

यद्यपि क्वांटम सर्किट के माध्यम से जटिल बेल अवस्था बनाने के कई संभावित प्रकार हैं, सबसे सरल इनपुट के रूप में एक अभिकलनात्मक आधार है, और इसमें एक हैडमार्ड गेट और एक सीएनओटी गेट होता है (चित्र देखें)। उदहारण के लिए, चित्रित क्वांटम सर्किट दो क्वबिट इनपुट लेता है और इसे प्रथम बेल अवस्था में बदल देता है। स्पष्ट रूप से, हैडमार्ड गेट को के अध्यारोपण में बदल देता है। यह तब सीएनओटी गेट के लिए एक नियंत्रण इनपुट के रूप में कार्य करता है, जो केवल लक्ष्य (दूसरा क्वबिट) को प्रतिलोम करता है जब नियंत्रण (पहला क्वबिट) 1 होता है। इस प्रकार, सीएनओटी गेट दूसरी क्वैबिट को इस प्रकार परिवर्तित करता है.

चार मूल दो-क्विबिट इनपुट के लिए, , सर्किट चार बेल अवस्था (ऊपर सूचीबद्ध) को आउटपुट करता है। अधिक सामान्यतः, सर्किट समीकरण के अनुसार इनपुट को परिवर्तित करता है।

जहां का निषेधन है।[1]

बेल अवस्थाओं के गुण

बेल अवस्था में एकल क्वबिट के माप का परिणाम अनिश्चित होता है, लेकिन z-आधार में पहली क्वबिट को मापने पर, दूसरे क्वबिट को मापने के परिणाम को समान मूल्य ( बेल अवस्था के लिए) या विपरीत मूल्य ( बेल अवस्था के लिए) प्राप्त होने की गारंटी होती है। इसका तात्पर्य यह है कि माप परिणाम सहसंबद्ध हैं। जॉन बेल यह सिद्ध करने वाले पहले व्यक्ति थे कि बेल अवस्था में माप सहसंबंध शास्त्रीय प्रणालियों के मध्य पहले से कहीं अधिक मजबूत हैं। यह संकेत देता है कि क्वांटम यांत्रिकी शास्त्रीय यांत्रिकी से अतिरिक्त सूचना प्रसंस्करण की अनुमति देता है। इसके अलावा, बेल अवस्था एक ऑर्थोनॉर्मल आधार बनाते हैं और इसलिए उन्हें उचित माप के साथ परिभाषित किया जा सकता है। बेल अवस्था जटिल अवस्था हैं, व्यक्तिगत उप-प्रणालियों की जानकारी को रोकते हुए, संपूर्ण प्रणाली की जानकारी ज्ञात की जा सकती है। उदाहरण के लिए, बेल अवस्था एक शुद्ध अवस्था है, लेकिन पहली क्वैबिट का कम घनत्व संचालक एक मिश्रित अवस्था है। मिश्रित अवस्था का तात्पर्य यह है कि इस प्रथम क्वैबिट की पूर्ण जानकारी ज्ञात नहीं है।[1] उपप्रणालियों के संबंध में बेल अवस्था या तो सममित या प्रतिसममित हैं।[2] बेल अवस्था इस अर्थ में अधिकतम रूप से जटिल हैं कि इसके कम घनत्व वाले संचालक अधिकतम रूप से मिश्रित हैं, इस भावना में बेल अवस्थाओं के बहुपक्षीय सामान्यीकरण को पूर्णतः अधिकतम जटिल अवस्था कहा जाता है।

बेल अवस्था माप

बेल माप क्वांटम सूचना विज्ञान में एक महत्वपूर्ण अवधारणा है: यह दो क्वबिट का एक संयुक्त क्वांटम-यांत्रिक माप है जो यह निर्धारित करता है कि दो क्वबिट चार बेल अवस्थाओं में से किसमें हैं।

क्वांटम सर्किट जो बेल विकोडन करता है। बेल अवस्थाओं को कभी-कभी ईपीआर युग्म भी कहा जाता है। ध्यान दें कि जो सर्किट बेल अवस्था को डिकोड करता है, वह उस सर्किट का सहायक है जो बेल अवस्था को एन्कोड करता है, या बनाता है (ऊपर वर्णित है)।

बेल आधार पर क्वांटम माप का एक उपयोगी उदाहरण क्वांटम कंप्यूटिंग में देखा जा सकता है। यदि एक सीएनओटी गेट को क्वबिट A और B पर उपयोजित किया जाता है, उसके बाद क्वबिट A पर एक हैडमार्ड गेट लगाया जाता है, तो अभिकलनात्मक आधार पर माप किया जा सकता है। सीएनओटी गेट पहले से जटिल दो क्वैबिट को जटिल करने का कार्य करते है। यह जानकारी को क्वांटम जानकारी से शास्त्रीय जानकारी के माप में परिवर्तित करने की अनुमति देता है।

क्वांटम मापन दो प्रमुख सिद्धांतों का पालन करता है। पहला, आस्थगित माप का सिद्धांत बताता है कि किसी भी माप को सर्किट के अंत तक ले जाया जा सकता है। दूसरा सिद्धांत, अंतर्निहित माप का सिद्धांत, बताता है कि क्वांटम सर्किट के अंत में किसी भी असंबद्ध तार के लिए माप माना जा सकता है।[1]

बेल अवस्था माप के अनुप्रयोग निम्नलिखित हैं:

क्वांटम टेलीपोर्टेशन में बेल अवस्था माप महत्वपूर्ण पद है। बेल अवस्था माप के परिणाम का उपयोग किसी के सह-षड़यंत्रकारी द्वारा एक जटिल युग्म (''क्वांटम चैनल'') के आधे भाग से टेलीपोर्ट किए गए कण की मूल अवस्था को फिर से बनाने के लिए किया जाता है, जो पहले दोनों कोर के मध्य साझा किया जाता है।

तथाकथित ''रैखिक विकास, स्थानीय माप'' तकनीकों का उपयोग करने वाले प्रयोग पूर्ण बेल अवस्था माप का अनुभव नहीं कर सकते हैं। रैखिक विकास का अर्थ है कि पता लगाने वाला उपकरण प्रत्येक कण पर अवस्था या दूसरे के विकास से स्वतंत्र कार्य करता है, और स्थानीय माप का अर्थ है कि प्रत्येक कण एक विशेष संसूचक पर स्थानीयकृत होता है जो यह इंगित करने के लिए एक ''क्लिक'' अभिलेखन करता है कि एक कण का पता लगाया गया है। ऐसे उपकरणों का निर्माण किया जा सकता है, उदाहरण के लिए: प्रतिबिंब, बीम स्प्लिटर और तरंग प्लेटें – और प्रायोगिक दृष्टिकोण से आकर्षक हैं क्योंकि उनका उपयोग करना आसान है और उनमें उच्च मापअनुप्रस्थ है।

एकल क्वबिट चर में जटिलता, चार बेल अवस्था में से केवल तीन अलग-अलग वर्गों को ऐसी रैखिक प्रकाशिक तकनीकों का उपयोग करके अलग किया जा सकता है। इसका अर्थ है कि दो बेल अवस्था को एक दूसरे से अलग नहीं किया जा सकता है, जिससे क्वांटम टेलीपोर्टेशन जैसे क्वांटम संचार प्रोटोकॉल की दक्षता सीमित हो जाती है। यदि बेल अवस्था को इस अस्पष्ट वर्ग से मापा जाता है, तो टेलीपोर्टेशन घटना विफल हो जाती है।

कई क्वबिट चर में कणों को जटिल करना, जैसे (फोटोनिक प्रणाली के लिए) ध्रुवीकरण और कक्षीय कोणीय गति अवस्था का दो-अवयव उपसमुच्चय, प्रयोगकर्ता को एक चर का पता लगाने और दूसरे में पूर्ण बेल अवस्था माप प्राप्त करने की अनुमति देता है।[4] तथाकथित अत्यधिक-जटिल प्रणाली का लाभ उठाने से टेलीपोर्टेशन को लाभ होता है। इसमें अति सघन कोडिंग जैसे अन्य प्रोटोकॉल के लिए भी लाभ हैं, जिसमें अत्यधिक-जटिलता से चैनल क्षमता बढ़ जाती है।

सामान्य रूप में, चर में अत्यधिक-जटिलता के लिए, कोई रैखिक प्रकाशिक तकनीकों का उपयोग करके बेल अवस्था में से अधिकतम वर्गों के मध्य अंतर कर सकता है।[5]

बेल अवस्था सहसंबंध

बेल अवस्था में जटिल दो क्वबिट पर किए गए स्वतंत्र माप सकारात्मक रूप से पूरी तरह से सहसंबद्ध होते हैं यदि प्रत्येक क्वबिट को प्रासंगिक आधार पर मापा जाता है। अवस्था के लिए, इसका अर्थ दोनों क्वैबिट के लिए समान आधार का चयन करना है। यदि एक प्रयोगकर्ता ने एक ही आधार का उपयोग करके बेल अवस्था में दोनों क्वबिट को मापने का विकल्प का चयन किया है, तो आधार मापने पर क्वबिट सकारात्मक रूप से सहसंबद्ध दिखाई देगा, में सहसंबद्ध नहीं होगा,[lower-alpha 1] और आंशिक रूप से (संभावित रूप से) अन्य आधारों में सहसंबद्ध होता है।

h> सहसंबंधों को दोनों क्वैबिट को एक ही आधार पर मापकर और पूरी तरह से विरोधी सहसंबद्ध परिणामों को देखकर समझा जा सकता है। अधिक सामान्यतः, को पहले क्वबिट आधार में दूसरे क्वबिट आधार में मापकर और पूरी तरह से सकारात्मक रूप से सहसंबद्ध परिणामों को देखकर समझा जा सकता है।

अवस्था में दो क्वैबिट के सहसंबद्ध आधारों के मध्य संबंध।
बेल अवस्था आधार b2

अनुप्रयोग

सुपरडेंस कोडिंग

सुपरडेंस कोडिंग दो व्यक्तियों को केवल एक क्विबिट भेजकर शास्त्रीय जानकारी के दो बिट्स को संप्रेषित करने की अनुमति देता है। इस परिघटना का आधार दो क्विबिट प्रणाली की जटिल अवस्था या बेल अवस्था हैं। इस उदाहरण में, ऐलिस और बॉब एक-दूसरे से बहुत दूर हैं, और प्रत्येक को जटिल अवस्था का प्रत्येक वर्ग कहा गया है।

.

इस उदाहरण में, ऐलिस शास्त्रीय जानकारी के दो बिट्स को संप्रेषित करने का प्रयास कर रहा है, चार दो बिट स्ट्रिंग्स में से एक: या है। यदि ऐलिस दो बिट सूचना भेजने का विकल्प चयन करता है, तो वह अपने क्वैबिट में प्रावस्था फ्लिप निष्पादित करता है। इसी प्रकार, अगर ऐलिस भेजना चाहता है, तो वह नॉट गेट लगाएगा; अगर वह भेजना चाहता है, तो वह अपनी क्वैबिट में गेट लगाएगा; और अंत में, यदि ऐलिस दो बिट संदेश भेजना चाहता , तो वह अपनी क्वैबिट के लिए कुछ नहीं करता है। ऐलिस इन क्वांटम गेट परिवर्तनों को स्थानीय रूप से निष्पादित करता है, प्रारंभिक जटिल अवस्था को चार बेल अवस्था में से एक में परिवर्तित करता है।

नीचे दिए गए चरण आवश्यक क्वांटम गेट परिवर्तन दिखाते हैं, और परिणामस्वरूप बेल का कहना है कि ऐलिस को बॉब को भेजे जाने वाले प्रत्येक संभावित दो बिट संदेश के लिए अपनी क्वैबिट में आवेदन करता है।

.

ऐलिस अपनी क्वैबिट में वांछित परिवर्तन उपयोजित करने के बाद, वह इसे बॉब को भेजता है। बॉब फिर बेल अवस्था पर एक माप करता है, जो जटिल अवस्था को चार दो-क्विबिट आधार सदिशों में से एक पर प्रक्षेप करता है, जिनमें से एक मूल दो बिट सूचना के अनुरूप होता है, जिसे ऐलिस भेजने का प्रयास करता है।

क्वांटम टेलीपोर्टेशन

क्वांटम टेलीपोर्टेशन एक दूरी पर क्वांटम अवस्था का स्थानांतरण है। यह इस क्वांटम अवस्था के प्रदाता A और प्राप्तकर्ता B के मध्य जटिलता से सुगम होता है। यह प्रक्रिया क्वांटम संचार और कंप्यूटिंग के लिए एक मौलिक अनुसंधान विषय बनाता है। हाल ही में, वैज्ञानिक प्रकाशिक तंतु के माध्यम से सूचना हस्तांतरण में इसके अनुप्रयोगों का परीक्षण करता हैं।[6] क्वांटम टेलीपोर्टेशन की प्रक्रिया को निम्नलिखित रूप में परिभाषित किया गया है:

ऐलिस और बॉब एक ​​ईपीआर युग्म साझा करते हैं और अलग होने से पहले प्रत्येक ने एक क्वैबिट लेते है। ऐलिस को बॉब को एक क्वबिट जानकारी देनी होगी, लेकिन वह इस क्वबिट की अवस्था नहीं जानता है और बॉब को केवल शास्त्रीय जानकारी ही भेज सकता है।

इसे निम्न प्रकार से क्रमशः निष्पादित किया जाता है:

  1. ऐलिस अपने क्वैबिट को सीएनओटी गेट के माध्यम से भेजता है।
  2. इसके बाद ऐलिस पहली क्वबिट को हैडामर्ड गेट के माध्यम से भेजता है।
  3. ऐलिस अपने क्वबिट को मापता है, चार परिणामों में से एक प्राप्त करता है, और यह जानकारी बॉब को भेजता है।
  4. ऐलिस के माप को देखते हुए, बॉब ईपीआर युग्म के अपने आधे भाग पर चार संचालन में से एक करता है और मूल क्वांटम अवस्था को पुनः प्राप्त करता है।[1]

निम्नलिखित क्वांटम सर्किट टेलीपोर्टेशन का वर्णन करता है:

क्वबिट को टेलीपोर्ट करने के लिए क्वांटम सर्किट

क्वांटम क्रिप्टोग्राफी

क्वांटम क्रिप्टोग्राफी जानकारी को सुरक्षित रूप से एनकोड करने और भेजने के लिए क्वांटम यांत्रिक गुणों का उपयोग करता है। इस प्रक्रिया के पीछे सिद्धांत यह तथ्य है कि प्रणाली को परेशान किए बिना किसी प्रणाली की क्वांटम अवस्था को मापना असंभव है। इसका उपयोग किसी प्रणाली के अंतर्गत छिपकर बातें सुनने के लिए किया जा सकता है।

क्वांटम क्रिप्टोग्राफी का सबसे सामान्य रूप क्वांटम कुंजी वितरण है। यह दो पक्षों को एक साझा यादृच्छिक गुप्त कुंजी बनाने में सक्षम बनाता है जिसका उपयोग सूचना को एन्क्रिप्ट करने के लिए किया जा सकता है। इसकी निजी कुंजी एक सार्वजनिक चैनल के माध्यम से दोनों पक्षों के मध्य बनाई जाती है।[1]

क्वांटम क्रिप्टोग्राफी को दो बहु-आयामी प्रणालियों के मध्य जटिलता की अवस्था माना जाता है, जिसे टू-क्यूडिट (क्वांटम अंक) जटिलता के रूप में भी जाना जाता है।[2]

यह भी देखें

टिप्पणियाँ

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Nielsen, Michael (2010). क्वांटम संगणना और क्वांटम सूचना. Cambridge University Press. ISBN 9781139495486.
  2. 2.0 2.1 2.2 Sych, Denis (7 January 2009). "सामान्यीकृत बेल राज्यों का एक पूर्ण आधार". New Journal of Physics. 11 (1): 013006. Bibcode:2009NJPh...11a3006S. doi:10.1088/1367-2630/11/1/013006 – via IOP Science.
  3. Zaman, Fakhar; Jeong, Youngmin (2 October 2018). "प्रतितथ्यात्मक बेल-स्टेट विश्लेषण". Scientific Reports. 8 (1): 14641. Bibcode:2018NatSR...814641Z. doi:10.1038/s41598-018-32928-8. PMC 6168595. PMID 30279547.
  4. Kwiat, Weinfurter. "Embedded Bell State Analysis"
  5. Pisenti, Gaebler, Lynn. "Distinguishability of Hyper-Entangled Bell States by Linear Evolution and Local Measurement"
  6. Huo, Meiru (19 October 2018). "फाइबर चैनलों के माध्यम से नियतात्मक क्वांटम टेलीपोर्टेशन". Science Advances. 4 (10): eaas9401. Bibcode:2018SciA....4.9401H. doi:10.1126/sciadv.aas9401. PMC 6195333. PMID 30345350.