वैकल्पिक श्रृंखला: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Infinite series whose terms alternate in sign}} {{More citations needed|date=January 2010}} {{Calculus |Series}} गणित में, एक वैक...")
 
No edit summary
Line 1: Line 1:
{{Short description|Infinite series whose terms alternate in sign}}
{{Short description|Infinite series whose terms alternate in sign}}[[गणित]] में, एक वैकल्पिक श्रृंखला प्रपत्र की एक अनंत श्रृंखला है
{{More citations needed|date=January 2010}}
{{Calculus |Series}}
 
गणित में, एक वैकल्पिक श्रृंखला प्रपत्र की एक [[अनंत श्रृंखला]] है
<math display="block">\sum_{n=0}^\infty (-1)^n a_n</math> या <math display="block">\sum_{n=0}^\infty (-1)^{n+1} a_n</math>
<math display="block">\sum_{n=0}^\infty (-1)^n a_n</math> या <math display="block">\sum_{n=0}^\infty (-1)^{n+1} a_n</math>
साथ {{math|''a<sub>n</sub>'' > 0}} सभी के लिए{{mvar|n}}. सामान्य शब्दों के संकेत सकारात्मक और नकारात्मक के बीच वैकल्पिक होते हैं। किसी भी श्रृंखला की तरह, एक वैकल्पिक [[अभिसरण श्रृंखला]] अगर और केवल अगर आंशिक रकम का संबद्ध अनुक्रम एक [[अनुक्रम की सीमा]]।
साथ {{math|''a<sub>n</sub>'' > 0}} सभी के लिए{{mvar|n}}. सामान्य शब्दों के संकेत सकारात्मक और नकारात्मक के बीच वैकल्पिक होते हैं। किसी भी श्रृंखला की तरह, एक वैकल्पिक श्रृंखला अभिसरण करती है यदि और केवल तभी जब आंशिक योगों का संबद्ध अनुक्रम अभिसरण करता है।


== उदाहरण ==
== उदाहरण ==
ज्यामितीय श्रृंखला 1/2 1/4 + 1/8 1/16 + ⋯ का योग 1/3 है।
ज्यामितीय श्रृंखला 1/2 - 1/4 + 1/8 - 1/16 + ⋯ का योग 1/3 होता है।


[[हार्मोनिक श्रृंखला (गणित)]] # अल्टरनेटिंग हार्मोनिक श्रृंखला का एक परिमित योग है लेकिन हार्मोनिक श्रृंखला (गणित) नहीं है।
वैकल्पिक [[हार्मोनिक श्रृंखला (गणित)]] में एक सीमित योग होता है लेकिन हार्मोनिक श्रृंखला में नहीं होता है।


[[मर्केटर श्रृंखला]] [[प्राकृतिक]] लघुगणक की एक विश्लेषणात्मक अभिव्यक्ति प्रदान करती है:
मर्केटर श्रृंखला प्राकृतिक लघुगणक की एक विश्लेषणात्मक अभिव्यक्ति प्रदान करती है:
<math display="block"> \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n  \;=\; \ln (1+x).</math>
<math display="block"> \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} x^n  \;=\; \ln (1+x).</math>
[[त्रिकोणमिति]] में उपयोग किए गए कार्यों साइन और कोसाइन को कलन में वैकल्पिक श्रृंखला के रूप में परिभाषित किया जा सकता है, भले ही उन्हें प्राथमिक बीजगणित में एक समकोण त्रिभुज की भुजाओं के अनुपात के रूप में पेश किया गया हो। वास्तव में,
[[त्रिकोणमिति]] में उपयोग किए जाने वाले फ़ंक्शन साइन और कोसाइन को [[कैलकुलस का इतिहास|कैलकुलस]] में वैकल्पिक श्रृंखला के रूप में परिभाषित किया जा सकता है, भले ही उन्हें प्रारंभिक बीजगणित में एक समकोण त्रिभुज की भुजाओं के अनुपात के रूप में प्रस्तुत किया गया हो। वास्तव में,
<math display="block">\sin x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!},</math> और
<math display="block">\sin x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!},</math> और
<math display="block">\cos x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!} .</math>
<math display="block">\cos x = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!} .</math>
जब वैकल्पिक कारक {{math|(–1)<sup>''n''</sup>}} को इन श्रंखलाओं से हटा दिया जाता है तो हमें कैलकुलस में प्रयुक्त अतिशयोक्तिपूर्ण फलन sinh और cosh प्राप्त होते हैं।
जब वैकल्पिक कारक {{math|(–1)<sup>''n''</sup>}} को इन श्रंखलाओं से हटा दिया जाता है तो हमें कैलकुलस में प्रयुक्त अतिशयोक्तिपूर्ण फलन sinh और cosh प्राप्त होते हैं।


पूर्णांक या सकारात्मक सूचकांक α के लिए पहले प्रकार के [[बेसेल समारोह]] को वैकल्पिक श्रृंखला के साथ परिभाषित किया जा सकता है
पूर्णांक या धनात्मक सूचकांक α के लिए पहली तरह के बेसेल फ़ंक्शन को वैकल्पिक श्रृंखला के साथ परिभाषित किया जा सकता है
<math display="block"> J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m+\alpha+1)} {\left(\frac{x}{2}\right)}^{2m+\alpha} </math> कहाँ {{math|Γ(''z'')}} [[गामा समारोह]] है।
<math display="block"> J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m+\alpha+1)} {\left(\frac{x}{2}\right)}^{2m+\alpha} </math> कहाँ {{math|Γ(''z'')}} [[गामा समारोह]] है।


अगर {{mvar|s}} एक सम्मिश्र संख्या है, Dirichlet eta फलन एक प्रत्यावर्ती श्रेणी के रूप में बनता है
यदि s एक जटिल संख्या है, तो डिरिचलेट एटा (Dirichlet eta) फ़ंक्शन एक वैकल्पिक श्रृंखला के रूप में बनता है  
<math display="block">\eta(s) = \sum_{n=1}^{\infty}{(-1)^{n-1} \over n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots</math>
<math display="block">\eta(s) = \sum_{n=1}^{\infty}{(-1)^{n-1} \over n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots</math>
जिसका उपयोग [[विश्लेषणात्मक संख्या सिद्धांत]] में किया जाता है।
जिसका उपयोग [[विश्लेषणात्मक संख्या सिद्धांत]] में किया जाता है।


== वैकल्पिक श्रृंखला परीक्षण ==
== वैकल्पिक श्रृंखला परीक्षण ==
{{main|Alternating series test}}
{{main|वैकल्पिक श्रृंखला परीक्षण}}


लीबनिज परीक्षण या प्रत्यावर्ती श्रेणी परीक्षण के रूप में जाना जाने वाला प्रमेय हमें बताता है कि एक प्रत्यावर्ती श्रृंखला अभिसरित होगी यदि पद {{math|''a<sub>n</sub>''}} 0 [[मोनोटोनिक फ़ंक्शन]] में अभिसरण करें।
"लीबनिज परीक्षण" या प्रत्यावर्ती श्रेणी परीक्षण के रूप में जाना जाने वाला प्रमेय हमें बताता है कि एक प्रत्यावर्ती श्रृंखला अभिसरित होगी यदि पद {{math|''a<sub>n</sub>''}} 0 [[मोनोटोनिक फ़ंक्शन]] में अभिसरण करें।


प्रमाण: अनुक्रम मान लीजिए <math>a_n</math> शून्य में परिवर्तित हो जाता है और मोनोटोन घट रहा है। अगर <math>m</math> विषम है और <math>m<n</math>, हम अनुमान प्राप्त करते हैं <math>S_n - S_m \le a_{m}</math> निम्नलिखित गणना के माध्यम से:
प्रमाण: मान लीजिए कि अनुक्रम <math>a_n</math> शून्य पर परिवर्तित हो जाता है और मोनोटोन घट रहा है। यदि <math>m</math> विषम है और <math>m<n</math>, हम अनुमान प्राप्त करते हैं <math>S_n - S_m \le a_{m}</math> निम्नलिखित गणना के माध्यम से:
<math display="block">\begin{align}
<math display="block">\begin{align}
S_n - S_m & =
S_n - S_m & =
Line 38: Line 34:
& = a_{m+1}-(a_{m+2}-a_{m+3}) - (a_{m+4}-a_{m+5}) - \cdots - a_n \le a_{m+1} \le a_{m}.
& = a_{m+1}-(a_{m+2}-a_{m+3}) - (a_{m+4}-a_{m+5}) - \cdots - a_n \le a_{m+1} \le a_{m}.
\end{align}</math>
\end{align}</math>
तब से <math>a_n</math> नीरस रूप से घट रहा है, शर्तें <math>-(a_m - a_{m+1})</math> नकारात्मक हैं। इस प्रकार, हमारे पास अंतिम असमानता है: <math>S_n - S_m \le a_m</math>. इसी तरह, यह दिखाया जा सकता है <math>-a_m \le S_n - S_m </math>. तब से <math>a_m</math> में विलीन हो जाता है <math>0</math>, हमारी आंशिक रकम <math>S_m</math> एक कॉशी अनुक्रम बनाता है (यानी, श्रृंखला [[कॉची कसौटी]] को संतुष्ट करती है) और इसलिए अभिसरण करती है। के लिए तर्क <math>m</math> समान है।
तब से <math>a_n</math> नीरस रूप से घट रहा है, शर्तें <math>-(a_m - a_{m+1})</math> नकारात्मक हैं। इस प्रकार, हमारे पास अंतिम असमानता है: <math>S_n - S_m \le a_m</math>. इसी तरह, यह दिखाया जा सकता है <math>-a_m \le S_n - S_m </math>. तब से <math>a_m</math> में विलीन हो जाता है <math>0</math>, हमारी आंशिक योग <math>S_m</math> एक कॉशी अनुक्रम बनाता है (यानी, श्रृंखला कौशी मानदंड को संतुष्ट करती है) और इसलिए अभिसरण करती है। के लिए तर्क <math>m</math> समान है।


== अनुमानित रकम ==
== अनुमानित योग ==
उपरोक्त अनुमान पर निर्भर नहीं करता है <math>n</math>. तो यदि <math>a_n</math> 0 नीरस रूप से आ रहा है, अनुमान आंशिक रकम से अनंत रकम का अनुमान लगाने के लिए एक त्रुटि सीमा प्रदान करता है:
उपरोक्त अनुमान पर निर्भर नहीं करता है <math>n</math>. तो यदि <math>a_n</math> 0 नीरस रूप से आ रहा है, अनुमान आंशिक योग से अनंत योग का अनुमान लगाने के लिए एक त्रुटि सीमा प्रदान करता है:
<math display="block">\left|\sum_{k=0}^\infty(-1)^k\,a_k\,-\,\sum_{k=0}^m\,(-1)^k\,a_k\right|\le |a_{m+1}|.</math>इसका मतलब यह नहीं है कि यह अनुमान हमेशा पहला तत्व पाता है जिसके बाद श्रृंखला में अगले पद के मापांक से कम त्रुटि होती है। वास्तव में यदि आप लेते हैं <math>1-1/2+1/3-1/4+... = \ln 2</math> और उस शब्द को खोजने का प्रयास करें जिसके बाद त्रुटि अधिकतम 0.00005 है, उपरोक्त असमानता से पता चलता है कि आंशिक योग के माध्यम से <math>a_{20000}</math> पर्याप्त है, लेकिन वास्तव में यह जरूरत से दोगुना शब्द है। दरअसल, पहले 9999 तत्वों को जोड़ने के बाद की त्रुटि 0.0000500025 है, और इसलिए आंशिक योग के माध्यम से लेना <math>a_{10000}</math> काफी है। इस श्रृंखला में ऐसा गुण होता है जो एक नई श्रृंखला का निर्माण करता है <math>a_n -a_{n+1}</math> एक वैकल्पिक श्रृंखला भी देता है जहां लीबनिज़ परीक्षण लागू होता है और इस प्रकार यह सरल त्रुटि सीमा इष्टतम नहीं होती है। यह Calabrese बाउंड द्वारा सुधारा गया था,<ref>{{Cite journal |last=Calabrese |first=Philip |date=March 1962 |title=वैकल्पिक श्रृंखला पर एक नोट|url=https://www.jstor.org/stable/2311056 |journal=The American Mathematical Monthly |volume=69 |issue=3 |pages=215–217 |doi=10.2307/2311056|jstor=2311056 }}</ref> 1962 में खोजा गया, जो कहता है कि यह संपत्ति लीबनिज़ त्रुटि सीमा की तुलना में 2 गुना कम परिणाम देती है। वास्तव में यह श्रृंखला के लिए भी इष्टतम नहीं है जहां यह संपत्ति 2 या अधिक बार लागू होती है, जिसे [[रिचर्ड जॉनसनबॉघ]] त्रुटि बाध्य द्वारा वर्णित किया गया है।<ref>{{Cite journal |last=Johnsonbaugh |first=Richard |date=October 1979 |title=एक वैकल्पिक श्रृंखला का सारांश|url=https://www.jstor.org/stable/2321292 |journal=The American Mathematical Monthly |volume=86 |issue=8 |pages=637–648 |doi=10.2307/2321292|jstor=2321292 }}</ref> यदि कोई संपत्ति को अनंत बार लागू कर सकता है, तो श्रृंखला त्वरण#यूलर का रूपांतरण|यूलर का रूपांतरण लागू होता है।<ref>{{cite arXiv |last=Villarino |first=Mark B. |date=2015-11-27 |title=एक वैकल्पिक श्रृंखला में त्रुटि|class=math.CA |eprint=1511.08568 }}</ref>
<math display="block">\left|\sum_{k=0}^\infty(-1)^k\,a_k\,-\,\sum_{k=0}^m\,(-1)^k\,a_k\right|\le |a_{m+1}|.</math>इसका मतलब यह नहीं है कि यह अनुमान हमेशा सबसे पहले तत्व को खोजता है जिसके बाद त्रुटि श्रृंखला में अगले पद के मापांक से कम होती है। वास्तव में यदि आप लेते हैं <math>1-1/2+1/3-1/4+... = \ln 2</math> और उस पद को खोजने का प्रयास करें जिसके बाद त्रुटि अधिकतम 0.00005 है, उपरोक्त असमानता से पता चलता है कि आंशिक योग के माध्यम से <math>a_{20000}</math> पर्याप्त है, लेकिन वास्तव में यह जरूरत से दोगुना शब्द है। वास्तव में, पहले 9999 तत्वों के योग के बाद त्रुटि 0.0000500025 है, और इसलिए आंशिक योग को लेते हुए <math>a_{10000}</math> काफी है। इस श्रृंखला में ऐसा गुण होता है जो एक नई श्रृंखला का निर्माण करता है <math>a_n -a_{n+1}</math> एक वैकल्पिक श्रृंखला भी देता है जहां लीबनिज़ परीक्षण लागू होता है और इस प्रकार यह सरल त्रुटि सीमा इष्टतम नहीं होती है। यह केलाब्रेसी बाउंड द्वारा सुधारा गया था,<ref>{{Cite journal |last=Calabrese |first=Philip |date=March 1962 |title=वैकल्पिक श्रृंखला पर एक नोट|url=https://www.jstor.org/stable/2311056 |journal=The American Mathematical Monthly |volume=69 |issue=3 |pages=215–217 |doi=10.2307/2311056|jstor=2311056 }}</ref> 1962 में खोजा गया, जो कहता है कि यह संपत्ति लीबनिज़ त्रुटि सीमा की तुलना में 2 गुना कम परिणाम देती है। वास्तव में यह श्रृंखला के लिए भी इष्टतम नहीं है जहां यह संपत्ति 2 या अधिक बार लागू होती है, जिसे रिचर्ड जॉनसनबॉघ त्रुटि बाध्य द्वारा वर्णित किया गया है।<ref>{{Cite journal |last=Johnsonbaugh |first=Richard |date=October 1979 |title=एक वैकल्पिक श्रृंखला का सारांश|url=https://www.jstor.org/stable/2321292 |journal=The American Mathematical Monthly |volume=86 |issue=8 |pages=637–648 |doi=10.2307/2321292|jstor=2321292 }}</ref> यदि कोई संपत्ति को अनंत बार लागू कर सकता है, तो श्रृंखला त्वरण#यूलर का रूपांतरण|यूलर का रूपांतरण लागू होता है।<ref>{{cite arXiv |last=Villarino |first=Mark B. |date=2015-11-27 |title=एक वैकल्पिक श्रृंखला में त्रुटि|class=math.CA |eprint=1511.08568 }}</ref>





Revision as of 16:25, 8 July 2023

गणित में, एक वैकल्पिक श्रृंखला प्रपत्र की एक अनंत श्रृंखला है

या
साथ an > 0 सभी के लिएn. सामान्य शब्दों के संकेत सकारात्मक और नकारात्मक के बीच वैकल्पिक होते हैं। किसी भी श्रृंखला की तरह, एक वैकल्पिक श्रृंखला अभिसरण करती है यदि और केवल तभी जब आंशिक योगों का संबद्ध अनुक्रम अभिसरण करता है।

उदाहरण

ज्यामितीय श्रृंखला 1/2 - 1/4 + 1/8 - 1/16 + ⋯ का योग 1/3 होता है।

वैकल्पिक हार्मोनिक श्रृंखला (गणित) में एक सीमित योग होता है लेकिन हार्मोनिक श्रृंखला में नहीं होता है।

मर्केटर श्रृंखला प्राकृतिक लघुगणक की एक विश्लेषणात्मक अभिव्यक्ति प्रदान करती है:

त्रिकोणमिति में उपयोग किए जाने वाले फ़ंक्शन साइन और कोसाइन को कैलकुलस में वैकल्पिक श्रृंखला के रूप में परिभाषित किया जा सकता है, भले ही उन्हें प्रारंभिक बीजगणित में एक समकोण त्रिभुज की भुजाओं के अनुपात के रूप में प्रस्तुत किया गया हो। वास्तव में,
और
जब वैकल्पिक कारक (–1)n को इन श्रंखलाओं से हटा दिया जाता है तो हमें कैलकुलस में प्रयुक्त अतिशयोक्तिपूर्ण फलन sinh और cosh प्राप्त होते हैं।

पूर्णांक या धनात्मक सूचकांक α के लिए पहली तरह के बेसेल फ़ंक्शन को वैकल्पिक श्रृंखला के साथ परिभाषित किया जा सकता है

कहाँ Γ(z) गामा समारोह है।

यदि s एक जटिल संख्या है, तो डिरिचलेट एटा (Dirichlet eta) फ़ंक्शन एक वैकल्पिक श्रृंखला के रूप में बनता है

जिसका उपयोग विश्लेषणात्मक संख्या सिद्धांत में किया जाता है।

वैकल्पिक श्रृंखला परीक्षण

"लीबनिज परीक्षण" या प्रत्यावर्ती श्रेणी परीक्षण के रूप में जाना जाने वाला प्रमेय हमें बताता है कि एक प्रत्यावर्ती श्रृंखला अभिसरित होगी यदि पद an 0 मोनोटोनिक फ़ंक्शन में अभिसरण करें।

प्रमाण: मान लीजिए कि अनुक्रम शून्य पर परिवर्तित हो जाता है और मोनोटोन घट रहा है। यदि विषम है और , हम अनुमान प्राप्त करते हैं निम्नलिखित गणना के माध्यम से:

तब से नीरस रूप से घट रहा है, शर्तें नकारात्मक हैं। इस प्रकार, हमारे पास अंतिम असमानता है: . इसी तरह, यह दिखाया जा सकता है . तब से में विलीन हो जाता है , हमारी आंशिक योग एक कॉशी अनुक्रम बनाता है (यानी, श्रृंखला कौशी मानदंड को संतुष्ट करती है) और इसलिए अभिसरण करती है। के लिए तर्क समान है।

अनुमानित योग

उपरोक्त अनुमान पर निर्भर नहीं करता है . तो यदि 0 नीरस रूप से आ रहा है, अनुमान आंशिक योग से अनंत योग का अनुमान लगाने के लिए एक त्रुटि सीमा प्रदान करता है:

इसका मतलब यह नहीं है कि यह अनुमान हमेशा सबसे पहले तत्व को खोजता है जिसके बाद त्रुटि श्रृंखला में अगले पद के मापांक से कम होती है। वास्तव में यदि आप लेते हैं और उस पद को खोजने का प्रयास करें जिसके बाद त्रुटि अधिकतम 0.00005 है, उपरोक्त असमानता से पता चलता है कि आंशिक योग के माध्यम से पर्याप्त है, लेकिन वास्तव में यह जरूरत से दोगुना शब्द है। वास्तव में, पहले 9999 तत्वों के योग के बाद त्रुटि 0.0000500025 है, और इसलिए आंशिक योग को लेते हुए काफी है। इस श्रृंखला में ऐसा गुण होता है जो एक नई श्रृंखला का निर्माण करता है एक वैकल्पिक श्रृंखला भी देता है जहां लीबनिज़ परीक्षण लागू होता है और इस प्रकार यह सरल त्रुटि सीमा इष्टतम नहीं होती है। यह केलाब्रेसी बाउंड द्वारा सुधारा गया था,[1] 1962 में खोजा गया, जो कहता है कि यह संपत्ति लीबनिज़ त्रुटि सीमा की तुलना में 2 गुना कम परिणाम देती है। वास्तव में यह श्रृंखला के लिए भी इष्टतम नहीं है जहां यह संपत्ति 2 या अधिक बार लागू होती है, जिसे रिचर्ड जॉनसनबॉघ त्रुटि बाध्य द्वारा वर्णित किया गया है।[2] यदि कोई संपत्ति को अनंत बार लागू कर सकता है, तो श्रृंखला त्वरण#यूलर का रूपांतरण|यूलर का रूपांतरण लागू होता है।[3]


पूर्ण अभिसरण

एक श्रृंखला पूर्ण अभिसरण यदि श्रृंखला अभिसरण।

प्रमेय: बिल्कुल अभिसरण श्रृंखला अभिसरण हैं।

सबूत: मान लीजिए पूर्णतः अभिसारी है। तब, अभिसरण है और यह उसका अनुसरण करता है भी मिलती है। तब से , श्रृंखला प्रत्यक्ष तुलना परीक्षण द्वारा अभिसरण करता है। इसलिए, श्रृंखला दो अभिसरण श्रृंखला के अंतर के रूप में अभिसरण करता है .

सशर्त अभिसरण

एक श्रृंखला सशर्त अभिसरण है यदि यह अभिसरण करती है लेकिन पूरी तरह से अभिसरण नहीं करती है।

उदाहरण के लिए, हार्मोनिक श्रृंखला (गणित)

विचलन, जबकि वैकल्पिक संस्करण
अल्टरनेटिंग सीरीज़ # अल्टरनेटिंग सीरीज़ टेस्ट द्वारा अभिसरण करता है।

पुनर्व्यवस्था

किसी भी श्रृंखला के लिए, हम योग के क्रम को पुनर्व्यवस्थित करके एक नई श्रृंखला बना सकते हैं। एक श्रृंखला श्रृंखला (गणित) है # बिना शर्त अभिसरण श्रृंखला यदि कोई पुनर्व्यवस्था मूल श्रृंखला के समान अभिसरण के साथ एक श्रृंखला बनाती है। पूर्ण अभिसरण # पुनर्व्यवस्था और बिना शर्त अभिसरण। लेकिन रीमैन श्रृंखला प्रमेय में कहा गया है कि मनमाना अभिसरण बनाने के लिए सशर्त रूप से अभिसरण श्रृंखला को पुनर्व्यवस्थित किया जा सकता है।[4] सामान्य सिद्धांत यह है कि अनंत राशियों का जोड़ पूर्ण रूप से अभिसरण श्रृंखला के लिए केवल क्रमविनिमेय है।

उदाहरण के लिए, एक झूठा प्रमाण कि 1=0 अनंत राशियों के लिए साहचर्य की विफलता का फायदा उठाता है।

एक अन्य उदाहरण के रूप में, मर्केटर श्रृंखला द्वारा

लेकिन, चूंकि श्रृंखला पूरी तरह से अभिसरण नहीं करती है, इसलिए हम श्रृंखला प्राप्त करने के लिए शर्तों को पुनर्व्यवस्थित कर सकते हैं :


श्रृंखला त्वरण

व्यवहार में, एक वैकल्पिक श्रृंखला के संख्यात्मक योग को विभिन्न प्रकार की श्रृंखला त्वरण तकनीकों में से किसी एक का उपयोग करके तेज किया जा सकता है। सबसे पुरानी तकनीकों में से एक यूलर योग है, और ऐसी कई आधुनिक तकनीकें हैं जो और भी तेजी से अभिसरण प्रदान कर सकती हैं।

यह भी देखें

  • ग्रैंडी की श्रृंखला
  • नोरलुंड-इंटीग्रल चावल

टिप्पणियाँ

  1. Calabrese, Philip (March 1962). "वैकल्पिक श्रृंखला पर एक नोट". The American Mathematical Monthly. 69 (3): 215–217. doi:10.2307/2311056. JSTOR 2311056.
  2. Johnsonbaugh, Richard (October 1979). "एक वैकल्पिक श्रृंखला का सारांश". The American Mathematical Monthly. 86 (8): 637–648. doi:10.2307/2321292. JSTOR 2321292.
  3. Villarino, Mark B. (2015-11-27). "एक वैकल्पिक श्रृंखला में त्रुटि". arXiv:1511.08568 [math.CA].
  4. Mallik, AK (2007). "सरल अनुक्रमों के जिज्ञासु परिणाम". Resonance. 12 (1): 23–37. doi:10.1007/s12045-007-0004-7. S2CID 122327461.


संदर्भ