संकेतक फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 46: Line 46:
\end{align}</math>
\end{align}</math>


 
और के [[पूरक (सेट सिद्धांत)|पूरक (समूह सिद्धांत)]] के सूचक फलन <math>A</math> अर्थात। <math>A^C</math> है।
'''और के''' [[पूरक (सेट सिद्धांत)|पूरक (समूह सिद्धांत)]] के सूचक फलन <math>A</math> अर्थात। <math>A^C</math> है:
<math display="block">\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A.</math>
<math display="block">\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A.</math>
अधिक सामान्यतः, मान लीजिए <math>A_1, \dotsc, A_n</math> के उपसमुच्चयों का संग्रह है {{mvar|X}}. किसी के लिए <math>x \in X:</math>
अधिक सामान्यतः मान लीजिए <math>A_1, \dotsc, A_n</math> के उपसमुच्चयों का संग्रह {{mvar|X}} है। किसी के लिए <math>x \in X:</math>


<math display="block"> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x))</math>
<math display="block"> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x))</math>स्पष्ट रूप से 0s और 1s का उत्पाद है। ठीक उन्हीं पर इस उत्पाद का मान 1 है। <math>x \in X</math> जो किसी भी समूह से संबंधित नहीं है <math>A_k</math> और 0 अन्यथा है। वह है,
का उत्पाद है {{math|0}}रेत {{math|1}}एस। ठीक उन्हीं पर इस उत्पाद का मान 1 है <math>x \in X</math> जो किसी भी समूह से संबंधित नहीं है <math>A_k</math> और 0 अन्यथा है। वह है


<math display="block"> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}) = \mathbf{1}_{X - \bigcup_{k} A_k} = 1 - \mathbf{1}_{\bigcup_{k} A_k}.</math>
<math display="block"> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}) = \mathbf{1}_{X - \bigcup_{k} A_k} = 1 - \mathbf{1}_{\bigcup_{k} A_k}.</math>
उत्पाद को बाईं ओर विस्तारित करना,


<math display=block> \mathbf{1}_{\bigcup_{k} A_k}= 1 - \sum_{F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|} \mathbf{1}_{\bigcap_F A_k} = \sum_{\emptyset \neq F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|+1} \mathbf{1}_{\bigcap_F A_k} </math>
कहाँ <math>|F|</math> की [[प्रमुखता]] है {{mvar|F}}. यह समावेश-बहिष्करण के सिद्धांत का रूप है।


जैसा कि पिछले उदाहरण द्वारा सुझाया गया है, इंडिकेटर फलन [[ साहचर्य |साहचर्य]] में उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है, उदाहरण के लिए प्रायिकता सिद्धांत में: यदि {{mvar|X}} संभाव्यता माप के साथ प्रायिकता स्थान है <math>\operatorname{P}</math> और {{mvar|A}} माप (गणित) है, फिर <math>\mathbf{1}_A</math> यादृच्छिक चर बन जाता है जिसका अपेक्षित मान की प्रायिकता के बराबर होता है {{mvar|A}}:
उत्पाद को बाईं ओर विस्तारित किया जाता है।
 
<math display="block"> \mathbf{1}_{\bigcup_{k} A_k}= 1 - \sum_{F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|} \mathbf{1}_{\bigcap_F A_k} = \sum_{\emptyset \neq F \subseteq \{1, 2, \dotsc, n\}} (-1)^{|F|+1} \mathbf{1}_{\bigcap_F A_k} </math>
जहाँ <math>|F|</math>{{mvar|F}} की [[प्रमुखता]] है। यह समावेश-बहिष्करण के सिद्धांत का रूप है।
 
जैसा कि पूर्व उदाहरण द्वारा सुझाया गया है। इंडिकेटर फलन [[ साहचर्य |साहचर्य]] में उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है। उदाहरण के लिए प्रायिकता सिद्धांत में: यदि {{mvar|X}} संभाव्यता माप के साथ प्रायिकता स्थान है। चूँकि <math>\operatorname{P}</math> और {{mvar|A}} औसत दर्जे का समूह है। फिर <math>\mathbf{1}_A</math> यादृच्छिक चर बन जाता है जिसका अपेक्षित मान {{mvar|A}} की प्रायिकता के समान्तर होता है।


<math display=block>\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\operatorname{P} = \int_{A} d\operatorname{P} = \operatorname{P}(A).</math>
<math display="block">\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\operatorname{P} = \int_{A} d\operatorname{P} = \operatorname{P}(A).</math>
मार्कोव की असमानता के सरल प्रमाण में इस पहचान का उपयोग किया जाता है।
मार्कोव की असमानता के सरल प्रमाण में इस पहचान का उपयोग किया जाता है।


कई स्थितियों में, जैसे [[आदेश सिद्धांत]], संकेतक फलन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक [[संख्या सिद्धांत]], मोबियस फलन में संकेतक फलन के व्युत्क्रम के सामान्यीकरण के रूप में इसे सामान्यतः सामान्यीकृत मोबियस फलन कहा जाता है। (मौलिक पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)
अनेक स्थितियों में जैसे [[आदेश सिद्धांत]], संकेतक फलन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक [[संख्या सिद्धांत]], मोबियस फलन में संकेतक फलन के व्युत्क्रम के सामान्यीकरण के रूप में इसे सामान्यतः सामान्यीकृत मोबियस फलन कहा जाता है। (मौलिक पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)


== माध्य, विचरण और सहप्रसरण ==
== माध्य, विचरण और सहप्रसरण ==
Line 71: Line 71:
;[[अर्थ]]: <math>\operatorname{E}(\mathbf{1}_A (\omega)) = \operatorname{P}(A) </math> (जिसे फंडामेंटल ब्रिज भी कहा जाता है)।
;[[अर्थ]]: <math>\operatorname{E}(\mathbf{1}_A (\omega)) = \operatorname{P}(A) </math> (जिसे फंडामेंटल ब्रिज भी कहा जाता है)।


विचरण: <math>\operatorname{Var}(\mathbf{1}_A (\omega)) = \operatorname{P}(A)(1 - \operatorname{P}(A)) </math>
==== [[विचरण]] ====
[[सहप्रसरण]]: <math> \operatorname{Cov}(\mathbf{1}_A (\omega), \mathbf{1}_B (\omega)) = \operatorname{P}(A \cap B) - \operatorname{P}(A)\operatorname{P}(B) </math>
<math>\operatorname{Var}(\mathbf{1}_A (\omega)) = \operatorname{P}(A)(1 - \operatorname{P}(A)) </math>
 


==== [[सहप्रसरण]] ====
<math> \operatorname{Cov}(\mathbf{1}_A (\omega), \mathbf{1}_B (\omega)) = \operatorname{P}(A \cap B) - \operatorname{P}(A)\operatorname{P}(B) </math>
== पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व फलन ==
== पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व फलन ==
कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व फलन का वर्णन किया (¬ तार्किक उलटा इंगित करता है, अर्थात नहीं):<ref name=Martin-1965>{{cite book |pages=41–74 |editor-link=Martin Davis (mathematician) |editor-first=Martin |editor-last=Davis |year=1965 |title=अनिर्णीत|publisher=Raven Press Books |place=New York, NY}}</ref>{{rp|page=42}}
कर्ट गोडेल ने अपने सन्न 1934 के पेपर में "औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर" प्रतिनिधित्व फलन का वर्णन किया था। ("¬" तार्किक उलटा इंगित करता है, अर्थात "नहीं")<ref name=Martin-1965>{{cite book |pages=41–74 |editor-link=Martin Davis (mathematician) |editor-first=Martin |editor-last=Davis |year=1965 |title=अनिर्णीत|publisher=Raven Press Books |place=New York, NY}}</ref>{{rp|page=42}}


{{blockquote|1=There shall correspond to each class or relation {{mvar|R}} a representing function <math>\phi(x_1, \ldots x_n) = 0</math> if <math>R(x_1,\ldots x_n)</math> and <math>\phi(x_1,\ldots x_n) = 1</math> if <math>\neg R(x_1,\ldots x_n).</math>}}
{{blockquote|1=प्रत्येक वर्ग या संबंध {{mvar|R}} के अनुरूप प्रतिनिधित्व फलन होता है। <math>\phi(x_1, \ldots x_n) = 0</math> यदि <math>R(x_1,\ldots x_n)</math> और <math>\phi(x_1,\ldots x_n) = 1</math> यदि <math>\neg R(x_1,\ldots x_n).</math>}}


[[स्टीफन क्लेन]] फलन के रूप में [[आदिम पुनरावर्ती कार्य]]ों के संदर्भ में ही परिभाषा प्रस्तुत करता है {{mvar|φ}} विधेय का {{mvar|P}} मान लेता है {{math|0}} यदि विधेय सत्य है और {{math|1}} यदि विधेय असत्य है।<ref name=Kleene1952>{{cite book |last=Kleene |first=Stephen |author-link=Stephen Kleene |year=1971 |orig-year=1952 |title=मेटामैथमैटिक्स का परिचय|page=227 |publisher=Wolters-Noordhoff Publishing and North Holland Publishing Company |location=Netherlands |edition=Sixth reprint, with corrections}}</ref>
[[स्टीफन क्लेन]] '''फलन के रूप''' में [[आदिम पुनरावर्ती कार्य]]ों के संदर्भ में ही परिभाषा प्रस्तुत करता है {{mvar|φ}} विधेय का {{mvar|P}} मान लेता है {{math|0}} यदि विधेय सत्य है और {{math|1}} यदि विधेय असत्य है।<ref name=Kleene1952>{{cite book |last=Kleene |first=Stephen |author-link=Stephen Kleene |year=1971 |orig-year=1952 |title=मेटामैथमैटिक्स का परिचय|page=227 |publisher=Wolters-Noordhoff Publishing and North Holland Publishing Company |location=Netherlands |edition=Sixth reprint, with corrections}}</ref>
उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई कार्य बराबर होता है {{math|0}}, यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है {{math|0}} जब फलन {{mvar|R}} सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,<ref name=Kleene1952 />{{rp|228}} परिबद्ध-<ref name=Kleene1952 />{{rp|228}} और असीमित-<ref name=Kleene1952 />{{rp|279 ff}} mu ऑपरेटर्स और CASE फलन।<ref name=Kleene1952 />{{rp|229}}
उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई कार्य बराबर होता है {{math|0}}, यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है {{math|0}} जब फलन {{mvar|R}} सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,<ref name=Kleene1952 />{{rp|228}} परिबद्ध-<ref name=Kleene1952 />{{rp|228}} और असीमित-<ref name=Kleene1952 />{{rp|279 ff}} mu ऑपरेटर्स और CASE फलन।<ref name=Kleene1952 />{{rp|229}}



Revision as of 17:35, 28 March 2023

वर्ग द्वि-आयामी डोमेन (समूह X): उठा हुआ हिस्सा उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं (A).

गणित में, संकेतक फलन या समुच्चय (गणित) के उप-समुच्चय का विशिष्ट कार्य फलन (गणित) है। जो उप-समुच्चय के तत्वों को और अन्य सभी तत्वों को शून्य पर मानचित्र करता है। अर्थात यदि A किसी समुच्चय X का उपसमुच्चय है। किसी के समीप यदि और अन्यथा जहाँ सूचक फलन के लिए सामान्य संकेतन है। अन्य के लिए और सामान्य संकेतन होते हैं।

A का सूचक कार्य A से संबंधित संपत्ति का आइवरसन ब्रैकेट है। वह है,

उदाहरण के लिए, डिरिचलेट फलन वास्तविक संख्याओं के उपसमुच्चय के रूप में परिमेय संख्याओं का सूचक फलन है।

परिभाषा

किसी समुच्चय X के उपसमुच्चय A का सूचक फलन है।

के रूप में परिभाषित

आइवरसन ब्रैकेट समकक्ष अंकन प्रदान करता है, या xA, के अतिरिक्त इस्तेमाल किया जाना है।

कार्यक्रम को कभी-कभी IA, χA, KA या यहां तक ​​कि केवल A से निरूपित किया जाता है।[lower-alpha 1]

संकेतन और शब्दावली

अंकन उत्तल विश्लेषण में विशेषता फलन (उत्तल विश्लेषण) को निरूपित करने के लिए भी उपयोग किया जाता है। जिसे संकेतक फलन की मानक परिभाषा के व्युत्क्रम का उपयोग करते हुए परिभाषित किया गया है।

सांख्यिकी में संबंधित अवधारणा डमी चर (सांख्यिकी) की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द सामान्यतः गणित में प्रयोग किया जाता है। जिसे मुक्त चर और बाध्य चर भी कहा जाता है।)

विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में असंबंधित अर्थ है। इस कारण से संभाव्यतावादियों की सूची यहां लगभग विशेष रूप से परिभाषित फलन के लिए संकेतक फलन शब्द का उपयोग करती है। जबकि अन्य क्षेत्रों के गणितज्ञों द्वारा समूह में सदस्यता को इंगित करने वाले फलन का वर्णन करने के लिए विशेषता फलन शब्द का उपयोग करने की अधिक संभावना है।[lower-alpha 2]

फजी लॉजिक और बहु-मूल्यवान तर्कशास्त्र में, विधेय संभाव्यता वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) हैं। अर्थात् विधेय के सख्त सच्चे / गलत मूल्यांकन को सत्य की डिग्री के रूप में व्याख्या की गई मात्रा से परिवर्तित कर दिया जाता है।

मूल गुण

कुछ समूह X के उप-समुच्चय A का संकेतक या विशिष्ट कार्य (गणित) X के तत्वों को श्रेणी में मानचित्र करता है।

यह मानचित्रण केवल तभी आच्छादित होता है। जब A, X का गैर-खाली उचित उपसमुच्चय होता है। यदि तब इसी प्रकार के तर्क से यदि तब

निम्नलिखित में डॉट गुणन का प्रतिनिधित्व करता है। आदि "+"और "-" जोड़ और घटाव का प्रतिनिधित्व करते हैं। और क्रमशः चौराहे और संघ हैं।

यदि और के दो उपसमुच्चय हैं। तब

और के पूरक (समूह सिद्धांत) के सूचक फलन अर्थात। है।

अधिक सामान्यतः मान लीजिए के उपसमुच्चयों का संग्रह X है। किसी के लिए

स्पष्ट रूप से 0s और 1s का उत्पाद है। ठीक उन्हीं पर इस उत्पाद का मान 1 है। जो किसी भी समूह से संबंधित नहीं है और 0 अन्यथा है। वह है,


उत्पाद को बाईं ओर विस्तारित किया जाता है।

जहाँ F की प्रमुखता है। यह समावेश-बहिष्करण के सिद्धांत का रूप है।

जैसा कि पूर्व उदाहरण द्वारा सुझाया गया है। इंडिकेटर फलन साहचर्य में उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है। उदाहरण के लिए प्रायिकता सिद्धांत में: यदि X संभाव्यता माप के साथ प्रायिकता स्थान है। चूँकि और A औसत दर्जे का समूह है। फिर यादृच्छिक चर बन जाता है जिसका अपेक्षित मान A की प्रायिकता के समान्तर होता है।

मार्कोव की असमानता के सरल प्रमाण में इस पहचान का उपयोग किया जाता है।

अनेक स्थितियों में जैसे आदेश सिद्धांत, संकेतक फलन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक संख्या सिद्धांत, मोबियस फलन में संकेतक फलन के व्युत्क्रम के सामान्यीकरण के रूप में इसे सामान्यतः सामान्यीकृत मोबियस फलन कहा जाता है। (मौलिक पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)

माध्य, विचरण और सहप्रसरण

संभाव्यता स्थान दिया गया साथ सूचक यादृच्छिक चर द्वारा परिभाषित किया गया है यदि अन्यथा

अर्थ
(जिसे फंडामेंटल ब्रिज भी कहा जाता है)।

विचरण

सहप्रसरण

पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व फलन

कर्ट गोडेल ने अपने सन्न 1934 के पेपर में "औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर" प्रतिनिधित्व फलन का वर्णन किया था। ("¬" तार्किक उलटा इंगित करता है, अर्थात "नहीं")[1]: 42 

प्रत्येक वर्ग या संबंध R के अनुरूप प्रतिनिधित्व फलन होता है। यदि और यदि

स्टीफन क्लेन फलन के रूप में आदिम पुनरावर्ती कार्यों के संदर्भ में ही परिभाषा प्रस्तुत करता है φ विधेय का P मान लेता है 0 यदि विधेय सत्य है और 1 यदि विधेय असत्य है।[2] उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद जब भी कोई कार्य बराबर होता है 0, यह तार्किक OR: IF की भूमिका निभाता है या या या फिर उनका उत्पाद है 0. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है 0 जब फलन R सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,[2]: 228  परिबद्ध-[2]: 228  और असीमित-[2]: 279 ff  mu ऑपरेटर्स और CASE फलन।[2]: 229 

== फ़ज़ी समूह थ्योरी == में विशेषता कार्य मौलिक गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं 1 (सदस्य) या 0 (गैर-सदस्य)। फ़ज़ी समूह सिद्धांत में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है [0, 1], या अधिक सामान्यतः, कुछ सार्वभौमिक बीजगणित या संरचना (गणितीय तर्क) में (सामान्यतः कम से कम आंशिक रूप से आदेशित समूह या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को सामान्यतः सदस्यता फलन (गणित) कहा जाता है, और संबंधित समूहों को फ़ज़ी समूह कहा जाता है। फ़ज़ी समूह कई वास्तविक दुनिया के विधेय (गणित) जैसे लंबे, गर्म, आदि में देखे गए सत्य की सदस्यता की डिग्री में क्रमिक परिवर्तन का मॉडल बनाते हैं।

सूचक फलन के डेरिवेटिव्स

विशेष संकेतक फलन हैवीसाइड स्टेप फंक्शन है

हीविसाइड स्टेप फंक्शन का वितरण व्युत्पन्न डिराक डेल्टा फलन के बराबर है, अर्थात
और इसी तरह का वितरण व्युत्पन्न
है
इस प्रकार हेविसाइड स्टेप फलन के व्युत्पन्न को सकारात्मक अर्ध-रेखा द्वारा दिए गए डोमेन की सीमा पर आवक सामान्य व्युत्पन्न के रूप में देखा जा सकता है। उच्च आयामों में, व्युत्पन्न स्वाभाविक रूप से आवक सामान्य व्युत्पन्न के लिए सामान्यीकृत होता है, जबकि हीविसाइड स्टेप फलन स्वाभाविक रूप से कुछ डोमेन के संकेतक फलन के लिए सामान्य होता है D. की सतह D द्वारा दर्शाया जाएगा S. आगे बढ़ते हुए, यह व्युत्पन्न किया जा सकता है कि संकेतक का लाप्लासियन #Dirac सतह डेल्टा फलन 'सतह डेल्टा फलन' को जन्म देता है, जिसे इसके द्वारा इंगित किया जा सकता है :
कहाँ n सतह का बाहरी सामान्य (ज्यामिति) है S. इस 'सरफेस डेल्टा फंक्शन' में निम्नलिखित गुण हैं:[3]
फंक्शन समूह करके f के बराबर, यह इस प्रकार है कि सूचक का लाप्लासियन #Dirac सतह डेल्टा फलन सतह क्षेत्र के संख्यात्मक मान को एकीकृत करता है S.

यह भी देखें

टिप्पणियाँ

  1. The set of all indicator functions on X can be identified with the power set of X. Consequently, both sets are sometimes denoted by This is a special case () of the notation for the set of all functions
  2. Cite error: Invalid <ref> tag; no text was provided for refs named χαρακτήρ


संदर्भ

  1. Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books. pp. 41–74.
  2. 2.0 2.1 2.2 2.3 2.4 Kleene, Stephen (1971) [1952]. मेटामैथमैटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company. p. 227.
  3. Lange, Rutger-Jan (2012). "संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन". Journal of High Energy Physics. 2012 (11): 29–30. arXiv:1302.0864. Bibcode:2012JHEP...11..032L. doi:10.1007/JHEP11(2012)032. S2CID 56188533.


स्रोत

श्रेणी:माप सिद्धांत श्रेणी:इंटीग्रल कैलकुलस श्रेणी:वास्तविक विश्लेषण श्रेणी:गणितीय तर्क श्रेणी:समूह थ्योरी में बुनियादी अवधारणाएँ श्रेणी:संभाव्यता सिद्धांत श्रेणी: कार्यों के प्रकार