संकेतक फलन: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
{{About|the 0-1 indicator function|the 0-infinity indicator function|characteristic function (convex analysis)}} | {{About|the 0-1 indicator function|the 0-infinity indicator function|characteristic function (convex analysis)}} | ||
[[Image:Indicator function illustration.png|right|thumb|वर्ग द्वि-आयामी डोमेन ( | [[Image:Indicator function illustration.png|right|thumb|वर्ग द्वि-आयामी डोमेन (समूह {{mvar|X}}): उठा हुआ हिस्सा उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं ({{mvar|A}}).]]गणित में, '''संकेतक फलन''' या [[सेट (गणित)|समुच्चय (गणित)]] के [[सबसेट|उप-समुच्चय]] का विशिष्ट कार्य फलन (गणित) है। जो उप-समुच्चय के तत्वों को और अन्य सभी तत्वों को शून्य पर मानचित्र करता है। अर्थात यदि {{mvar|A}} किसी समुच्चय {{mvar|X}} का उपसमुच्चय है। किसी के समीप <math>\mathbf{1}_{A}(x)=1</math> यदि <math>x\in A,</math> और <math>\mathbf{1}_{A}(x)=0</math> अन्यथा जहाँ <math>\mathbf{1}_A</math> सूचक फलन के लिए सामान्य संकेतन है। अन्य के लिए <math>I_A,</math> और <math>\chi_A.</math> सामान्य संकेतन होते हैं। | ||
{{mvar|A}} का सूचक कार्य {{mvar|A}} से संबंधित संपत्ति का [[आइवरसन ब्रैकेट]] है। वह है, | {{mvar|A}} का सूचक कार्य {{mvar|A}} से संबंधित संपत्ति का [[आइवरसन ब्रैकेट]] है। वह है, | ||
:<math>\mathbf{1}_{A}(x)=[x\in A].</math> | :<math>\mathbf{1}_{A}(x)=[x\in A].</math> | ||
| Line 28: | Line 28: | ||
सांख्यिकी में संबंधित अवधारणा [[डमी चर (सांख्यिकी)]] की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द सामान्यतः गणित में प्रयोग किया जाता है। जिसे [[मुक्त चर और बाध्य चर]] भी कहा जाता है।) | सांख्यिकी में संबंधित अवधारणा [[डमी चर (सांख्यिकी)]] की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द सामान्यतः गणित में प्रयोग किया जाता है। जिसे [[मुक्त चर और बाध्य चर]] भी कहा जाता है।) | ||
विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में असंबंधित अर्थ है। इस कारण से | विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में असंबंधित अर्थ है। इस कारण से संभाव्यतावादियों की सूची यहां लगभग विशेष रूप से परिभाषित फलन के लिए संकेतक फलन शब्द का उपयोग करती है। जबकि अन्य क्षेत्रों के गणितज्ञों द्वारा समूह में सदस्यता को इंगित करने वाले फलन का वर्णन करने के लिए विशेषता फलन <math>A</math> शब्द का उपयोग करने की अधिक संभावना है।{{efn|name=χαρακτήρ}} | ||
[[फजी लॉजिक]] और [[बहु-मूल्यवान तर्क | [[फजी लॉजिक]] और [[बहु-मूल्यवान तर्क|बहु-मूल्यवान तर्कशास्त्र]] में, विधेय संभाव्यता वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) हैं। अर्थात् विधेय के सख्त सच्चे / गलत मूल्यांकन को सत्य की डिग्री के रूप में व्याख्या की गई मात्रा से परिवर्तित कर दिया जाता है। | ||
== मूल गुण == | == मूल गुण == | ||
कुछ समूह {{mvar|X}} के उप-समुच्चय {{mvar|A}} का संकेतक या विशिष्ट कार्य (गणित) {{mvar|X}} के तत्वों को श्रेणी <math>\{0,1\}</math> में मानचित्र करता है। | |||
यह मानचित्रण केवल तभी आच्छादित होता | यह मानचित्रण केवल तभी आच्छादित होता है। जब {{mvar|A}}, {{mvar|X}} का गैर-खाली उचित उपसमुच्चय होता है। यदि <math>A \equiv X,</math> तब <math>\mathbf{1}_A=1.</math> इसी प्रकार के तर्क से यदि <math>A\equiv\emptyset</math> तब <math>\mathbf{1}_A=0.</math> | ||
यदि <math>A</math> और <math>B</math> के दो उपसमुच्चय | निम्नलिखित में डॉट गुणन का प्रतिनिधित्व करता है। <math>1\cdot1 = 1,</math> <math>1\cdot0 = 0,</math> आदि "+"और "-" जोड़ और घटाव का प्रतिनिधित्व करते हैं। <math>\cap </math> और <math>\cup </math> क्रमशः चौराहे और संघ हैं। | ||
<math display=block>\begin{align} | |||
यदि <math>A</math> और <math>B</math> के दो उपसमुच्चय हैं। <math>X,</math> तब | |||
<math display="block">\begin{align} | |||
\mathbf{1}_{A\cap B} = \min\{\mathbf{1}_A,\mathbf{1}_B\} = \mathbf{1}_A \cdot\mathbf{1}_B, \\ | \mathbf{1}_{A\cap B} = \min\{\mathbf{1}_A,\mathbf{1}_B\} = \mathbf{1}_A \cdot\mathbf{1}_B, \\ | ||
\mathbf{1}_{A\cup B} = \max\{{\mathbf{1}_A,\mathbf{1}_B}\} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \cdot\mathbf{1}_B, | \mathbf{1}_{A\cup B} = \max\{{\mathbf{1}_A,\mathbf{1}_B}\} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \cdot\mathbf{1}_B, | ||
\end{align}</math> | \end{align}</math> | ||
और के [[पूरक (सेट सिद्धांत)]] के सूचक फलन <math>A</math> अर्थात। <math>A^C</math> है: | |||
<math display=block>\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A.</math> | |||
'''और के''' [[पूरक (सेट सिद्धांत)|पूरक (समूह सिद्धांत)]] के सूचक फलन <math>A</math> अर्थात। <math>A^C</math> है: | |||
<math display="block">\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A.</math> | |||
अधिक सामान्यतः, मान लीजिए <math>A_1, \dotsc, A_n</math> के उपसमुच्चयों का संग्रह है {{mvar|X}}. किसी के लिए <math>x \in X:</math> | अधिक सामान्यतः, मान लीजिए <math>A_1, \dotsc, A_n</math> के उपसमुच्चयों का संग्रह है {{mvar|X}}. किसी के लिए <math>x \in X:</math> | ||
<math display=block> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x))</math> | <math display="block"> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x))</math> | ||
का उत्पाद है {{math|0}}रेत {{math|1}}एस। ठीक उन्हीं पर इस उत्पाद का मान 1 है <math>x \in X</math> जो किसी भी | का उत्पाद है {{math|0}}रेत {{math|1}}एस। ठीक उन्हीं पर इस उत्पाद का मान 1 है <math>x \in X</math> जो किसी भी समूह से संबंधित नहीं है <math>A_k</math> और 0 अन्यथा है। वह है | ||
<math display=block> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}) = \mathbf{1}_{X - \bigcup_{k} A_k} = 1 - \mathbf{1}_{\bigcup_{k} A_k}.</math> | <math display="block"> \prod_{k \in I} ( 1 - \mathbf{1}_{A_k}) = \mathbf{1}_{X - \bigcup_{k} A_k} = 1 - \mathbf{1}_{\bigcup_{k} A_k}.</math> | ||
उत्पाद को बाईं ओर विस्तारित करना, | उत्पाद को बाईं ओर विस्तारित करना, | ||
| Line 79: | Line 83: | ||
उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई कार्य बराबर होता है {{math|0}}, यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है {{math|0}} जब फलन {{mvar|R}} सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,<ref name=Kleene1952 />{{rp|228}} परिबद्ध-<ref name=Kleene1952 />{{rp|228}} और असीमित-<ref name=Kleene1952 />{{rp|279 ff}} mu ऑपरेटर्स और CASE फलन।<ref name=Kleene1952 />{{rp|229}} | उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई कार्य बराबर होता है {{math|0}}, यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है {{math|0}} जब फलन {{mvar|R}} सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,<ref name=Kleene1952 />{{rp|228}} परिबद्ध-<ref name=Kleene1952 />{{rp|228}} और असीमित-<ref name=Kleene1952 />{{rp|279 ff}} mu ऑपरेटर्स और CASE फलन।<ref name=Kleene1952 />{{rp|229}} | ||
== फ़ज़ी | == फ़ज़ी समूह थ्योरी == में विशेषता कार्य | ||
मौलिक गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं {{math|1}} (सदस्य) या {{math|0}} (गैर-सदस्य)। [[फ़ज़ी सेट सिद्धांत]] में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है {{closed-closed|0, 1}}, या अधिक सामान्यतः, कुछ [[सार्वभौमिक बीजगणित]] या [[संरचना (गणितीय तर्क)]] में (सामान्यतः कम से कम [[आंशिक रूप से आदेशित सेट]] या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को सामान्यतः [[सदस्यता समारोह (गणित)|सदस्यता फलन (गणित)]] कहा जाता है, और संबंधित | मौलिक गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं {{math|1}} (सदस्य) या {{math|0}} (गैर-सदस्य)। [[फ़ज़ी सेट सिद्धांत|फ़ज़ी समूह सिद्धांत]] में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है {{closed-closed|0, 1}}, या अधिक सामान्यतः, कुछ [[सार्वभौमिक बीजगणित]] या [[संरचना (गणितीय तर्क)]] में (सामान्यतः कम से कम [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समूह]] या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को सामान्यतः [[सदस्यता समारोह (गणित)|सदस्यता फलन (गणित)]] कहा जाता है, और संबंधित समूहों को फ़ज़ी समूह कहा जाता है। फ़ज़ी समूह कई वास्तविक दुनिया के [[विधेय (गणित)]] जैसे लंबे, गर्म, आदि में देखे गए सत्य की सदस्यता की डिग्री में क्रमिक परिवर्तन का मॉडल बनाते हैं। | ||
== सूचक फलन के डेरिवेटिव्स == | == सूचक फलन के डेरिवेटिव्स == | ||
| Line 94: | Line 98: | ||
कहाँ {{mvar|n}} सतह का बाहरी [[सामान्य (ज्यामिति)]] है {{mvar|S}}. इस 'सरफेस डेल्टा फंक्शन' में निम्नलिखित गुण हैं:<ref>{{cite journal |last=Lange |first=Rutger-Jan |year=2012 |title=संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन|journal=Journal of High Energy Physics |volume=2012 |issue=11 |pages=29–30 |arxiv=1302.0864 |bibcode=2012JHEP...11..032L |doi=10.1007/JHEP11(2012)032|s2cid=56188533 }}</ref> | कहाँ {{mvar|n}} सतह का बाहरी [[सामान्य (ज्यामिति)]] है {{mvar|S}}. इस 'सरफेस डेल्टा फंक्शन' में निम्नलिखित गुण हैं:<ref>{{cite journal |last=Lange |first=Rutger-Jan |year=2012 |title=संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन|journal=Journal of High Energy Physics |volume=2012 |issue=11 |pages=29–30 |arxiv=1302.0864 |bibcode=2012JHEP...11..032L |doi=10.1007/JHEP11(2012)032|s2cid=56188533 }}</ref> | ||
<math display=block>-\int_{\R^n}f(\mathbf{x})\,\mathbf{n}_x\cdot\nabla_x\mathbf{1}_{\mathbf{x}\in D}\;d^{n}\mathbf{x} = \oint_{S}\,f(\mathbf{\beta})\;d^{n-1}\mathbf{\beta}.</math> | <math display=block>-\int_{\R^n}f(\mathbf{x})\,\mathbf{n}_x\cdot\nabla_x\mathbf{1}_{\mathbf{x}\in D}\;d^{n}\mathbf{x} = \oint_{S}\,f(\mathbf{\beta})\;d^{n-1}\mathbf{\beta}.</math> | ||
फंक्शन | फंक्शन समूह करके {{mvar|f}} के बराबर, यह इस प्रकार है कि सूचक का लाप्लासियन #Dirac सतह डेल्टा फलन सतह क्षेत्र के संख्यात्मक मान को एकीकृत करता है {{mvar|S}}. | ||
== यह भी देखें == | == यह भी देखें == | ||
| Line 138: | Line 142: | ||
श्रेणी:वास्तविक विश्लेषण | श्रेणी:वास्तविक विश्लेषण | ||
श्रेणी:गणितीय तर्क | श्रेणी:गणितीय तर्क | ||
श्रेणी: | श्रेणी:समूह थ्योरी में बुनियादी अवधारणाएँ | ||
श्रेणी:संभाव्यता सिद्धांत | श्रेणी:संभाव्यता सिद्धांत | ||
श्रेणी: कार्यों के प्रकार | श्रेणी: कार्यों के प्रकार | ||
Revision as of 13:53, 28 March 2023
गणित में, संकेतक फलन या समुच्चय (गणित) के उप-समुच्चय का विशिष्ट कार्य फलन (गणित) है। जो उप-समुच्चय के तत्वों को और अन्य सभी तत्वों को शून्य पर मानचित्र करता है। अर्थात यदि A किसी समुच्चय X का उपसमुच्चय है। किसी के समीप यदि और अन्यथा जहाँ सूचक फलन के लिए सामान्य संकेतन है। अन्य के लिए और सामान्य संकेतन होते हैं।
A का सूचक कार्य A से संबंधित संपत्ति का आइवरसन ब्रैकेट है। वह है,
उदाहरण के लिए, डिरिचलेट फलन वास्तविक संख्याओं के उपसमुच्चय के रूप में परिमेय संख्याओं का सूचक फलन है।
परिभाषा
किसी समुच्चय X के उपसमुच्चय A का सूचक फलन है।
कार्यक्रम को कभी-कभी IA, χA, KA या यहां तक कि केवल A से निरूपित किया जाता है।[lower-alpha 1]
संकेतन और शब्दावली
अंकन उत्तल विश्लेषण में विशेषता फलन (उत्तल विश्लेषण) को निरूपित करने के लिए भी उपयोग किया जाता है। जिसे संकेतक फलन की मानक परिभाषा के व्युत्क्रम का उपयोग करते हुए परिभाषित किया गया है।
सांख्यिकी में संबंधित अवधारणा डमी चर (सांख्यिकी) की है। (यह डमी चर के साथ भ्रमित नहीं होना चाहिए क्योंकि यह शब्द सामान्यतः गणित में प्रयोग किया जाता है। जिसे मुक्त चर और बाध्य चर भी कहा जाता है।)
विशेषता कार्य (संभाव्यता सिद्धांत) शब्द का संभाव्यता सिद्धांत में असंबंधित अर्थ है। इस कारण से संभाव्यतावादियों की सूची यहां लगभग विशेष रूप से परिभाषित फलन के लिए संकेतक फलन शब्द का उपयोग करती है। जबकि अन्य क्षेत्रों के गणितज्ञों द्वारा समूह में सदस्यता को इंगित करने वाले फलन का वर्णन करने के लिए विशेषता फलन शब्द का उपयोग करने की अधिक संभावना है।[lower-alpha 2]
फजी लॉजिक और बहु-मूल्यवान तर्कशास्त्र में, विधेय संभाव्यता वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) हैं। अर्थात् विधेय के सख्त सच्चे / गलत मूल्यांकन को सत्य की डिग्री के रूप में व्याख्या की गई मात्रा से परिवर्तित कर दिया जाता है।
मूल गुण
कुछ समूह X के उप-समुच्चय A का संकेतक या विशिष्ट कार्य (गणित) X के तत्वों को श्रेणी में मानचित्र करता है।
यह मानचित्रण केवल तभी आच्छादित होता है। जब A, X का गैर-खाली उचित उपसमुच्चय होता है। यदि तब इसी प्रकार के तर्क से यदि तब
निम्नलिखित में डॉट गुणन का प्रतिनिधित्व करता है। आदि "+"और "-" जोड़ और घटाव का प्रतिनिधित्व करते हैं। और क्रमशः चौराहे और संघ हैं।
यदि और के दो उपसमुच्चय हैं। तब
और के पूरक (समूह सिद्धांत) के सूचक फलन अर्थात। है:
जैसा कि पिछले उदाहरण द्वारा सुझाया गया है, इंडिकेटर फलन साहचर्य में उपयोगी नोटेशनल डिवाइस है। संकेतन का प्रयोग अन्य स्थानों पर भी किया जाता है, उदाहरण के लिए प्रायिकता सिद्धांत में: यदि X संभाव्यता माप के साथ प्रायिकता स्थान है और A माप (गणित) है, फिर यादृच्छिक चर बन जाता है जिसका अपेक्षित मान की प्रायिकता के बराबर होता है A:
कई स्थितियों में, जैसे आदेश सिद्धांत, संकेतक फलन के व्युत्क्रम को परिभाषित किया जा सकता है। प्राथमिक संख्या सिद्धांत, मोबियस फलन में संकेतक फलन के व्युत्क्रम के सामान्यीकरण के रूप में इसे सामान्यतः सामान्यीकृत मोबियस फलन कहा जाता है। (मौलिक पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ देखें।)
माध्य, विचरण और सहप्रसरण
संभाव्यता स्थान दिया गया साथ सूचक यादृच्छिक चर द्वारा परिभाषित किया गया है यदि अन्यथा
- अर्थ
- (जिसे फंडामेंटल ब्रिज भी कहा जाता है)।
विचरण: सहप्रसरण:
पुनरावर्तन सिद्धांत में विशेषता कार्य, गोडेल और क्लेन का प्रतिनिधित्व फलन
कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व फलन का वर्णन किया (¬ तार्किक उलटा इंगित करता है, अर्थात नहीं):[1]: 42
There shall correspond to each class or relation R a representing function if and if
स्टीफन क्लेन फलन के रूप में आदिम पुनरावर्ती कार्यों के संदर्भ में ही परिभाषा प्रस्तुत करता है φ विधेय का P मान लेता है 0 यदि विधेय सत्य है और 1 यदि विधेय असत्य है।[2] उदाहरण के लिए, क्योंकि विशेषता कार्यों का उत्पाद जब भी कोई कार्य बराबर होता है 0, यह तार्किक OR: IF की भूमिका निभाता है या या या फिर उनका उत्पाद है 0. आधुनिक पाठक को प्रतिनिधित्व करने वाले कार्य के तार्किक व्युत्क्रमण के रूप में क्या दिखाई देता है, अर्थात प्रतिनिधित्व करने वाला कार्य है 0 जब फलन R सत्य या संतुष्ट है, तार्किक कार्यों OR, AND, और IMPLY की क्लेन की परिभाषा में उपयोगी भूमिका निभाता है,[2]: 228 परिबद्ध-[2]: 228 और असीमित-[2]: 279 ff mu ऑपरेटर्स और CASE फलन।[2]: 229
== फ़ज़ी समूह थ्योरी == में विशेषता कार्य मौलिक गणित में, समुच्चयों के विशिष्ट फलन केवल मान लेते हैं 1 (सदस्य) या 0 (गैर-सदस्य)। फ़ज़ी समूह सिद्धांत में, विशिष्ट कार्यों को वास्तविक इकाई अंतराल में मान लेने के लिए सामान्यीकृत किया जाता है [0, 1], या अधिक सामान्यतः, कुछ सार्वभौमिक बीजगणित या संरचना (गणितीय तर्क) में (सामान्यतः कम से कम आंशिक रूप से आदेशित समूह या जाली (क्रम) होना आवश्यक है)। इस तरह के सामान्यीकृत विशेषता कार्यों को सामान्यतः सदस्यता फलन (गणित) कहा जाता है, और संबंधित समूहों को फ़ज़ी समूह कहा जाता है। फ़ज़ी समूह कई वास्तविक दुनिया के विधेय (गणित) जैसे लंबे, गर्म, आदि में देखे गए सत्य की सदस्यता की डिग्री में क्रमिक परिवर्तन का मॉडल बनाते हैं।
सूचक फलन के डेरिवेटिव्स
विशेष संकेतक फलन हैवीसाइड स्टेप फंक्शन है
यह भी देखें
- डायराक उपाय
- सूचक का लाप्लासियन
- डिराक डेल्टा
- विस्तार (विधेय तर्क)
- मुक्त चर और बाध्य चर
- भारी कदम समारोह
- आइवरसन ब्रैकेट
- क्रोनकर डेल्टा, एक ऐसा कार्य जिसे समानता (गणित) के लिए एक संकेतक के रूप में देखा जा सकता है
- मैकाले कोष्ठक
- मल्टीसेट
- सदस्यता समारोह (गणित)
- सरल कार्य
- डमी चर (सांख्यिकी)
- सांख्यिकीय वर्गीकरण
- शून्य-एक नुकसान समारोह
टिप्पणियाँ
संदर्भ
- ↑ Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books. pp. 41–74.
- ↑ 2.0 2.1 2.2 2.3 2.4 Kleene, Stephen (1971) [1952]. मेटामैथमैटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company. p. 227.
- ↑ Lange, Rutger-Jan (2012). "संभावित सिद्धांत, पथ अभिन्न और संकेतक के लाप्लासियन". Journal of High Energy Physics. 2012 (11): 29–30. arXiv:1302.0864. Bibcode:2012JHEP...11..032L. doi:10.1007/JHEP11(2012)032. S2CID 56188533.
स्रोत
- Folland, G.B. (1999). वास्तविक विश्लेषण: आधुनिक तकनीकें और उनके अनुप्रयोग (Second ed.). John Wiley & Sons, Inc. ISBN 978-0-471-31716-6.
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 5.2: Indicator random variables". एल्गोरिदम का परिचय (Second ed.). MIT Press and McGraw-Hill. pp. 94–99. ISBN 978-0-262-03293-3.
- Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books.
- Kleene, Stephen (1971) [1952]. मेटामैथमैटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company.
- Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002). संगणना और तर्क. Cambridge UK: Cambridge University Press. ISBN 978-0-521-00758-0.
- Lua error in Module:Cite_Q at line 435: attempt to index field '?' (a nil value).
- Goguen, Joseph (1967). "एल-फ़ज़ी सेट". Journal of Mathematical Analysis and Applications. 18 (1): 145–174. doi:10.1016/0022-247X(67)90189-8. hdl:10338.dmlcz/103980.
श्रेणी:माप सिद्धांत श्रेणी:इंटीग्रल कैलकुलस श्रेणी:वास्तविक विश्लेषण श्रेणी:गणितीय तर्क श्रेणी:समूह थ्योरी में बुनियादी अवधारणाएँ श्रेणी:संभाव्यता सिद्धांत श्रेणी: कार्यों के प्रकार