ऊष्मागतिकी विभव: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Scalar physical quantities representing system states}} | {{Short description|Scalar physical quantities representing system states}} | ||
{{Thermodynamics|cTopic=Potentials}} | {{Thermodynamics|cTopic=Potentials}} | ||
एक थर्मोडायनामिक क्षमता (या अधिक त्रुटिहीन रूप से, एक थर्मोडायनामिक संभावित ऊर्जा)<ref name="ISO 80000-5 20.4">ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.4 Helmholtz energy, Helmholtz function</ref><ref name="ISO 80000-5 20.5">ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.5, Gibbs energy, Gibbs function</ref> एक [[अदिश]] मात्रा है जिसका प्रयोग एक प्रणाली की ऊष्मागतिकी [[अवस्था]] को निरूपण करने में किया जाता है। जिस प्रकार [[यांत्रिकी]] में जहां संभावित ऊर्जा को कार्य करने की क्षमता के रूप में परिभाषित किया जाता है उसी प्रकार विभिन्न संक्षमताओं के भिन्न-भिन्न अर्थ होते हैं। ऊष्मागतिक संभाव्यताओं की संकल्पना को 1886 में [[पियरे ड्यूहेम]] ने प्रारंभ किया था। [[योशिय्याह विलार्ड गिब्स]] ने अपने पत्रों में मौलिक कार्यों शब्द का उपयोग किया। | |||
एक मुख्य थर्माइडैनामिक क्षमता जिसमें भौतिक व्याख्या होती है वह [[आंतरिक ऊर्जा]] है {{mvar|U}}। टी [[रूढ़िवादी बलों]] की एक प्रदत्त प्रणाली के विन्यास की ऊर्जा है (इसीलिए इसे संभाव्य कहा जाता है) और मात्र परिभाषित संदर्भ समुच्चय (या डेटा) के संदर्भ में इसका अर्थ है। अन्य सभी ऊष्मप्रवैगिकी ऊर्जा क्षमता के लिए एक्सप्रेशन यू के लिए एक एक्सप्रेशन से लीजेंड्रे ट्रांसफॉर्म के माध्यम से व्युत्पन्न हैं। दूसरे शब्दों में प्रत्येक तापीय क्षमता अन्य तापीय क्षमता के बराबर होती है;प्रत्येक क्षमता दूसरों की एक भिन्न अभिव्यक्ति है। | |||
एक मुख्य थर्माइडैनामिक क्षमता जिसमें भौतिक व्याख्या होती है वह [[आंतरिक ऊर्जा]] है {{mvar|U}}। टी [[रूढ़िवादी बलों]] की एक प्रदत्त प्रणाली के विन्यास की ऊर्जा है (इसीलिए इसे संभाव्य कहा जाता है) और | |||
[[ऊष्मागतिकी]] में [[गुरुत्वाकर्षण]] जैसी बाह्य शक्तियों को ऊष्मागतिकी की क्षमता की अपेक्षा कुल ऊर्जा में योगदान के रूप में गिना जाता है। उदाहरण के लिए एवरेस्ट के शिखर पर बैठे भाप के इंजन में काम कर रहे तरल की शक्ति मारियाना खाई के तल पर स्थित गुरुत्वाकर्षण के कारण अधिक होती है लेकिन उतनी ही ऊष्मागतिकी शक्ति है। इसका कारण यह है कि गुरुत्वाकर्षण क्षमता की ऊर्जा तापीय ऊर्जा की अतिरिक्त आंतरिक ऊर्जा की कुल ऊर्जा से संबंधित है। | [[ऊष्मागतिकी]] में [[गुरुत्वाकर्षण]] जैसी बाह्य शक्तियों को ऊष्मागतिकी की क्षमता की अपेक्षा कुल ऊर्जा में योगदान के रूप में गिना जाता है। उदाहरण के लिए एवरेस्ट के शिखर पर बैठे भाप के इंजन में काम कर रहे तरल की शक्ति मारियाना खाई के तल पर स्थित गुरुत्वाकर्षण के कारण अधिक होती है लेकिन उतनी ही ऊष्मागतिकी शक्ति है। इसका कारण यह है कि गुरुत्वाकर्षण क्षमता की ऊर्जा तापीय ऊर्जा की अतिरिक्त आंतरिक ऊर्जा की कुल ऊर्जा से संबंधित है। | ||
| Line 15: | Line 13: | ||
{{table of thermodynamic potentials}} | {{table of thermodynamic potentials}} | ||
कहाँ {{mvar|T}} = [[तापमान]], {{mvar|S}} = [[एन्ट्रापी]], {{mvar|p}} = [[दबाव]], {{mvar|V}} = [[आयतन (थर्मोडायनामिक्स)]]। {{mvar|N<sub>i</sub>}} प्रकार के कणों की संख्या है {{mvar|i}} | कहाँ {{mvar|T}} = [[तापमान]], {{mvar|S}} = [[एन्ट्रापी]], {{mvar|p}} = [[दबाव]], {{mvar|V}} = [[आयतन (थर्मोडायनामिक्स)]]। {{mvar|N<sub>i</sub>}} प्रकार के कणों की संख्या है {{mvar|i}} प्रणाली में और {{mvar|μ<sub>i</sub>}} एक के लिए [[रासायनिक क्षमता]] है {{mvar|i}}-प्रकार का कण। सभी का सेट {{mvar|N<sub>i</sub>}} को प्राकृतिक चर के रूप में भी सम्मलित किया गया है लेकिन इसे अनदेखा किया जा सकता है जब कोई रासायनिक प्रतिक्रिया नहीं हो रही है जो उन्हें बदलने का कारण बनती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा आईएसओ/आईईसी मानक में है जिसे हेल्महोल्ट्ज़ ऊर्जा कहा जाता है<ref name="ISO 80000-5 20.4"/>या हेल्महोल्ट्ज़ समारोह। इसे अधिकांशतः प्रतीक द्वारा दर्शाया जाता है {{mvar|F}}, लेकिन का उपयोग {{mvar|A}} [[IUPAC]] द्वारा पसंद किया जाता है,<ref>Alberty (2001) p. 1376</ref> [[आईएसओ]] और अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन।<ref>ISO/IEC 80000-5:2007, item 5-20.4</ref> | ||
ये पांच सामान्य क्षमताएं सभी संभावित ऊर्जाएं हैं, लेकिन [[मुक्त एन्ट्रापी]] भी हैं। [[थर्मोडायनामिक वर्ग]] का उपयोग कुछ संभावनाओं को वापस बुलाने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है। | ये पांच सामान्य क्षमताएं सभी संभावित ऊर्जाएं हैं, लेकिन [[मुक्त एन्ट्रापी]] भी हैं। [[थर्मोडायनामिक वर्ग]] का उपयोग कुछ संभावनाओं को वापस बुलाने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है। | ||
| Line 23: | Line 21: | ||
* [[तापीय धारिता]] ({{mvar|H}}) गैर-यांत्रिक कार्य करने की क्षमता और ऊष्मा मुक्त करने की क्षमता है। | * [[तापीय धारिता]] ({{mvar|H}}) गैर-यांत्रिक कार्य करने की क्षमता और ऊष्मा मुक्त करने की क्षमता है। | ||
* [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]<ref name="ISO 80000-5 20.4"/>({{mvar|F}}) यांत्रिक कार्य और गैर-यांत्रिक कार्य करने की क्षमता है। | * [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]]<ref name="ISO 80000-5 20.4"/>({{mvar|F}}) यांत्रिक कार्य और गैर-यांत्रिक कार्य करने की क्षमता है। | ||
इन अर्थों से (जो वास्तव में विशिष्ट परिस्थितियों में लागू होते हैं, जैसे निरंतर दबाव, तापमान, आदि), सकारात्मक परिवर्तनों के लिए (जैसे, {{math|Δ''U'' > 0}}), हम कह सकते हैं कि {{math|Δ''U''}} | इन अर्थों से (जो वास्तव में विशिष्ट परिस्थितियों में लागू होते हैं, जैसे निरंतर दबाव, तापमान, आदि), सकारात्मक परिवर्तनों के लिए (जैसे, {{math|Δ''U'' > 0}}), हम कह सकते हैं कि {{math|Δ''U''}} प्रणाली में जोड़ी गई ऊर्जा है, {{math|Δ''F''}} उस पर किया गया कुल कार्य है, {{math|Δ''G''}} उस पर किया जाने वाला गैर-यांत्रिक कार्य है, और {{math|Δ''H''}} तंत्र पर किए गए गैर-यांत्रिक कार्य और उसे दी गई ऊष्मा का योग है। [[रासायनिक संतुलन]] की गणना करते समय, या रासायनिक प्रतिक्रिया में सामग्रियों के गुणों को मापते समय थर्मोडायनामिक क्षमता बहुत उपयोगी होती है। रासायनिक प्रतिक्रियाएँ सामान्यतः कुछ बाधाओं जैसे निरंतर दबाव और तापमान, या निरंतर एन्ट्रापी और आयतन के अनुसार होती हैं, और जब यह सच होता है, तो एक समान थर्मोडायनामिक क्षमता होती है जो खेल में आती है। जैसे यांत्रिकी में, प्रणाली एक संभावित और संतुलन के कम मूल्य की ओर प्रवृत्त होगी, इन बाधाओं के अनुसार, क्षमता अपरिवर्तनीय न्यूनतम मान लेगी। थर्मोडायनामिक क्षमता का उपयोग उपयुक्त बाधा के अनुसार थर्मोडायनामिक प्रणाली से उपलब्ध ऊर्जा की कुल मात्रा का अनुमान लगाने के लिए भी किया जा सकता है। | ||
विशेष रूप से: (व्युत्पन्न के लिए [[न्यूनतम ऊर्जा का सिद्धांत]] देखें)<ref>Callen (1985) p. 153</ref> | विशेष रूप से: (व्युत्पन्न के लिए [[न्यूनतम ऊर्जा का सिद्धांत]] देखें)<ref>Callen (1985) p. 153</ref> | ||
| Line 32: | Line 30: | ||
== प्राकृतिक चर == | == प्राकृतिक चर == | ||
प्रत्येक उष्मागतिक क्षमता के लिए, ऊष्मप्रवैगिकी चर होते हैं जिन्हें उष्मागतिक संतुलन स्थिति में संभावित मूल्य निर्दिष्ट करने के लिए स्थिर रखने की आवश्यकता होती है, जैसे गणितीय कार्य के लिए स्वतंत्र चर। इन चरों को उस क्षमता के प्राकृतिक चर कहा जाता है।<ref name="Alberty 2001 p1352">Alberty (2001) p. 1352</ref> संतुलन पर संभावित मूल्य निर्दिष्ट करने के लिए न | प्रत्येक उष्मागतिक क्षमता के लिए, ऊष्मप्रवैगिकी चर होते हैं जिन्हें उष्मागतिक संतुलन स्थिति में संभावित मूल्य निर्दिष्ट करने के लिए स्थिर रखने की आवश्यकता होती है, जैसे गणितीय कार्य के लिए स्वतंत्र चर। इन चरों को उस क्षमता के प्राकृतिक चर कहा जाता है।<ref name="Alberty 2001 p1352">Alberty (2001) p. 1352</ref> संतुलन पर संभावित मूल्य निर्दिष्ट करने के लिए न मात्र प्राकृतिक चर महत्वपूर्ण हैं, अपितु इसलिए भी कि यदि उष्मागतिक क्षमता को उसके प्राकृतिक चर के कार्य के रूप में निर्धारित किया जा सकता है, प्रणाली के सभी उष्मागतिक गुणों को उसके प्राकृतिक चर के संबंध में उस क्षमता के आंशिक डेरिवेटिव लेकर पाया जा सकता है और यह चर के किसी अन्य संयोजन के लिए सही नहीं है। यदि ऊष्मागतिकी क्षमता को इसके प्राकृतिक चरों के फलन के रूप में नहीं दिया जाता तो वह साधारणतया इस तंत्र के सभी ऊष्मागतिकी गुणों का उत्पाहदन नहीं कर सकता। | ||
उपरोक्त चार ऊष्मागतिकी क्षमताओं में से प्रत्येक के लिए प्राकृतिक चर का सेट टी, एस, पी, वी चर के संयोजन से बनता है, [[संयुग्मी चरों]] को छोड़कर ऊर्जा के लिए संयुग्मित चर सहित संभावित के लिए टी - एस अथवा पी - वी चरों की कोई प्राकृतिक चर नहीं है। इस नियम के लिए एक अपवाद Ni-μi संयुग्म जोड़े हैं क्योंकि थर्मोडायनामिक क्षमता में इन्हें अनदेखा करने का कोई कारण नहीं है, और वास्तव में हम प्रत्येक प्रजाति के लिए चार संभावितों को अतिरिक्त रूप से परिभाषित कर सकते हैं।<ref>Alberty (2001) p. 1355</ref> आईयूपीएसी नोटेशन का उपयोग करना जिसमें ब्रैकेट में प्राकृतिक चर होते हैं (मुख्य चार के अतिरिक्त), हमारे पास है: | उपरोक्त चार ऊष्मागतिकी क्षमताओं में से प्रत्येक के लिए प्राकृतिक चर का सेट टी, एस, पी, वी चर के संयोजन से बनता है, [[संयुग्मी चरों]] को छोड़कर ऊर्जा के लिए संयुग्मित चर सहित संभावित के लिए टी - एस अथवा पी - वी चरों की कोई प्राकृतिक चर नहीं है। इस नियम के लिए एक अपवाद Ni-μi संयुग्म जोड़े हैं क्योंकि थर्मोडायनामिक क्षमता में इन्हें अनदेखा करने का कोई कारण नहीं है, और वास्तव में हम प्रत्येक प्रजाति के लिए चार संभावितों को अतिरिक्त रूप से परिभाषित कर सकते हैं।<ref>Alberty (2001) p. 1355</ref> आईयूपीएसी नोटेशन का उपयोग करना जिसमें ब्रैकेट में प्राकृतिक चर होते हैं (मुख्य चार के अतिरिक्त), हमारे पास है: | ||
| Line 60: | Line 58: | ||
यदि | यदि मात्र एक प्रजाति है, तो हम कर चुके हैं। परंतु यदि दो प्रजातियां होंगी तो उसमें और भी अधिक संभावनाएं होंगी जैसे कि <math>U[\mu_1,\mu_2] = U-\mu_1 N_1-\mu_2 N_2</math> और इसी प्रकार। यदि थर्मोडायनेमिक स्थान के डी आयाम हैं तो 2 डी अद्वितीय थर्मोडायनेमिक क्षमता है। सबसे सरल उदाहरण के लिए एक एकल चरण आदर्श गैस के तीन आयाम होंगे जिसमें आठ ऊष्मागतिकी की संभाविक शक्ति होगी। | ||
== मौलिक समीकरण == | == मौलिक समीकरण == | ||
{{main|Fundamental thermodynamic relation}} | {{main|Fundamental thermodynamic relation}} | ||
ऊष्मप्रवैगिकी क्षमता की परिभाषाओं को विभेदित किया जा सकता है और ऊष्मप्रवैगिकी के पहले और दूसरे नियमों के साथ-साथ अंतर समीकरणों का एक सेट जिसे मौलिक समीकरणों के रूप में जाना जाता है।<ref name="Alberty 2001 p1354">Alberty (2001) p. 1354</ref><nowiki> (वास्तव में वे सभी एक ही मौलिक थर्मोडायनामिक संबंध के भाव हैं, लेकिन भिन्न-भिन्न चर में व्यक्त किए जाते हैं।) थर्मोडायनामिक्स के पहले नियम से, आंतरिक ऊर्जा में कोई अंतर परिवर्तन {{mvar|U} | ऊष्मप्रवैगिकी क्षमता की परिभाषाओं को विभेदित किया जा सकता है और ऊष्मप्रवैगिकी के पहले और दूसरे नियमों के साथ-साथ अंतर समीकरणों का एक सेट जिसे मौलिक समीकरणों के रूप में जाना जाता है।<ref name="Alberty 2001 p1354">Alberty (2001) p. 1354</ref><nowiki> (वास्तव में वे सभी एक ही मौलिक थर्मोडायनामिक संबंध के भाव हैं, लेकिन भिन्न-भिन्न चर में व्यक्त किए जाते हैं।) थर्मोडायनामिक्स के पहले नियम से, आंतरिक ऊर्जा में कोई अंतर परिवर्तन {{mvar|U}प्रणाली में नए कणों को जोड़ने के कारण किसी भी बदलाव के साथ-साथ पर्यावरण पर प्रणाली द्वारा किए गए काम से घटाए गए प्रणाली में बहने वाली गर्मी के योग के रूप में लिखा जा सकता है:</nowiki> | ||
:<math>\mathrm{d}U = \delta Q - \delta W+\sum_i \mu_i\,\mathrm{d}N_i</math> | :<math>\mathrm{d}U = \delta Q - \delta W+\sum_i \mu_i\,\mathrm{d}N_i</math> | ||
कहाँ {{math|''δQ''}} प्रणाली में अतिसूक्ष्म ऊष्मा प्रवाह है, और {{math|''δW''}} तंत्र द्वारा किया गया अतिसूक्ष्म कार्य है, {{mvar|μ<sub>i</sub>}} कण प्रकार की रासायनिक क्षमता है {{mvar|i}} और {{mvar|N<sub>i</sub>}} प्रकार की संख्या है {{mvar|i}} कण। (कोई भी नहीं {{math|''δQ''}} और न {{math|''δW''}} [[सटीक अंतर]] हैं, अर्थात, वे थर्मोडायनामिक प्रक्रिया पथ-निर्भर हैं। इसलिए, इन चरों में छोटे परिवर्तन के साथ प्रतिनिधित्व किया जाता है {{math|<VAR>δ</VAR>}} इस के अतिरिक्त {{math|d}}.) | कहाँ {{math|''δQ''}} प्रणाली में अतिसूक्ष्म ऊष्मा प्रवाह है, और {{math|''δW''}} तंत्र द्वारा किया गया अतिसूक्ष्म कार्य है, {{mvar|μ<sub>i</sub>}} कण प्रकार की रासायनिक क्षमता है {{mvar|i}} और {{mvar|N<sub>i</sub>}} प्रकार की संख्या है {{mvar|i}} कण। (कोई भी नहीं {{math|''δQ''}} और न {{math|''δW''}} [[सटीक अंतर|त्रुटिहीन अंतर]] हैं, अर्थात, वे थर्मोडायनामिक प्रक्रिया पथ-निर्भर हैं। इसलिए, इन चरों में छोटे परिवर्तन के साथ प्रतिनिधित्व किया जाता है {{math|<VAR>δ</VAR>}} इस के अतिरिक्त {{math|d}}.) | ||
ऊष्मप्रवैगिकी के दूसरे नियम के द्वारा, हम राज्य कार्यों और उनके अंतरों के संदर्भ में आंतरिक ऊर्जा परिवर्तन को व्यक्त कर सकते हैं। प्रतिवर्ती परिवर्तनों के | ऊष्मप्रवैगिकी के दूसरे नियम के द्वारा, हम राज्य कार्यों और उनके अंतरों के संदर्भ में आंतरिक ऊर्जा परिवर्तन को व्यक्त कर सकते हैं। प्रतिवर्ती परिवर्तनों के स्थिति में हमारे पास: | ||
:<math>\delta Q = T\,\mathrm{d}S</math> | :<math>\delta Q = T\,\mathrm{d}S</math> | ||
| Line 79: | Line 77: | ||
और {{mvar|V}} वॉल्यूम (थर्मोडायनामिक्स) है, और समानता प्रतिवर्ती प्रक्रियाओं के लिए है। | और {{mvar|V}} वॉल्यूम (थर्मोडायनामिक्स) है, और समानता प्रतिवर्ती प्रक्रियाओं के लिए है। | ||
यह क्वासिस्टेटिक रिवर्सिबल परिवर्तन के | यह क्वासिस्टेटिक रिवर्सिबल परिवर्तन के स्थिति में आंतरिक ऊर्जा के मानक अंतर रूप की ओर जाता है: | ||
:<math>\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V+\sum_i \mu_i\,\mathrm{d}N_i</math> | :<math>\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V+\sum_i \mu_i\,\mathrm{d}N_i</math> | ||
तब से {{mvar|U}}, {{mvar|S}} और {{mvar|V}} राज्य के थर्मोडायनामिक कार्य हैं (जिन्हें राज्य कार्य भी कहा जाता है), उपरोक्त संबंध मनमाना गैर-प्रतिवर्ती परिवर्तनों के लिए भी लागू होता है। यदि | तब से {{mvar|U}}, {{mvar|S}} और {{mvar|V}} राज्य के थर्मोडायनामिक कार्य हैं (जिन्हें राज्य कार्य भी कहा जाता है), उपरोक्त संबंध मनमाना गैर-प्रतिवर्ती परिवर्तनों के लिए भी लागू होता है। यदि प्रणाली में मात्र वॉल्यूम की तुलना में अधिक बाहरी चर हैं जो बदल सकते हैं, मौलिक थर्मोडायनामिक संबंध सामान्यीकरण करता है: | ||
:<math>dU = T\,\mathrm{d}S - p\,\mathrm{d}V + \sum_j \mu_j\,\mathrm{d}N_j + \sum_i X_i \, \mathrm{d}x_{i} </math> | :<math>dU = T\,\mathrm{d}S - p\,\mathrm{d}V + \sum_j \mu_j\,\mathrm{d}N_j + \sum_i X_i \, \mathrm{d}x_{i} </math> | ||
| Line 102: | Line 100: | ||
||<math>+</math> ||<math>V\mathrm{d}p</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math> | ||<math>+</math> ||<math>V\mathrm{d}p</math>||<math>+\sum_i \mu_i \,\mathrm{d}N_i</math> | ||
|} | |} | ||
उपरोक्त समीकरणों में से प्रत्येक के दायीं ओर के अपरिमित गुण बायीं ओर की क्षमता के प्राकृतिक चर हैं। | उपरोक्त समीकरणों में से प्रत्येक के दायीं ओर के अपरिमित गुण बायीं ओर की क्षमता के प्राकृतिक चर हैं। प्रणाली के अन्य थर्मोडायनामिक क्षमता के लिए समान समीकरण विकसित किए जा सकते हैं। प्रत्येक थर्मोडायनामिक क्षमता के लिए एक मूलभूत समीकरण होगा, जिसके परिणामस्वरूप कुल होगा {{math|2<sup>''D''</sup>}} मौलिक समीकरण। | ||
चार ऊष्मप्रवैगिकी क्षमता के बीच के अंतर को निम्नानुसार संक्षेपित किया जा सकता है: | चार ऊष्मप्रवैगिकी क्षमता के बीच के अंतर को निम्नानुसार संक्षेपित किया जा सकता है: | ||
| Line 144: | Line 142: | ||
-N_j=\left(\frac{\partial U[\mu_j]}{\partial \mu_j}\right)_{S,V,\{N_{i\ne j}\}} | -N_j=\left(\frac{\partial U[\mu_j]}{\partial \mu_j}\right)_{S,V,\{N_{i\ne j}\}} | ||
</math> | </math> | ||
और इसी | और इसी प्रकार। सभी में, यदि थर्मोडायनामिक स्थान है {{mvar|D}} आयाम, तो वहाँ होगा {{mvar|D}} प्रत्येक क्षमता के लिए समीकरण, जिसके परिणामस्वरूप कुल योग होता है {{math|''D'' 2<sup>''D''</sup>}} राज्य के समीकरण क्योंकि {{math|2<sup>''D''</sup>}} थर्मोडायनामिक क्षमताएं उपलब्ध हैं। यदि {{mvar|D}} किसी विशेष क्षमता के लिए राज्य के समीकरण ज्ञात हैं, तो उस क्षमता के लिए मौलिक समीकरण (अर्थात, थर्मोडायनामिक क्षमता का त्रुटिहीन अंतर) निर्धारित किया जा सकता है। इसका मतलब यह है कि प्रणाली के बारे में सभी उष्मागतिक जानकारी ज्ञात हो जाएगी क्योंकि किसी भी अन्य क्षमता के लिए मौलिक समीकरणों को लेजेंड्रे परिवर्तन के माध्यम से पाया जा सकता है और संभावित के आंशिक डेरिवेटिव के रूप में प्रत्येक क्षमता के लिए राज्य के संबंधित समीकरणों को भी पाया जा सकता है। | ||
== थर्मोडायनामिक क्षमता का मापन == | == थर्मोडायनामिक क्षमता का मापन == | ||
| Line 168: | Line 166: | ||
</math>(निरंतर टी पर, {एन<sub>j</sub>} ) | </math>(निरंतर टी पर, {एन<sub>j</sub>} ) | ||
जिसे दबाव, तापमान और आयतन के मापने योग्य चर की | जिसे दबाव, तापमान और आयतन के मापने योग्य चर की देख-रेख के द्वारा मापा जा सकता है। थैलेपी और आंतरिक ऊर्जा में परिवर्तन [[उष्मामिति]] द्वारा मापा जा सकता है (जो गर्मी की मात्रा को मापता है ΔQ एक प्रणाली द्वारा जारी या अवशोषित)। भाव | ||
:<math> | :<math> | ||
| Line 249: | Line 247: | ||
:<math>U=TS-pV+\sum_i \mu_i N_i</math> | :<math>U=TS-pV+\sum_i \mu_i N_i</math> | ||
इस सूत्र को एक यूलर संबंध के रूप में जाना जाता है, क्योंकि सजातीय कार्यों पर यूलर का प्रमेय इसकी ओर ले जाता है।<ref>Callen, H.B. (1960/1985).''Thermodynamics and an Introduction to Thermostatistics'', second edition, John Wiley & Sons, Hoboken NY, {{ISBN|9780471862567}}, pp. 59–60.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics, AIP Press, Woodbury NY, {{ISBN|0883187973}}, pp. 215–216.</ref> (उष्मप्रवैगिकी की जांच में [[लियोनहार्ड यूलर]] द्वारा इसकी खोज नहीं की गई थी, जो उनके समय में | इस सूत्र को एक यूलर संबंध के रूप में जाना जाता है, क्योंकि सजातीय कार्यों पर यूलर का प्रमेय इसकी ओर ले जाता है।<ref>Callen, H.B. (1960/1985).''Thermodynamics and an Introduction to Thermostatistics'', second edition, John Wiley & Sons, Hoboken NY, {{ISBN|9780471862567}}, pp. 59–60.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics, AIP Press, Woodbury NY, {{ISBN|0883187973}}, pp. 215–216.</ref> (उष्मप्रवैगिकी की जांच में [[लियोनहार्ड यूलर]] द्वारा इसकी खोज नहीं की गई थी, जो उनके समय में उपलब्ध नहीं थी।) | ||
हमारे पास | हमारे पास उपलब्ध अन्य मुख्य संभावनाओं के भावों में प्रतिस्थापित करना: | ||
:<math>F= -pV+\sum_i \mu_i N_i</math> | :<math>F= -pV+\sum_i \mu_i N_i</math> | ||
| Line 266: | Line 264: | ||
:<math>\mathrm{d}U=T\mathrm{d}S-P\mathrm{d}V+\sum_i\mu_i\,\mathrm{d}N_i</math> | :<math>\mathrm{d}U=T\mathrm{d}S-P\mathrm{d}V+\sum_i\mu_i\,\mathrm{d}N_i</math> | ||
उत्पन्न: | |||
:<math>0=S\mathrm{d}T-V\mathrm{d}P+\sum_i N_i \mathrm{d}\mu_i</math> | :<math>0=S\mathrm{d}T-V\mathrm{d}P+\sum_i N_i \mathrm{d}\mu_i</math> | ||
जो गिब्स-डुहेम संबंध है। गिब्स-ड्यूहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि एक सरल प्रणाली के साथ {{mvar|I}} घटक होंगे {{math|''I'' + 1}} स्वतंत्र पैरामीटर, या स्वतंत्रता की डिग्री। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे | जो गिब्स-डुहेम संबंध है। गिब्स-ड्यूहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि एक सरल प्रणाली के साथ {{mvar|I}} घटक होंगे {{math|''I'' + 1}} स्वतंत्र पैरामीटर, या स्वतंत्रता की डिग्री। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे मात्र दो पैरामीटर द्वारा निर्दिष्ट किया जा सकता है। कानून का नाम योशिय्याह विलार्ड गिब्स और पियरे ड्यूहेम के नाम पर रखा गया है। | ||
== स्थिरता की स्थिति == | == स्थिरता की स्थिति == | ||
Revision as of 10:52, 23 March 2023
| थर्मोडायनामिक्स |
|---|
एक थर्मोडायनामिक क्षमता (या अधिक त्रुटिहीन रूप से, एक थर्मोडायनामिक संभावित ऊर्जा)[1][2] एक अदिश मात्रा है जिसका प्रयोग एक प्रणाली की ऊष्मागतिकी अवस्था को निरूपण करने में किया जाता है। जिस प्रकार यांत्रिकी में जहां संभावित ऊर्जा को कार्य करने की क्षमता के रूप में परिभाषित किया जाता है उसी प्रकार विभिन्न संक्षमताओं के भिन्न-भिन्न अर्थ होते हैं। ऊष्मागतिक संभाव्यताओं की संकल्पना को 1886 में पियरे ड्यूहेम ने प्रारंभ किया था। योशिय्याह विलार्ड गिब्स ने अपने पत्रों में मौलिक कार्यों शब्द का उपयोग किया।
एक मुख्य थर्माइडैनामिक क्षमता जिसमें भौतिक व्याख्या होती है वह आंतरिक ऊर्जा है U। टी रूढ़िवादी बलों की एक प्रदत्त प्रणाली के विन्यास की ऊर्जा है (इसीलिए इसे संभाव्य कहा जाता है) और मात्र परिभाषित संदर्भ समुच्चय (या डेटा) के संदर्भ में इसका अर्थ है। अन्य सभी ऊष्मप्रवैगिकी ऊर्जा क्षमता के लिए एक्सप्रेशन यू के लिए एक एक्सप्रेशन से लीजेंड्रे ट्रांसफॉर्म के माध्यम से व्युत्पन्न हैं। दूसरे शब्दों में प्रत्येक तापीय क्षमता अन्य तापीय क्षमता के बराबर होती है;प्रत्येक क्षमता दूसरों की एक भिन्न अभिव्यक्ति है।
ऊष्मागतिकी में गुरुत्वाकर्षण जैसी बाह्य शक्तियों को ऊष्मागतिकी की क्षमता की अपेक्षा कुल ऊर्जा में योगदान के रूप में गिना जाता है। उदाहरण के लिए एवरेस्ट के शिखर पर बैठे भाप के इंजन में काम कर रहे तरल की शक्ति मारियाना खाई के तल पर स्थित गुरुत्वाकर्षण के कारण अधिक होती है लेकिन उतनी ही ऊष्मागतिकी शक्ति है। इसका कारण यह है कि गुरुत्वाकर्षण क्षमता की ऊर्जा तापीय ऊर्जा की अतिरिक्त आंतरिक ऊर्जा की कुल ऊर्जा से संबंधित है।
विवरण और व्याख्याअधिकांशतः
पाँच सामान्य थर्मोडायनामिक क्षमताएँ हैं:[3]
| Name | Symbol | Formula | Natural variables |
|---|---|---|---|
| Internal energy | |||
| Helmholtz free energy | |||
| Enthalpy | |||
| Gibbs free energy | |||
| Landau potential, or grand potential |
, |
कहाँ T = तापमान, S = एन्ट्रापी, p = दबाव, V = आयतन (थर्मोडायनामिक्स)। Ni प्रकार के कणों की संख्या है i प्रणाली में और μi एक के लिए रासायनिक क्षमता है i-प्रकार का कण। सभी का सेट Ni को प्राकृतिक चर के रूप में भी सम्मलित किया गया है लेकिन इसे अनदेखा किया जा सकता है जब कोई रासायनिक प्रतिक्रिया नहीं हो रही है जो उन्हें बदलने का कारण बनती है। हेल्महोल्ट्ज़ मुक्त ऊर्जा आईएसओ/आईईसी मानक में है जिसे हेल्महोल्ट्ज़ ऊर्जा कहा जाता है[1]या हेल्महोल्ट्ज़ समारोह। इसे अधिकांशतः प्रतीक द्वारा दर्शाया जाता है F, लेकिन का उपयोग A IUPAC द्वारा पसंद किया जाता है,[4] आईएसओ और अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन।[5] ये पांच सामान्य क्षमताएं सभी संभावित ऊर्जाएं हैं, लेकिन मुक्त एन्ट्रापी भी हैं। थर्मोडायनामिक वर्ग का उपयोग कुछ संभावनाओं को वापस बुलाने और प्राप्त करने के लिए एक उपकरण के रूप में किया जा सकता है।
जिस प्रकार यांत्रिकी में, जहाँ स्थितिज ऊर्जा को कार्य करने की क्षमता के रूप में परिभाषित किया जाता है, उसी प्रकार विभिन्न विभवों के भिन्न-भिन्न अर्थ होते हैं जैसे कि नीचे दिया गया है:
- आंतरिक ऊर्जा (U) कार्य करने की क्षमता और ऊष्मा मुक्त करने की क्षमता है।
- गिब्स मुक्त ऊर्जा[2](G) गैर-यांत्रिक कार्य करने की क्षमता है।
- तापीय धारिता (H) गैर-यांत्रिक कार्य करने की क्षमता और ऊष्मा मुक्त करने की क्षमता है।
- हेल्महोल्ट्ज़ मुक्त ऊर्जा[1](F) यांत्रिक कार्य और गैर-यांत्रिक कार्य करने की क्षमता है।
इन अर्थों से (जो वास्तव में विशिष्ट परिस्थितियों में लागू होते हैं, जैसे निरंतर दबाव, तापमान, आदि), सकारात्मक परिवर्तनों के लिए (जैसे, ΔU > 0), हम कह सकते हैं कि ΔU प्रणाली में जोड़ी गई ऊर्जा है, ΔF उस पर किया गया कुल कार्य है, ΔG उस पर किया जाने वाला गैर-यांत्रिक कार्य है, और ΔH तंत्र पर किए गए गैर-यांत्रिक कार्य और उसे दी गई ऊष्मा का योग है। रासायनिक संतुलन की गणना करते समय, या रासायनिक प्रतिक्रिया में सामग्रियों के गुणों को मापते समय थर्मोडायनामिक क्षमता बहुत उपयोगी होती है। रासायनिक प्रतिक्रियाएँ सामान्यतः कुछ बाधाओं जैसे निरंतर दबाव और तापमान, या निरंतर एन्ट्रापी और आयतन के अनुसार होती हैं, और जब यह सच होता है, तो एक समान थर्मोडायनामिक क्षमता होती है जो खेल में आती है। जैसे यांत्रिकी में, प्रणाली एक संभावित और संतुलन के कम मूल्य की ओर प्रवृत्त होगी, इन बाधाओं के अनुसार, क्षमता अपरिवर्तनीय न्यूनतम मान लेगी। थर्मोडायनामिक क्षमता का उपयोग उपयुक्त बाधा के अनुसार थर्मोडायनामिक प्रणाली से उपलब्ध ऊर्जा की कुल मात्रा का अनुमान लगाने के लिए भी किया जा सकता है।
विशेष रूप से: (व्युत्पन्न के लिए न्यूनतम ऊर्जा का सिद्धांत देखें)[6]
- जब एन्ट्रॉपी S और एक बंद प्रणाली के बाहरी मापदंडों (जैसे आयतन) को स्थिर रखा जाता है, आंतरिक ऊर्जा U घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है। यह ऊष्मप्रवैगिकी के पहले और दूसरे नियम का अनुसरण करता है और इसे न्यूनतम ऊर्जा का सिद्धांत कहा जाता है। इस सिद्धांत से निम्नलिखित तीन कथन सीधे व्युत्पन्न हैं।
- जब तापमान T और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, हेल्महोल्ट्ज़ मुक्त ऊर्जा F घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
- जब दबाव p और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, थैलेपी H घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
- जब तापमान T, दबाव p और एक बंद प्रणाली के बाहरी मापदंडों को स्थिर रखा जाता है, गिब्स मुक्त ऊर्जा G घटता है और संतुलन पर न्यूनतम मान तक पहुँचता है।
प्राकृतिक चर
प्रत्येक उष्मागतिक क्षमता के लिए, ऊष्मप्रवैगिकी चर होते हैं जिन्हें उष्मागतिक संतुलन स्थिति में संभावित मूल्य निर्दिष्ट करने के लिए स्थिर रखने की आवश्यकता होती है, जैसे गणितीय कार्य के लिए स्वतंत्र चर। इन चरों को उस क्षमता के प्राकृतिक चर कहा जाता है।[7] संतुलन पर संभावित मूल्य निर्दिष्ट करने के लिए न मात्र प्राकृतिक चर महत्वपूर्ण हैं, अपितु इसलिए भी कि यदि उष्मागतिक क्षमता को उसके प्राकृतिक चर के कार्य के रूप में निर्धारित किया जा सकता है, प्रणाली के सभी उष्मागतिक गुणों को उसके प्राकृतिक चर के संबंध में उस क्षमता के आंशिक डेरिवेटिव लेकर पाया जा सकता है और यह चर के किसी अन्य संयोजन के लिए सही नहीं है। यदि ऊष्मागतिकी क्षमता को इसके प्राकृतिक चरों के फलन के रूप में नहीं दिया जाता तो वह साधारणतया इस तंत्र के सभी ऊष्मागतिकी गुणों का उत्पाहदन नहीं कर सकता।
उपरोक्त चार ऊष्मागतिकी क्षमताओं में से प्रत्येक के लिए प्राकृतिक चर का सेट टी, एस, पी, वी चर के संयोजन से बनता है, संयुग्मी चरों को छोड़कर ऊर्जा के लिए संयुग्मित चर सहित संभावित के लिए टी - एस अथवा पी - वी चरों की कोई प्राकृतिक चर नहीं है। इस नियम के लिए एक अपवाद Ni-μi संयुग्म जोड़े हैं क्योंकि थर्मोडायनामिक क्षमता में इन्हें अनदेखा करने का कोई कारण नहीं है, और वास्तव में हम प्रत्येक प्रजाति के लिए चार संभावितों को अतिरिक्त रूप से परिभाषित कर सकते हैं।[8] आईयूपीएसी नोटेशन का उपयोग करना जिसमें ब्रैकेट में प्राकृतिक चर होते हैं (मुख्य चार के अतिरिक्त), हमारे पास है:
| Thermodynamic potential name | Formula | Natural variables |
|---|---|---|
| Internal energy | ||
| Helmholtz free energy | ||
| Enthalpy | ||
| Gibbs energy |
यदि मात्र एक प्रजाति है, तो हम कर चुके हैं। परंतु यदि दो प्रजातियां होंगी तो उसमें और भी अधिक संभावनाएं होंगी जैसे कि और इसी प्रकार। यदि थर्मोडायनेमिक स्थान के डी आयाम हैं तो 2 डी अद्वितीय थर्मोडायनेमिक क्षमता है। सबसे सरल उदाहरण के लिए एक एकल चरण आदर्श गैस के तीन आयाम होंगे जिसमें आठ ऊष्मागतिकी की संभाविक शक्ति होगी।
मौलिक समीकरण
ऊष्मप्रवैगिकी क्षमता की परिभाषाओं को विभेदित किया जा सकता है और ऊष्मप्रवैगिकी के पहले और दूसरे नियमों के साथ-साथ अंतर समीकरणों का एक सेट जिसे मौलिक समीकरणों के रूप में जाना जाता है।[9] (वास्तव में वे सभी एक ही मौलिक थर्मोडायनामिक संबंध के भाव हैं, लेकिन भिन्न-भिन्न चर में व्यक्त किए जाते हैं।) थर्मोडायनामिक्स के पहले नियम से, आंतरिक ऊर्जा में कोई अंतर परिवर्तन {{mvar|U}प्रणाली में नए कणों को जोड़ने के कारण किसी भी बदलाव के साथ-साथ पर्यावरण पर प्रणाली द्वारा किए गए काम से घटाए गए प्रणाली में बहने वाली गर्मी के योग के रूप में लिखा जा सकता है:
कहाँ δQ प्रणाली में अतिसूक्ष्म ऊष्मा प्रवाह है, और δW तंत्र द्वारा किया गया अतिसूक्ष्म कार्य है, μi कण प्रकार की रासायनिक क्षमता है i और Ni प्रकार की संख्या है i कण। (कोई भी नहीं δQ और न δW त्रुटिहीन अंतर हैं, अर्थात, वे थर्मोडायनामिक प्रक्रिया पथ-निर्भर हैं। इसलिए, इन चरों में छोटे परिवर्तन के साथ प्रतिनिधित्व किया जाता है δ इस के अतिरिक्त d.)
ऊष्मप्रवैगिकी के दूसरे नियम के द्वारा, हम राज्य कार्यों और उनके अंतरों के संदर्भ में आंतरिक ऊर्जा परिवर्तन को व्यक्त कर सकते हैं। प्रतिवर्ती परिवर्तनों के स्थिति में हमारे पास:
कहाँ
- T तापमान है,
- S एंट्रॉपी है,
- p दबाव है,
और V वॉल्यूम (थर्मोडायनामिक्स) है, और समानता प्रतिवर्ती प्रक्रियाओं के लिए है।
यह क्वासिस्टेटिक रिवर्सिबल परिवर्तन के स्थिति में आंतरिक ऊर्जा के मानक अंतर रूप की ओर जाता है:
तब से U, S और V राज्य के थर्मोडायनामिक कार्य हैं (जिन्हें राज्य कार्य भी कहा जाता है), उपरोक्त संबंध मनमाना गैर-प्रतिवर्ती परिवर्तनों के लिए भी लागू होता है। यदि प्रणाली में मात्र वॉल्यूम की तुलना में अधिक बाहरी चर हैं जो बदल सकते हैं, मौलिक थर्मोडायनामिक संबंध सामान्यीकरण करता है:
यहां ही Xi बाहरी चरों के अनुरूप सामान्यीकृत बल हैं xi.[10] लीजेंड्रे ट्रांसफॉर्मेशन को बार-बार लागू करते हुए, निम्नलिखित अंतर संबंध चार संभावितों (मौलिक थर्मोडायनामिक समीकरण या मौलिक थर्मोडायनामिक संबंध) के लिए धारण करते हैं:
उपरोक्त समीकरणों में से प्रत्येक के दायीं ओर के अपरिमित गुण बायीं ओर की क्षमता के प्राकृतिक चर हैं। प्रणाली के अन्य थर्मोडायनामिक क्षमता के लिए समान समीकरण विकसित किए जा सकते हैं। प्रत्येक थर्मोडायनामिक क्षमता के लिए एक मूलभूत समीकरण होगा, जिसके परिणामस्वरूप कुल होगा 2D मौलिक समीकरण।
चार ऊष्मप्रवैगिकी क्षमता के बीच के अंतर को निम्नानुसार संक्षेपित किया जा सकता है:
राज्य के समीकरण
हम उपरोक्त समीकरणों का उपयोग कुछ थर्मोडायनामिक मापदंडों की कुछ विभेदक परिभाषाओं को प्राप्त करने के लिए कर सकते हैं। यदि हम परिभाषित करते हैं Φ थर्मोडायनामिक क्षमता में से किसी के लिए खड़े होने के लिए, उपरोक्त समीकरण इस प्रकार के हैं:
कहाँ xi और yi संयुग्म जोड़े हैं, और yi क्षमता के प्राकृतिक चर हैं Φ. श्रृंखला नियम से यह इस प्रकार है:
कहाँ {yi ≠ j} के सभी प्राकृतिक चरों का समुच्चय है Φ के अतिरिक्त yj जिन्हें स्थिरांक के रूप में रखा जाता है। यह उनके प्राकृतिक चर के संबंध में क्षमता के डेरिवेटिव के संदर्भ में विभिन्न थर्मोडायनामिक मापदंडों के लिए अभिव्यक्ति उत्पन्न करता है। इन समीकरणों को राज्य के समीकरण के रूप में जाना जाता है क्योंकि वे थर्मोडायनामिक राज्य के पैरामीटर निर्दिष्ट करते हैं।[11] यदि हम खुद को संभावनाओं तक सीमित रखते हैं U (आंतरिक ऊर्जा), F (हेल्महोल्ट्ज़ मुक्त ऊर्जा), H (एन्थैल्पी) और G (गिब्स मुक्त ऊर्जा), तो हमारे पास अवस्था के निम्नलिखित समीकरण हैं (प्राकृतिक चरों को दर्शाने वाले सबस्क्रिप्ट जिन्हें स्थिरांक के रूप में रखा जाता है):
जहां, अंतिम समीकरण में, ϕ थर्मोडायनामिक क्षमता में से कोई भी है (U, F, H, या G), और को छोड़कर, उस क्षमता के लिए प्राकृतिक चरों का समुच्चय है Ni. यदि हम सभी थर्मोडायनामिक क्षमता का उपयोग करते हैं, तो हमारे पास स्थिति के अधिक समीकरण होंगे जैसे कि
और इसी प्रकार। सभी में, यदि थर्मोडायनामिक स्थान है D आयाम, तो वहाँ होगा D प्रत्येक क्षमता के लिए समीकरण, जिसके परिणामस्वरूप कुल योग होता है D 2D राज्य के समीकरण क्योंकि 2D थर्मोडायनामिक क्षमताएं उपलब्ध हैं। यदि D किसी विशेष क्षमता के लिए राज्य के समीकरण ज्ञात हैं, तो उस क्षमता के लिए मौलिक समीकरण (अर्थात, थर्मोडायनामिक क्षमता का त्रुटिहीन अंतर) निर्धारित किया जा सकता है। इसका मतलब यह है कि प्रणाली के बारे में सभी उष्मागतिक जानकारी ज्ञात हो जाएगी क्योंकि किसी भी अन्य क्षमता के लिए मौलिक समीकरणों को लेजेंड्रे परिवर्तन के माध्यम से पाया जा सकता है और संभावित के आंशिक डेरिवेटिव के रूप में प्रत्येक क्षमता के लिए राज्य के संबंधित समीकरणों को भी पाया जा सकता है।
थर्मोडायनामिक क्षमता का मापन
राज्य के उपरोक्त समीकरण शारीरिक रूप से मापने योग्य मापदंडों का उपयोग करके थर्मोडायनामिक क्षमता में प्रयोगात्मक रूप से परिवर्तन को मापने के तरीकों का सुझाव देते हैं। उदाहरण के लिए मुक्त ऊर्जा भाव
और
प्राप्त करने के लिए निरंतर तापमान और मात्रा में एकीकृत किया जा सकता है:
- (निरंतर टी पर, {एनj} )
- (निरंतर टी पर, {एनj} )
जिसे दबाव, तापमान और आयतन के मापने योग्य चर की देख-रेख के द्वारा मापा जा सकता है। थैलेपी और आंतरिक ऊर्जा में परिवर्तन उष्मामिति द्वारा मापा जा सकता है (जो गर्मी की मात्रा को मापता है ΔQ एक प्रणाली द्वारा जारी या अवशोषित)। भाव
एकीकृत किया जा सकता है:
- (निरंतर पी पर, {एनj} )
- (स्थिर वी पर, {एनj} )
ध्यान दें कि ये माप स्थिरांक {N पर बनाए गए हैंj} और इसलिए उन स्थितियों पर लागू नहीं होते जिनमें रासायनिक प्रतिक्रियाएँ होती हैं।
मैक्सवेल संबंध
पुन: परिभाषित करें xi और yi संयुग्म जोड़े होने के लिए, और yi कुछ क्षमता के प्राकृतिक चर होने के लिए Φ. हम राज्य समीकरणों के क्रॉस डिफरेंशियल ले सकते हैं, जो निम्नलिखित संबंधों का पालन करते हैं:
इनसे हमें मैक्सवेल संबंध मिलते हैं।[3][12] वहां (D − 1)/2 उनमें से प्रत्येक क्षमता के लिए कुल दे रही है D(D − 1)/2 सभी में समीकरण। यदि हम खुद को प्रतिबंधित करते हैं U, F, H, G
रासायनिक क्षमता से जुड़े राज्य के समीकरणों का उपयोग करके हमें समीकरण मिलते हैं जैसे:
और अन्य विभवों का उपयोग करके हम समीकरण प्राप्त कर सकते हैं जैसे:
यूलर संबंध
पुन: परिभाषित करें xi और yi संयुग्म जोड़े होने के लिए, और yi आंतरिक ऊर्जा के प्राकृतिक चर होने के लिए। चूंकि आंतरिक ऊर्जा के सभी प्राकृतिक चर U व्यापक मात्रा हैं
यह सजातीय कार्य | यूलर के सजातीय कार्य प्रमेय से अनुसरण करता है कि आंतरिक ऊर्जा को इस प्रकार लिखा जा सकता है:
राज्य के समीकरणों से, हमारे पास है:
इस सूत्र को एक यूलर संबंध के रूप में जाना जाता है, क्योंकि सजातीय कार्यों पर यूलर का प्रमेय इसकी ओर ले जाता है।[13][14] (उष्मप्रवैगिकी की जांच में लियोनहार्ड यूलर द्वारा इसकी खोज नहीं की गई थी, जो उनके समय में उपलब्ध नहीं थी।)
हमारे पास उपलब्ध अन्य मुख्य संभावनाओं के भावों में प्रतिस्थापित करना:
जैसा कि उपरोक्त अनुभागों में है, इस प्रक्रिया को अन्य सभी उष्मागतिकीय विभवों पर किया जा सकता है। इस प्रकार, एक अन्य यूलर संबंध है, जो आंतरिक ऊर्जा और अन्य व्यापक चरों के फलन के रूप में एन्ट्रापी की अभिव्यक्ति पर आधारित है। फिर भी अन्य यूलर संबंध ऊर्जा या एन्ट्रापी के लिए अन्य मौलिक समीकरणों के लिए हैं, कुछ गहन राज्य चर सहित अन्य राज्य चर के संबंधित कार्यों के रूप में।[15]
गिब्स-डुहेम संबंध
गिब्स-डुहेम समीकरण को मौलिक उष्मागतिक अवस्था समीकरणों से प्राप्त करना सीधा है।[9][16][17] किसी भी ऊष्मप्रवैगिकी संभावित परिभाषा को उसके यूलर संबंध अभिव्यक्ति के साथ समानता देने पर:
विभेद करना, और दूसरे कानून का उपयोग करना:
उत्पन्न:
जो गिब्स-डुहेम संबंध है। गिब्स-ड्यूहेम प्रणाली के गहन मापदंडों के बीच एक संबंध है। यह इस प्रकार है कि एक सरल प्रणाली के साथ I घटक होंगे I + 1 स्वतंत्र पैरामीटर, या स्वतंत्रता की डिग्री। उदाहरण के लिए, एक घटक के साथ एक सरल प्रणाली में दो डिग्री स्वतंत्रता होगी, और उदाहरण के लिए दबाव और मात्रा जैसे मात्र दो पैरामीटर द्वारा निर्दिष्ट किया जा सकता है। कानून का नाम योशिय्याह विलार्ड गिब्स और पियरे ड्यूहेम के नाम पर रखा गया है।
स्थिरता की स्थिति
चूंकि आंतरिक ऊर्जा एन्ट्रापी और आयतन का एक उत्तल कार्य है, इसलिए स्थिरता की स्थिति के लिए आवश्यक है कि एन्ट्रापी या आयतन के साथ आंतरिक ऊर्जा का दूसरा व्युत्पन्न सकारात्मक हो। इसे सामान्यतः व्यक्त किया जाता है . चूंकि एन्ट्रॉपी का अधिकतम सिद्धांत आंतरिक ऊर्जा के न्यूनतम सिद्धांत के बराबर है, स्थिरता या थर्मोडायनामिक संतुलन के लिए संयुक्त मानदंड के रूप में व्यक्त किया गया है और मापदंडों, एन्ट्रापी और वॉल्यूम के लिए। यह के समान है और संतुलन पर एन्ट्रापी के लिए शर्त।[18] एक ही अवधारणा को विभिन्न थर्मोडायनामिक क्षमता की पहचान करके लागू किया जा सकता है कि क्या वे अपने संबंधित चर के उत्तल कार्य या अवतल कार्य हैं।
और जहां हेल्महोल्ट्ज़ ऊर्जा तापमान का अवतल कार्य और आयतन का उत्तल कार्य है।
और जहाँ एन्थैल्पी दाब का अवतल फलन और एन्ट्रापी का उत्तल फलन है।
और जहां तापीय धारिता दबाव और तापमान दोनों का एक अवतल कार्य है।
सामान्यतः थर्मोडायनामिक क्षमता (आंतरिक ऊर्जा और इसके लीजेंड्रे परिवर्तन), आंतरिक के उत्तल कार्य और आंतरिक के अवतल कार्य हैं। स्थिरता की स्थिति यह बताती है कि इज़ोटेर्माल संपीड्यता सकारात्मक है और गैर-ऋणात्मक तापमान के लिए, .[19]
रासायनिक प्रतिक्रियाएँ
इन मात्राओं में परिवर्तन उस डिग्री का आकलन करने के लिए उपयोगी होते हैं जिस पर रासायनिक प्रतिक्रिया आगे बढ़ेगी। प्रासंगिक मात्रा प्रतिक्रिया की स्थिति पर निर्भर करती है, जैसा कि निम्न तालिका में दिखाया गया है। Δ क्षमता में परिवर्तन को दर्शाता है और संतुलन में परिवर्तन शून्य होगा।
| Constant V | Constant p | |
|---|---|---|
| Constant S | ΔU | ΔH |
| Constant T | ΔF | ΔG |
सामान्यतः कोई व्यक्ति प्रतिक्रियाओं को स्थिर मानता है p और T, इसलिए रासायनिक प्रतिक्रियाओं के अध्ययन में गिब्स मुक्त ऊर्जा सबसे उपयोगी क्षमता है।
यह भी देखें
- कूम्बर का रिश्ता
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.4 Helmholtz energy, Helmholtz function
- ↑ 2.0 2.1 ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.5, Gibbs energy, Gibbs function
- ↑ 3.0 3.1 Alberty (2001) p. 1353
- ↑ Alberty (2001) p. 1376
- ↑ ISO/IEC 80000-5:2007, item 5-20.4
- ↑ Callen (1985) p. 153
- ↑ Alberty (2001) p. 1352
- ↑ Alberty (2001) p. 1355
- ↑ 9.0 9.1 Alberty (2001) p. 1354
- ↑ For example, ionic species Nj (measured in moles) held at a certain potential Vj will include the term where F is the Faraday constant and zj is the multiple of the elementary charge of the ion.
- ↑ Callen (1985) p. 37
- ↑ Callen (1985) p. 181
- ↑ Callen, H.B. (1960/1985).Thermodynamics and an Introduction to Thermostatistics, second edition, John Wiley & Sons, Hoboken NY, ISBN 9780471862567, pp. 59–60.
- ↑ Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics, AIP Press, Woodbury NY, ISBN 0883187973, pp. 215–216.
- ↑ Callen, H.B. (1960/1985).Thermodynamics and an Introduction to Thermostatistics, second edition, John Wiley & Sons, Hoboken NY, ISBN 9780471862567, pp. 137–148.
- ↑ Moran & Shapiro, p. 538
- ↑ Callen (1985) p. 60
- ↑ W., Tschoegl, N. संतुलन और स्थिर-राज्य ऊष्मप्रवैगिकी के मूल सिद्धांत. ISBN 978-0-444-50426-5. OCLC 1003633034.
{{cite book}}: CS1 maint: multiple names: authors list (link) - ↑ Callen, Herbert B. (2005). थर्मोडायनामिक्स और थर्मोस्टेटिस्टिक्स का परिचय (2nd ed.). New Delhi: John Wiley & Sons. pp. 203–210. ISBN 978-81-265-0812-9. OCLC 663862636.
संदर्भ
- Alberty, R. A. (2001). "Use of Legendre transforms in chemical thermodynamics" (PDF). Pure Appl. Chem. 73 (8): 1349–1380. doi:10.1351/pac200173081349.
- Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). New York: John Wiley & Sons. ISBN 978-0-471-86256-7.
- Moran, Michael J.; Shapiro, Howard N. (1996). Fundamentals of Engineering Thermodynamics (3rd ed.). New York ; Toronto: J. Wiley & Sons. ISBN 978-0-471-07681-0.
अग्रिम पठन
- McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
- Thermodynamics, From Concepts to Applications (2nd Edition), A. Shavit, C. Gutfinger, CRC Press (Taylor and Francis Group, USA), 2009, ISBN 9781420073683
- Chemical Thermodynamics, D.J.G. Ives, University Chemistry, Macdonald Technical and Scientific, 1971, ISBN 0-356-03736-3
- Elements of Statistical Thermodynamics (2nd Edition), L.K. Nash, Principles of Chemistry, Addison-Wesley, 1974, ISBN 0-201-05229-6
- Statistical Physics (2nd Edition), F. Mandl, Manchester Physics, John Wiley & Sons, 2008, ISBN 9780471566588
बाहरी संबंध
- Thermodynamic Potentials – Georgia State University
- Chemical Potential Energy: The 'Characteristic' vs the Concentration-Dependent Kind